
Journal of Magnetic Resonance 244 (2014) 74–84
Contents lists available at ScienceDirect

Journal of Magnetic Resonance

journal homepage: www.elsevier .com/locate / jmr
Characterization and correction of eddy-current artifacts in unipolar
and bipolar diffusion sequences using magnetic field monitoring
http://dx.doi.org/10.1016/j.jmr.2014.04.018
1090-7807/� 2014 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

⇑ Corresponding author. Address: Centre for Medical Imaging, 3rd Floor East, 250
Euston Road, London NW1 2PG, United Kingdom.

E-mail address: rachel.chan.ucl@gmail.com (R.W. Chan).
Rachel W. Chan a,⇑, Constantin von Deuster b,c, Daniel Giese c, Christian T. Stoeck b, Jack Harmer c,
Andrew P. Aitken c, David Atkinson a, Sebastian Kozerke b,c

a Centre for Medical Imaging, University College London, London, United Kingdom
b Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
c Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, United Kingdom

a r t i c l e i n f o
Article history:
Received 20 November 2013
Revised 25 April 2014
Available online 14 May 2014

Keywords:
Field monitoring
Higher-order eddy-currents
Eddy-current correction
a b s t r a c t

Diffusion tensor imaging (DTI) of moving organs is gaining increasing attention but robust performance
requires sequence modifications and dedicated correction methods to account for system imperfections.
In this study, eddy currents in the ‘‘unipolar’’ Stejskal-Tanner and the velocity-compensated ‘‘bipolar’’
spin-echo diffusion sequences were investigated and corrected for using a magnetic field monitoring
approach in combination with higher-order image reconstruction. From the field-camera measurements,
increased levels of second-order eddy currents were quantified in the unipolar sequence relative to the
bipolar diffusion sequence while zeroth and linear orders were found to be similar between both
sequences. Second-order image reconstruction based on field-monitoring data resulted in reduced spatial
misalignment artifacts and residual displacements of less than 0.43 mm and 0.29 mm (in the unipolar
and bipolar sequences, respectively) after second-order eddy-current correction. Results demonstrate
the need for second-order correction in unipolar encoding schemes but also show that bipolar sequences
benefit from second-order reconstruction to correct for incomplete intrinsic cancellation of eddy-
currents.
� 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/3.0/).
1. Introduction

Diffusion-weighted imaging (DWI) and diffusion-tensor imag-
ing (DTI) are non-invasive MRI techniques with broad clinical
applications. While many clinical applications of diffusion imaging
are in the brain, there is an increasing number of DWI and DTI
studies in other organs [1], including the spinal cord [2], breast
[3], prostate [4], liver [5], kidney [6], pancreas [7] and in the heart
[8,9]. Bulk physiological motion has initially been a barrier to per-
forming diffusion imaging in organs affected by motion. In cardiac
diffusion, this has been alleviated by technical advances including
the use of cardiac/respiratory navigator techniques, single-shot
echo planar imaging (EPI) readouts, and sequence modifications
that reduce the effects of any motion that occurs during the diffu-
sion gradients. Such techniques have improved the robustness and
reproducibility of diffusion-imaging applications in moving organs
such as cardiac DTI [8,9].
Unfortunately, diffusion imaging suffers from substantial arti-
facts such as those caused by eddy currents, which are induced
in conducting structures of the magnet bore by gradient switching.
Diffusion imaging is particularly prone to eddy-current artifacts
due to relatively long EPI readouts combined with strong diffu-
sion-sensitizing gradients. Unlike static field inhomogeneities,
eddy currents do not remain constant over diffusion-encoding
directions. Rather, they vary depending upon the magnitude and
direction of the applied diffusion gradients. This leads to spatial
misregistration and inconsistency between uncorrected images
obtained with different diffusion-encoding directions or b-values.
Ignoring eddy currents in the image reconstruction results in
ghosting, bulk object shifts and deformations, as well as signal
dropouts [10]. In DTI, this also leads to inaccuracies in estimates
of the fractional anisotropy (FA).

