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Recent experiments have shown that the striking structure formation in dewetting films of evaporating col-
loidal nanoparticle suspensions occurs in an ultrathin ‘postcursor’ layer that is left behind by a mesoscopic
dewetting front. Various phase change and transport processes occur in the postcursor layer, that may lead to
nanoparticle deposits in the form of labyrinthine, network or strongly branched ‘finger’ structures. We develop
a versatile dynamical density functional theory to model this system which captures all these structures and may
be employed to investigate the influence of evaporation/condensation, nanoparticle transport and solute trans-
port in a differentiated way. We highlight, in particular, the influence of the subtle interplay of decomposition in
the layer and contact line motion on the observed particle-induced transverse instability of the dewetting front.

How surface patterns and structures evolve over time is of
great interest for a wide range of scientific fields. Striking
examples include river network patterns [1], the growth of
rocks around geothermal springs [2] evaporation-caused cof-
fee stain patterns [3], and the patterns in the distribution of
living organisms [4]. Many such structures are generated by
the interaction of fluid motion over the surface and deposition
and/or abrasion of material. A particular process of high re-
cent interest that concerns us in this Letter is the formation
of structures during the (evaporative) dewetting of nanoparti-
cle suspensions on solid substrates [5–7]. The patterning is
generic to a wide class of dewetting evaporating suspensions
and solutions [8–12] and depends crucially on the interplay of
several competing phase-change and transport processes.
The rapidly expanding study of such systems currently re-
ceives strong impetus from research in two distinct areas.
On the one hand, studies from the last couple of decades of
the dynamics of dewetting of surfaces by non-volatile liquids
[13, 14] have been extended to investigate the interplay be-
tween (de)wetting and evaporation of volatile liquids [15, 16].
On the other hand, there is interest in the non-equilibrium
thermodynamics and rheology of the respective phase and
flow behaviour of bulk suspensions and solutions – see e.g.
Ref. [17] and references therein. A thin film of pure non-
volatile liquid that is deposited upon a smooth substrate (e.g.,
a polystyrene film having a thickness of a few tens of nanome-
ters, deposited on silicon oxide [13]) may rupture due to ef-
fective molecular interactions between the film surface and the
solid substrate. The rupture mechanism can be (i) via a sur-
face instability (often called spinodal dewetting) that occurs
spontaneously and results in patterns of a certain characteristic
wavelength, or (ii) via nucleation at randomly distributed de-
fects [18, 19]. The resulting holes then grow to form a polyg-
onal network of liquid rims that may subsequently decay into
drops. All stages of this process are intensively studied: the
rupture mechanisms [13, 14, 18], the hole growth [20], the
morphologies and evolution of the resulting patterns [21], and
the stability of receding liquid fronts [22, 23]. For reviews of
this body of work, see Ref. [24].
The dewetting processes of solutions and suspensions are
more involved than those of a pure liquid because they in-
volve several interdependent dynamical processes: transport
of solute or colloids, transport of the solvent and evapora-