In this study, we investigate the effects of eddy currents in
sequences that are suitable for performing cardiac DTI where there
is substantial motion. Two sequences previously used for cardiac
diffusion are compared: (i) the Stejskal-Tanner or ‘‘unipolar’’
spin-echo diffusion sequence [11] and (ii) a ‘‘bipolar’’ spin-echo
sequence [12–14]. The unipolar sequence has a shorter echo time
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(TE) while the bipolar sequence offers insensitivity to first-order
bulk motion through its velocity-compensated nature [12–14].

The twice-refocused sequence, described in Reese et al. [15]
(optimized extension of an approach by Wider et al. [16]), was
designed to have intrinsic eddy-current compensation. However,
this sequence is less suitable for cardiac imaging due to a lack of
velocity compensation resulting in a higher likelihood of intravoxel
dephasing caused by myocardial motion during the diffusion pulses.
Secondly, concomitant gradient fields are unbalanced in the TRSE
sequence (whereas they are cancelled out in the bipolar spin-echo
sequence due to the symmetry). Lastly, the addition of an extra refo-
cusing pulse makes the sequence more susceptible to RF pulse
imperfections. Although adjustments to the gradients and RF pulses
can be made to reduce concomitant gradient fields and RF pulse
imperfections, the lack of velocity compensation in the TRSE
sequence leads to signal loss in the presence of motion. Such signal
loss cannot easily be corrected by retrospective methods, and thus,
the TRSE sequence is left out of the comparison in this study.

One aim of this study is to investigate the higher-order spatial
effects of eddy currents and their time-varying nature [17–21] in
the unipolar and bipolar sequences. Correction of higher-order
effects have led to improved image quality in previous studies
[20–22]. However, the temporal dynamics and relative magnitudes
of higher-order effects among different sequences have received
less attention. The reason for measuring higher-order effects is that
unlike linear offsets, dynamic higher-order phase variations cannot
be corrected for by standard pre-emphasis techniques ([23] and
references therein).

It is possible to characterize eddy-current induced phase offsets
at very high temporal resolution using NMR field probes [24–26]. A
dynamic field camera with 16 NMR probes is capable of measuring
eddy-current phases up to 3rd spatial order. This technique has
recently been used to monitor such phase contributions with first
applications to diffusion imaging [20] and phase-contrast imaging
[27]. The purpose of the present study is to use a field-monitoring
approach to measure, characterize and correct for linear and
higher-order eddy-current effects in the unipolar and bipolar
sequences. Eddy currents are not patient-specific and the field-
monitoring approach potentially allows calibration scans to be
used for the correction of temporal and higher-order spatial effects
during reconstruction for any organ imaged with a given sequence.
As such, this study has been restricted to a phantom study to min-
imize the confounding effects of additional artifacts, including bulk
motion, as found in in vivo studies.

2. Methods

2.1. Hardware

All scans were performed on a 3T Philips Achieva TX system
(Philips Healthcare, Best, The Netherlands) operated in a gradient
mode that provides 63 mT/m maximal strength and 100 mT/m/
ms slew rate. Unipolar and bipolar diffusion sequence diagrams
are shown in Fig. 1a and b. A 16-probe dynamic field camera
[24–26] (Skope Magnetic Resonance Technologies, Zurich, Switzer-
land) was used for monitoring the eddy-current fields. Fig. 1c
shows a diagram of the field camera. Images were acquired using
a phantom and then followed immediately by scans with the field
camera.

2.2. Field model

A model of the field was fitted to the signal phases recorded by
the 16 1H NMR probes of the dynamic field camera. The field model
used third-order spherical harmonics as described in [24]:
/ðr; tÞ ¼
XNL�1

l¼0

klðtÞhlðrÞ þxref ðrÞt ð1Þ

where hl(r) denotes the set of spherical harmonic basis functions for
the lth-order real-valued spherical harmonics up to 3rd order with
Nl = 16 (as in Table 1 of [20]), and xref(r) represents the off-reso-
nance contribution of the imaged object in a reference state at posi-
tion r. The set of coefficients kðtÞ ¼ k0ðtÞ; k1ðtÞ; . . . ; kNL�1ðtÞ

� �T at
time point t was calculated according to:

kðtÞ ¼ Pþ½hprobeðtÞ �xref ;probet� ð2Þ

where hprobeðtÞ ¼ ½h1ðtÞ; h2ðtÞ; . . . ; hNP ðtÞ�
T contains phases measured

by all NP probes, xref ;probe ¼ ½xref ;1;xref ;2; . . . ;xref ;NP �
T contains the

probes’ reference frequencies, and P+ = (PTP)�1PT denotes the
pseudo-inverse of the so-called probing matrix as in [20],
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..

. ..
. ..

. ..
.

h0ðrNP Þ h1ðrNP Þ � � � hNL�1ðrNP Þ

0
BB@

1
CCA ð3Þ

which samples the basis functions hlðrkÞ at the probes’ locations.

2.3. Image reconstruction

All reconstructions were performed by direct conjugate phase
reconstruction in a single step without any iteration. No
re-gridding was required. For each coil c, the complex image-space
signal at position rk and grid index k reads:

qcðrkÞ ¼
XNj

j
e�iuðrk ;tjÞdcðtjÞwðtjÞ ð4Þ

with

uðrk; tjÞ ¼
XM

l¼0

klðtjÞhlðrkÞ ð5Þ

where dc is the complex k-space signal for coil c at time tj corre-
sponding to sample index j, u is the phase measured by the probes,
and w(tj) is the density compensation weights for each k-space
sample. Images were reconstructed to a 116 � 116 matrix size. A
standard EPI readout scheme was modified to provide a continuous
readout trajectory that consisted of data samples acquired during
the ramps of the trapezoidal readout gradients and during the trian-
gular phase-encode blips. Density compensation weights w(tj)
were computed using a 2D Voronoi tessellation approach in k-space
[28]. Data from separate channels were combined in image space
using a sum-of-squares approach. Parts of the data-processing pipe-
line were performed using ReconFrame (GyroTools LLC, Zurich,
Switzerland).

Images were compared after being reconstructed by the follow-
ing three methods:

(i) No eddy-current correction: Using the set of probe phases
uðrk; tjÞ that were measured during the b = 0 s/mm2 scan,
reconstruction was performed using Eqs. (4) and (5) with
up to first order (i.e., M = 3). The phases from the b = 0 s/
mm2 scan provide a nominal trajectory through k-space
without the influence of eddy currents due to diffusion gra-
dients. These were used for reconstructing images for all dif-
fusion-encoding directions.

(ii) Linear eddy-current correction: Reconstruction included 0th
and 1st order phases (M = 3) from each diffusion-weighted
sequence.

(iii) Higher-order eddy-current correction: Reconstruction
included 0th to 3rd order phases (M = 15).



Fig. 1. Unipolar and bipolar diffusion encoding sequences. DW-EPI spin-echo sequences are shown with (a) unipolar Stejskal-Tanner and (b) bipolar diffusion lobes. Both
sequences are sampled with a single-shot EPI readout during which data is continuously acquired and the phase is ‘‘monitored’’ by a separate scan with a field camera. The
echo time (TE) is shown by a dotted line during the EPI readout, which corresponds to a partial Fourier factor of 61.2%. (c) A diagram of the field camera is shown. It consists of
16 NMR probes mounted on a sphere having a diameter of 20 cm.

Table 1
Sequence timings.

b-Value Unipolar Bipolar

TE Pulse width (ms) TE Pulse width (ms)

250 36.3 6.38 53.9 7.51
500 40.3 8.26 60.8 9.28
750 43.0 9.62 66.3 10.63

1000 45.3 10.79 70.2 11.61

Echo times and pulse widths are listed in the table for the unipolar and bipolar
sequences for each b-value. Pulse widths for the unipolar sequence are for a single
lobe (out of a total of two diffusion lobes that make up the Stejskal-Tanner
sequence). Pulse widths for the bipolar sequence are also for a single lobe (out of a
total of four diffusion gradient lobes for the bipolar sequence). Pulse widths of each
trapezoidal lobe include the ramp up and down times. Ramp durations were 0.9 ms
for all gradients. The maximum gradient amplitude per gradient axis was 63 mT/m.
The gradients were applied simultaneously on all three gradient axes, which
resulted in a maximum resultant gradient amplitude of 87 mT/m.
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2.4. MR imaging experiments