tion/condensation of the solvent. As a consequence, one
must distinguish between ‘normal’ convective dewetting and
evaporative dewetting. Experimental studies performed with
volatile solutions/suspensions of polymers [8, 9], macro-
molecules [10–12] and colloids a few nanometers in size (re-
ferred to as ‘nanoparticles’) [5–7, 25] describe a variety of
richly structured deposits of the solutes. One may observe
labyrinthine and polygonal network structures similar to the
structures observed following ‘classical’ dewetting. As the
solvent evaporates, the solute remains dried onto the sub-
strate and therefore ‘conserves’ the transient dewetting pattern
[6, 10]. However, the solute is not just a passive tracer: it may
influence the thresholds and the rates of the initial film rup-
ture processes. Most importantly, it may also destabilise the
straight dewetting fronts and trigger the creation of strongly
ramified structures – a process observed in many different sys-
tems [7–9, 26].
For instance, the dewetting of films of a suspension of thiol-
coated gold nanoparticles in toluene may result in the depo-
sition of the nanoparticles in branched finger patterns. The
precise properties of these depend on the strength of the attrac-
tion between the colloidal particles [7]. Employing contrast-
enhanced video microscopy to study the dynamics of the sys-
tem, initially the receding of a mesoscopic dewetting front
(equivalent to the receding three phase contact line) is ob-
served, leaving behind an unstable ultrathin ‘postcursor’ film,
having a thickness similar to the diameter of the nanoparticles.
Subsequently, the postcursor film breaks, forming a pattern of
holes that themselves grow in an unstable manner, resulting
in an array of branched structures. Note that the mesoscopic
front may also be unstable – an effect that does not concern us
here.
Theories for modelling such processes are rather limited at the
present time. Hydrodynamical models of dewetting by thin
films based on a long-wave approximation [24, 27] provide a
mesoscale description of the liquid film, and can account for
evaporation of volatile liquids [28] and for the presence of a
solute [29]. However, they are not able to describe the pro-
cesses occurring in the postcursor film as they do not account
for the interactions between the solute particles and between
the solute particles and the solvent. Alternatively, to describe
these processes one may employ two-dimensional (2d) kinetic
Monte-Carlo (KMC) lattice models that focus solely on the
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FIG. 1: (Color online) (a) Phase diagram of the pure liquid in the
plane spanned by the density ρl and temperature T . (b) Liquid and
nanoparticle densities ρl and ρn at coexistence as a function of the
average nanoparticle density ρ̄n, for εll/kBT = 1.25, εnl/kBT =
0.6, εnn = 0.

dynamics of the solute diffusion and the solvent evaporation
[30–32]. The neglect of convective solvent transport can be
justified based on estimates comparing its influence with the
one of evaporative solvent transport [32]. However, so far the
2d KMC models have not incorporated diffusive solvent trans-
port that might be important in the postcursor layer.
In this Letter we present an alternative description for the
structure formation in the postcursor film that does not have
the limitations of the previous approaches. We develop a 2d
dynamical density functional theory (DDFT) [33–36] to de-
scribe the coupled dynamics of the density fields of the liq-
uid ρl(r, t) and the nanoparticles ρn(r, t). In this approach,
diffusive liquid transport can be incorporated in a straight-
forward manner enabling us to go beyond previous 2d KMC
studies and examine its influence. To construct the DDFT
model, we (i) develop via coarse-graining an approximation
for the underlying free energy functional of the system and
(ii) form equations governing the dynamics of the two den-
sity fields. These are able to account for the non-conserved
and conserved aspects of the dynamics, i.e., phase change and
diffusive transport processes, respectively.
In order to compare results with the established KMC lattice
model [30–32], we start from the lattice Hamiltonian to de-
velop a mean-field (Bragg-Williams) approximation for the
free energy functional [35, 37]. Expressing the interaction
terms (sums over neighbouring lattice sites) as gradient opera-
tors [35], the following semi-grand [38] free energy functional
is obtained:

F [ρl, ρn] =

∫
dr

[
f(ρl, ρn) +

εll
2

(∇ρl)2 +
εnn
2

(∇ρn)2

+εnl(∇ρn) · (∇ρl)− µρl
]
, (1)

where f(ρl, ρn) = kBT [ρl ln ρl + (1 − ρl) ln(1 − ρl)] +
kBT [ρn ln ρn + (1 − ρn) ln(1 − ρn)] − 2εllρ

2
l − 2εnnρ

2
n −

4εnlρnρl, includes entropic contributions and various inter-
action terms – the parameters εij , where i, j = n, l, are the
energies for having neighbouring pairs of lattice sites occu-
pied by species i and j, respectively, T is the temperature, kB
is Boltzmann’s constant and we have set the lattice spacing
σ = 1. Note that F in Eq. (1) can also be obtained by making

FIG. 2: (Color online) Results for spinodal evaporative dewetting
of a nanoparticle suspension. (a) and (b) are typical nanoparticle
density profiles, for times t/tl = 6 and 20, and (d) and (e) are the
corresponding liquid density profiles, for Mc

l = 0. The domain size
is 200σ × 200σ. (c) and (f) give the corresponding time evolution
of the mean liquid density 〈ρl〉 and the structure factor 〈ρn(k)2〉 for
various values of Mc

l . The remaining parameters are εll/kBT =
1.25, εnl/kBT = 0.6, εnn = 0, α = 0.4Mnc

l σ4, µ/kBT = −3.4,
and 〈ρn〉 = 0.3.