An agar phantom was made from an aqueous solution having an
agar concentration of 20 g/L mixed with 0.75 g/L of CuSO4. Plastic
structures were embedded inside the agar throughout the phan-
tom to probe various spatial locations. Images were obtained using
an 8-channel head coil with the following parameters:
FOV = 200 � 155 mm2, b = [250, 500, 750, and 1000 s/mm2], mini-
mum TE for each case (TEunipolar = [36.3, 40.3, 43.0, 45.3 ms] and
TEbipolar = [53.9, 60.8, 66.3, 70.2 ms] for each b-value respectively),
TR = 2 s, 6 diffusion-encoding directions and a b = 0 s/mm2 image,
1 signal average, 5 mm slice thickness, 61.2% partial Fourier factor,
BWPE = 22.4 Hz. The pulse widths of the diffusion lobes (with the
corresponding b-values and echo times) are shown in Table 1. A
single transverse slice was imaged. The slice was located at the
magnet iso-centre. The 180� refocusing pulse was applied orthog-
onally to the 90� excitation pulse to limit the FOV in the phase-
encoding (PE) direction and thereby the EPI readout duration
[29]. This would allow the current FOV to be maintained without
aliasing if the technique were to be applied in in vivo abdominal
scans, where larger FOVs would otherwise be necessary. Diffusion
gradients were simultaneously applied on the X, Y and Z gradient
axes to achieve higher b-values for a given gradient strength. Sec-
ond-order shimming was performed using the same shim parame-
ters for all scans.

2.5. Field monitoring

Immediately after the phantom imaging scans, field-monitoring
scans were carried out to measure hprobe(t) using the same diffusion
sequences but with the field camera placed inside the scanner
instead of the phantom. For all scans, the full length of the EPI
readout was sampled continuously over a duration of 27.1 ms with
Nj = 8192 samples. After subtracting the phases from the b = 0 s/
mm2 scan from those of each diffusion-encoding direction, the
phase coefficients k(t) were obtained. A further set of free-induc-
tion decay or ‘‘FID scans’’ were recorded (with and without gradi-
ents applied) as in [20,24], to obtain the reference frequencies
xref,probe and spatial coordinates of the probes. Scans with the field
camera were performed at the same centre frequency as the imag-
ing scans. Any concomitant-field effects that occur during the EPI
readout would be implicitly removed by the subtraction of the
b = 0 s/mm2 data as they are present in both diffusion and b = 0 s/
mm2 scans.

2.6. Image analysis

The signal intensity was displayed for intensity profiles along
the phase-encoding direction of the image, located at the plastic
structures in the phantom (approximately 24 mm from iso-centre)
where any misalignments would be visible. Intensity profiles were
displayed from each diffusion-encoding direction.

The importance of different orders of correction was assessed
by computing displacement maps. For each diffusion-encoding
direction d and at each image location rk, the phase difference (in
radians) between the start and the end of the 27.1 ms readout
udðrk; tj¼Nj Þ were used. With the approximation that the phase
varies linearly over time, a phase ramp was estimated in the PE
direction of the EPI readout in k-space, which corresponds to a shift
in image space. (Note that the actual phase accrual is non-linear
over time, and that the linear approximation is only used to esti-
mate the displacements.) For each diffusion-encoding direction, a
pixel-shift map was derived:

DydðrkÞ ¼
Ny �udðrk; tNy Þ

2pNPE
ð6Þ

where DydðrkÞ is the number of pixels shifted at pixel index k, Ny is
the reconstructed image matrix size in the PE direction (=116px),
NPE is the number of PE lines acquired with partial Fourier (=41).
From the pixel-shift maps of each diffusion-encoding direction,
the maximum pixel shift was computed by taking the difference
between the directions with the maximum and minimum pixel
shift, on a pixel-by-pixel basis:

DymaxðrkÞ ¼max
d
fDyðrkÞg �min

d
fDyðrkÞg ð7Þ

Maps of the maximum pixel shift were converted into maxi-
mum-displacement maps using known voxel sizes. Displacement
maps were displayed for the unipolar and bipolar sequences.
Displacement maps for the first diffusion direction were also
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computed for various eddy-current orders (i.e., up to and including
the zeroth, first, second, and third orders) to illustrate the relative
contributions of linear and higher-order eddy currents between
the two sequences.