a gradient expansion of the (non-local) free energy functional
of a continuous system [37]. The rate of evaporation of the
liquid from the substrate is determined by the chemical poten-
tial µ in the reservoir (i.e. in the vapour above the substrate).
When the temperature is sufficiently low, and the chemical
potential µ = µcoex, we observe coexistence between a thick
(high density) and a thin (low density) liquid film. In Fig. 1(a)
we display the limit of linear stability (spinodal) and the equi-
librium coexistence curve (binodal) for the pure liquid (i.e.
with ρn = 0). To indicate the influence of the solute we plot
in Fig. 1(b) the densities ρl and ρn at coexistence for a fixed
temperature kBT/εll = 0.8 as a function of the average con-
centration ρ̄n = 1

2 (ρan+ρbn), where ρan and ρbn are the densities
of the nanoparticles in the coexisting a and b phases. For fur-
ther details concerning the phase diagram and its topology see
Ref. [39].
At equilibrium, the derivative µn ≡ δF [ρn, ρl]/δρn is a con-
stant, corresponding to the chemical potential of the nanopar-
ticles. However, when the system is out of equilibrium, µn

may vary along the substrate. We assume that the thermo-
dynamic force ∇µn drives the dynamics of the nanoparticles
and that the nanoparticle current is j = −Mnρn∇µn, where
Mn(ρl) is a mobility coefficient. This expression for the cur-
rent, together with the continuity equation, yields the time
evolution equation for the nanoparticle density profile:

∂ρn
∂t

= ∇ ·
[
Mnρn∇

δF [ρn, ρl]

δρn

]
. (2)

This equation may also be obtained by assuming over-damped
stochastic equations of motion for the nanoparticles [33, 34].
To model the fact that nanoparticles do not diffuse over the
dry substrate (when ρl is small) we set the mobilityMn(ρl) to
switch at ρl = 0.5 (smoothly) from zero for the dry substrate
(low ρl) to α for the wet substrate (high ρl). Note that our
results are not sensitive to the precise form of Mn(ρl).
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FIG. 3: (Color online) Density profiles for evaporative dewetting in
the nucleation regime. (a)-(c) are the nanoparticle density profiles at
times t/tl = 20, 80 and 4000, (d) and (e) are the liquid profiles for
t/tl = 20 and 80, for Mc

l = 2 and µ/kBT = −3.33; remaining
parameters are as in Fig. 2. In (f) we plot the average density of the
liquid on the substrate 〈ρl〉, as a function of time for this case and
the case Mc

l = 0. The system was initialised with the (discretised)
density profiles: ρl(x, y, t = 0) = 0.9 + 0.05χ, ρn(x, y, t = 0) =
0.3 + 0.27χ, where χ is a random number uniformly distributed on
the interval [−1, 1]. It is due to this random noise that the holes are
nucleated in some places and not in others.

FIG. 4: (Color online) Density profiles from the evolution of an
unstable dewetting front. (a)–(c) are the nanoparticle density pro-
files at times t/tl = 2000, 20000 and 40000, (d) and (e) are the
liquid profiles for t/tl = 2000 and 20000, for α = 0.2Mnc

l σ4,
µ/kBT = −3.28 and domain size 800σ × 800σ; remaining param-
eters are as in Fig. 2. The initial density profiles are the same as those
in Fig. 3, except for y < 0 we set ρl = ρn = 10−10, to create an ini-
tially straight dewetting front at y = 0. In (f) we plot the mean finger
number 〈f〉 as a function of the mobility coefficient for nanoparticle
diffusion α, for the case when Mc

l = 0.

For the liquid, the density may change either by evapora-
tion/condensation from/to the substrate (non-conserved dy-
namics) or may diffuse over the substrate (conserved dynam-
ics). The latter dynamics is treated in a manner analogous
to that for the nanoparticles. For the non-conserved dynam-
ics, we assume a standard form [40], i.e., that the change
of the density over time is proportional to −(µsurf − µ) =
−δF [ρn, ρl]/δρl, where µsurf(r, t) is the local chemical po-
tential of the liquid on the substrate. Combining these two
contributions, we obtain the time evolution equation of the

FIG. 5: (Color online) Nanoparticle density profiles from the evolu-
tion of an unstable dewetting front, for the time t/tl = 20000, (a)
forMc

l = 0 and (b)Mc
l = 5, for α = 0.5Mnc

l σ4, µ/kBT = −3.28
and domain size is 800σ × 800σ; remaining parameters and initial
density profiles are as in Fig. 4. In (c) we show the dependence of
the mean finger number 〈f〉 on the mobility coefficient for liquid
diffusion, Mc

l .

liquid density profile:

∂ρl
∂t

= ∇ ·
[
M c

l ρl∇
δF [ρn, ρl]

δρl

]
−Mnc

l

δF [ρn, ρl]

δρl
. (3)

We assume that the two mobility coefficientsM c
l andMnc

l are
constants. In what follows we set kBT = 1 and Mnc

l = 1.
Note that in the low density limit, when ρn → 0 and ρl → 0,
the conserved part in both Eq. (2) and Eq. (3) corresponds to
Fickian diffusion.
Before discussing results from our theory, we first make a cou-
ple of comments about the status of the theory. Firstly, we note
that Eq. (1) constitutes a simple ‘zeroth-order’ mean-field ap-
proximation for the free energy of the system and omits (for
example) terms such as ln(1 − ρn − ρl) which describe the
excluded area correlations between the liquid and the nano-
particles. Second, due to the fact that we derive the theory
from the (already) coarse-grained lattice Hamiltonian rather
than by integrating over degrees of freedom (coarse-graining)
in the full DDFT theory for the three-dimensional liquid film,
the theory can not be regarded as a ‘fully’ microscopic theory.
The reason that we have modelled the system using this sim-
ple theory is because our interest is the basic question of what
physics drives the behaviour displayed in the experiments. In
this work we choose to start from the lattice theory, in order to
compare with the KMC. However, as future work we plan to
go beyond the lattice theory. Our goal here is not to construct
a model describing every detail of these systems; instead we
seek to examine what physics is involved in determining the
observed pattern formation. Nonetheless, this DDFT does al-
low us to investigate the time evolution of the postcursor film
of an evaporating nanoparticle suspension under fewer restric-
tions than the KMC model. To discuss the importance of liq-
uid transport within the layer we compare results obtained for
different liquid mobilities (M c

l > 0) and results without liquid
transport (i.e., setting M c

l = 0). We focus on three examples:
(i) spinodal dewetting (see Fig. 2), (ii) dewetting via nucle-
ation of holes in an initially flat film (see Fig. 3), and (iii) the
unstable receding of an evaporative dewetting front, which ex-
hibits branched fingering (see Figs. 4 and 5).
Fig. 2 shows snapshots from a purely evaporative spinodal
dewetting process. Panel (c) gives the evolution of mean liq-
uid density with time, 〈ρl〉 ≡ A−1

∫
drρl(r, t), where A is

the area of the substrate, and panel (f) gives the nanoparticle
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structure factor S(k) ≡ 〈ρn(k)2〉, where ρn(k) is the Fourier
transform of ρn(r). For small times, the unstable film de-
velops a typical spinodal labyrinthine pattern with a typical
wavelength 2π/kmax (note that the symmetry breaking in the
density profiles in all our calculations is due to the addition of
a small amplitude random noise to the density profiles at time
t = 0 and no noise is added at later times). The nanoparticles
concentrate where the remaining liquid is situated. However,
they are ‘slow’ in their reaction: when ρl already takes val-
ues in the range 0.08 to 0.83, the nanoparticle concentration
has only deviated by about 25% from its mean value. The
film thins rapidly forming many small holes. The competi-
tion for space results in a fine-meshed network of nanoparti-
cle deposits with a much higher concentration of particles at
the network nodes – an effect that can not be seen within the
KMC model. Because the liquid wets the nanoparticles, some
liquid always remains on the substrate. Accounting for sol-
vent diffusion, the rate of the dewetting process is increased
[see Fig. 2(c)] and leads to a more strongly modulated final
pattern – i.e. the peaks in S(k) are higher forM c