The mean fractional anisotropy (FA) and mean diffusivity (MD)
were also computed for various levels of eddy-current correction
for each sequence. The mean FA and MD were estimated from an
ROI placed in the agar phantom, which was assumed to have iso-
tropic diffusion and thus zero FA. Statistical significance was com-
puted using paired t-tests to compare the FA and MD values at
various levels of correction.

A standard method of reducing the effects of eddy currents is to
perform image registration. Images reconstructed with phase
information from the field camera were compared with images
corrected using affine image registration. Diffusion tensor images
were registered using the FMRIB Software Library (FSL) (http://
fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT) [30]. The full FOV of the image
was used for registration. Examples of intensity profiles are plotted
to visualize differences between registration and eddy-current cor-
rection with the field camera.

3. Results

The phase coefficients for each spherical-harmonic order are
shown as a function of time in Fig. 2, where the phase deviations
arising from unipolar and bipolar diffusion sequences can be com-
pared for the first two diffusion-encoding directions. These curves
represent phase contributions from eddy currents alone (since
phases of the b = 0 s/mm2 scan have been subtracted). The phases
Fig. 2. Phase contributions for different spatial orders. The eddy-current phase coefficien
b), first (c and d), second (e and f), and third orders (g and h) for unipolar and bipolar d
directions. Phase contributions from the b = 0 s/mm2 image have been subtracted. The e
show distinct evolution patterns that vary between the diffusion-
encoding directions, and that differ between unipolar and bipolar
sequences. The presence of non-linear temporal components in
the phase is evident, particularly in the first orders (Fig. 2c and
d). The zeroth, second and third-order phase accumulation varied
approximately linearly in time, with only minor deviations. The
unipolar case exhibited substantially higher levels of higher-order
(i.e., second and third-order) phases (Fig. 2e and g) relative to the
bipolar sequence (Fig. 2f and h) for all diffusion-encoding direc-
tions (although only the first two directions are shown). The unipo-
lar and bipolar sequences exhibited similar levels of zeroth- and
first-order spatial variations. The bipolar sequence was dominated
by first-order spatial components (as in Fig. 2d, compared to Fig. 2b
and f).

Higher b-values generally led to increased levels of eddy-
current phases. Selected phases from different orders (that show
greatest phase deviations in the first diffusion-encoding direction)
are displayed in Fig. 3, including the z component from the
first order, the zy component from the second order and the
5z3 � 3z(x2 + y2 + z2) component of the third order. In the unipolar
sequence (Fig. 3a, c, e and g), the amplitude of the phases increased
with increasing b-values for every time point in the readout. How-
ever, in the bipolar sequence, the first-order curves (Fig. 3d) from
different b-values crossed each other during the readout. There
were no such crossings in any of the higher-order phases (Fig. 3f
and g), where increasing the b-values merely increased the
amplitude of the phases throughout the readout.

Fig. 4a shows a b = 0 s/mm2 image of the agar phantom, along
with intensity profiles for a single line along the PE direction for
ts from the b = 1000 s/mm2 scan are shown for various spatial orders: zeroth (a and
iffusion schemes. Phase coefficients are shown for the first two diffusion-encoding
cho time is indicated by the dotted vertical line.

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT
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Fig. 3. Phase contributions for multiple b-values. The eddy-current phase coefficients are shown for multiple b-values (250, 500, 750, and 1000 s/mm2) where higher b-values
are displayed in darker grey. Plots show the zeroth-order coefficients (a and b), the z component of the first-order coefficients (c and d), the zy component of the second-order
coefficients (e and f) and 5z3 � 3z(x2 + y2 + z2) component of the third-order coefficients (g and h). As in Fig. 2, phase contributions from the b = 0 s/mm2 image have been
subtracted. Phase coefficients are shown for the first two diffusion-encoding directions for both unipolar and bipolar schemes. The echo time is indicated by the dotted
vertical line.
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each of six diffusion directions (Fig. 4b–g) with various orders of
eddy-current correction. Fig. 4b and e shows intensity profiles from
images that have been reconstructed without eddy-current correc-
tion, where image shifts along the phase-encoding direction are
evident from misalignment of the plastic structures within the
phantom (as indicated by arrows in Fig. 4b and e). The misalign-
ment was more severe in the unipolar sequence. With linear (i.e.,
zeroth- and first-order) eddy-current correction, the structures
were better aligned but residual misalignment was evident in the
unipolar case, particularly between the first two diffusion direc-
tions (as indicated by the arrow in Fig. 4c). Higher-order (i.e., up
to and including third-order) correction reduced the residual mis-
alignment in the unipolar case. For the relatively central profile
considered here, linear correction appears to be sufficient in the
bipolar sequence to align all the images from different diffusion
directions. Although higher-order image reconstruction included
both second and third orders, the addition of third orders in the
correction resulted in negligible differences in the reconstructed
images of the phantom compared to second-order correction in
both unipolar and bipolar sequences.

Displacement maps in the image domain are shown for the first
diffusion-encoding direction in Fig. 5. Displacements resulting
from the zeroth order eddy-current phases (Fig. 5a and e) have spa-
tially-uniform shifts of �0.78 mm for the unipolar sequence and
0.35 mm for the bipolar sequence. The inclusion of first-order
components resulted in comparable levels of displacement
between the unipolar and bipolar sequences, with maximum dis-
placements of approximately 1 mm for both sequences. Including
displacements from second-order phases (Fig. 5c and g) resulted
in displacement levels that were substantially higher in the unipo-
lar sequence (up to approximately 3 mm) compared to that of the
bipolar sequence (up to approximately 1.5 mm). Displacement
maps that included up to third-order phases (Fig. 5d and h) did
not result in any discernible difference compared to those with
up to second-order phases (Fig. 5c and g).

Taking into account all diffusion directions (not shown in Fig. 5),
the maximum displacements (relative to the b = 0 s/mm2 image)
from third-order eddy-currents alone were less than 0.43 mm
and 0.29 mm for the unipolar and bipolar sequence, respectively,
for the axial plane. Larger contributions were found in the
5z3 � 3z(x2 + y2 + z2) component compared to other third-order
components (shown in Fig. 2g). However, third-order displace-
ments of less than 0.96 mm (for the unipolar scheme) and less than
0.31 mm (for the bipolar scheme) were seen in both sagittal and
coronal planes.

In Fig. 6a and b, displacement maps are displayed for the unipo-
lar and bipolar sequences, over the six diffusion directions. The
maximum displacements in mm (computed for the sum of all
eddy-current orders and representing the difference between the
maximum positive and negative image shifts over all diffusion-
encoding directions) are displayed as contour/colour maps in
Fig. 6c and d for the axial plane. Colour maps of the displacements
in three orthogonal planes are also shown. The maximum displace-
ments were larger near the edges of the FOV, and showed devia-
tions of up to 6 mm in the unipolar sequence, compared to
2.5 mm in the bipolar sequence. It is important to emphasize that



Fig. 4. Phantom images with various levels of eddy-current correction. (a) An image of the agar phantom, acquired with b = 0 s/mm2 and a FOV of 200 � 155 mm2, is shown.
Cross-section of plastic structures embedded in the agar are seen as rectangular rings that have no signal intensity, in contrast to the agar surrounding (and within) the rings
that has higher signal intensity. Five consecutive intensity profiles (between the dotted white lines in figure (a) along the phase-encode direction are averaged to generate
averaged intensity profiles. (b–g) Averaged intensity profiles are shown for each diffusion-encoding direction, reconstruction method, and for both unipolar and bipolar
schemes, as labelled on the figure. Arrows within figures (b), (c) and (e) point to examples of where structures within the phantom are misaligned between diffusion-
encoding directions. Higher-order correction shows alignment of the plastic structures, as in the six horizontal lines of darker intensity, indicated by arrows on the right.
Diffusion images were obtained with b = 1000 s/mm2.

Fig. 5. Displacement maps from different orders of eddy-currents. Displacement maps in the image domain (in mm) are shown for the first diffusion-encoding direction, from
eddy-current orders up to and including the (a and e) zeroth order, (b and f) first order, (c and g) second order and (d and h) third order phases. Phase maps are reconstructed
to the FOV (200 � 155 mm2) and displayed in colour. Eddy-current phases are based on diffusion images acquired with b = 1000 s/mm2. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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the displacements in Figs. 5 and 6 are indicative and calculated
using the approximation that the phases have accrued linearly.