l > 0 than for
M c

l = 0 [2(f)].
Fig. 3 shows snapshots from a dewetting process triggered
by nucleation events. The holes nucleate at several arbitrary
places due to the random initial noise in the density profiles,
and grow to form a random polygonal network of rims of
highly concentrated solution. On a very long time scale the
network coarsens into an array of drops. The influence of liq-
uid transport can be seen in the final panel of Fig. 3, where
we display a plot of the average density of the liquid on the
substrate as a function of (log) time. We see that the liquid is
able to evaporate from the substrate faster and that for times
t/tl ∼ 102−104, the total amount of liquid on the substrate is
less when M c

l = 2, than when M c
l = 0. However, over very

long times, the drops on the substrate slowly move and ‘eat-
up’ the network pattern. This process is faster with solvent
diffusion, leading to a faster increase of 〈ρl〉 at long times.
Since the liquid wets the nanoparticles, some liquid also re-
condenses back onto the substrate.
The final example in Figs. 4 and 5 is the evolution of the fin-
gering instability for a receding dewetting front. The fingering
instability is caused by a build up of the nanoparticles at the
receding front, which collects the nanoparticles due to their
attraction to the liquid. In Fig. 4(a) we see that at early times
the initially straight front shows a rather short-wave instabil-
ity; about 20 short ‘fingers’ can be seen. However, the fin-
ger pattern coarsens rapidly to a stationary pattern containing
only about half the initial number of fingers. Intriguingly, the
mean finger number remains constant although at the mov-
ing contact line new branches are created and old branches
merge continuously. The occurrence of this phenomenon in

the present continuum model (DDFT) is similar to results of
the KMC [32], and proves that jamming of discrete particles
is not a necessary mechanism for causing the instability. In
Fig. 4(f) we show how the average number of fingers per unit
length, 〈f〉, varies as a function of α, the mobility coefficient
of the nanoparticles on the wet substrate, for the case when
M c

l = 0. We see that as α is decreased, the number of fin-
gers increases. This increase in 〈f〉 occurs because when the
mobility of the nanoparticles is decreased the front ‘collects’
more particles (less of them diffuse further from the front).
The resulting region of high concentration solution at the front
may be ‘dynamically unstable’: As the front velocity depends
non-linearly on the amount of particles collected, any fluctua-
tion along the front may trigger a transverse instability.
Fig. 5 shows that the finger number 〈f〉 depends non-
monotonically on the mobility coefficient for liquid diffusion,
M c

l . Although the overall trend is an increase of 〈f〉 with in-
creasing M c

l , there exists an intermediate region (5 . M c
l .

7) where 〈f〉 slightly decreases. The overall trend results from
an increase in front velocity (due to the increase in M c

l ) at
fixed particle diffusivity. However, we currently have no ex-
planation for the intermediate slight decrease.
Note also that in all cases the instability may be strongly am-
plified when the particle interactions favour the clustering of
the nanoparticles (this is not the case for the parameters used
here), where the higher concentration at the receding front
leads to a local demixing of nanoparticles and liquid, that it-
self enforces the deposition of a highly branched finger pat-
tern. In this ‘demixing regime’ the instability is determined
by the dynamics and the energetics of the system whereas for
the case studied in Fig. 4 it mainly depends on the dynamics.
We note finally, that the fingering process can be seen as a
self-optimisation of the front motion, so that the average front
velocity is kept constant by expelling particles into the fin-
gers. A similar effect exists for dewetting polymer films [22],
where surplus liquid is expelled from the growing moving rim
which collects the dewetted polymer. However, front instabil-
ities found for dewetting polymers only result in fingers with-
out side-branches [41] or fields of droplets left behind [22].
In this Letter we have developed a versatile DDFT that is ca-
pable of describing the pattern formation observed in evapo-
rating dewetting thin films of suspensions. Since our DDFT
takes account of all the basic solvent and solute transport and
phase change processes in a consistent manner, we believe
that it will be the basis for many successful future studies of
the behaviour of suspensions and solutions at interfaces.
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