In the bipolar sequence, linear correction resulted in significant
differences (p < 0.01, using paired t-test) in MD compared to the
uncorrected case. Linear or higher-order correction resulted in no
significant differences in the MD in the unipolar sequence. How-
ever, for both unipolar and bipolar sequences, there were signifi-
cant differences in the FA when linear correction was applied



Fig. 6. Displacement maps. (a and b) Estimated displacement maps (in mm) in the image domain are displayed. The image shifts were computed based on the phase
evolution at the end of the readout (at 27.1 ms) and include all eddy-current orders. Phase maps are reconstructed to the FOV (200 � 155 mm2) and displayed in colour. (c and
d) For each pixel, the maximum displacements for all 6 diffusion directions are displayed as a contour/colour map (in the axial plane), for unipolar and bipolar diffusion
schemes. Plots of three orthogonal planes are also shown to illustrate displacements for axial, coronal and sagittal planes. Eddy-current phases are based on diffusion images
acquired with b = 1000 s/mm2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(compared to the uncorrected case, p < 0.01 for both sequences),
with a marked decrease in the mean FA value with linear correc-
tion. No significant differences were seen following higher-order
correction (compared to linear correction, p > 0.01 for both
sequences). However, there was a small decrease in FA with
higher-order correction in the unipolar sequences. The mean MD
values obtained in the unipolar sequence were 1.945 ± 0.034,
1.945 ± 0.028, and 1.945 ± 0.027 � 10�3 mm2/s without correction,
with linear correction and higher-order correction, respectively.
The corresponding MD values of the bipolar sequence were
1.934 ± 0.034, 1.939 ± 0.031, and 1.939 ± 0.031 � 10�3 mm2/s. The
mean FA values from the unipolar scans were 0.050 ± 0.025,
0.042 ± 0.019 and 0.041 ± 0.018 without correction, with linear
correction and higher-order correction, respectively. The corre-
sponding FA values from the bipolar sequence were
0.047 ± 0.016, 0.043 ± 0.015 and 0.042 ± 0.015. (Although the stan-
dard deviations are relatively large compared to the change in the
mean values, the differences in FA between the linear and uncor-
rected cases prove to be significant.) MD and FA maps (zoomed
in over the ROI shown in Fig. 7a) are displayed in Fig. 7b and c,
respectively. More uniform MD and FA maps can be seen with
higher order correction, especially near the structures where more
edge artifacts are visible before eddy-current correction.

In Fig. 8, intensity-profile plots are compared for several image
reconstructions. Fig. 8a and b shows the case without image regis-
tration or eddy-current correction in the unipolar sequence. Fig. 8c
shows the plots after affine image registration where improve-
ments in the alignment can be seen when compared to Fig. 8b. Lin-
ear-order eddy-current correction (Fig. 8d) performed better than
affine image registration (Fig. 8c). Higher-order eddy-current cor-
rection (Fig. 8e) resulted in small differences in the signal intensity
compared to linear-order eddy-current correction (Fig. 8d).

4. Discussion

In both unipolar and bipolar sequences, the phases exhibited
non-linear spatial and temporal behaviour. This suggests that it
is important to measure higher spatial orders by using adequate
numbers of field probes and to capture time-varying effects with
sufficient temporal resolution. In particular, non-linear time-vary-
ing effects were found in the spatially-linear eddy-current phases.

Higher levels of second-order eddy currents were found in the
unipolar sequence compared to the bipolar sequence. The bipolar
diffusion sequence was dominated by linear orders. Although the
bipolar sequence suffers from lower SNR relative to the unipolar
sequence (due to longer echo times for the same b-value), advan-
tages of the bipolar sequence are that it is velocity-compensated
and that it is less susceptible to the effects of second-order eddy
currents. However, second-order image reconstruction remains
beneficial for the bipolar sequence where image displacements
were reduced from approximately 1.5 mm to 0.29 mm with
second-order correction. One of the third-order components,
5z3 – 3z(x2 + y2 + z2), had an increased amplitude relative to the
other third-order eddy-current contributions. However, maximum
displacements from third-order eddy currents were less than
0.96 mm. If the displacements from third-order eddy currents
can be considered negligible, then 9 NMR probes would be
sufficient in these sequences for measuring up to second-order
eddy-current phases at high temporal resolution.

In Fig. 3, crossings during the readout were seen in the linear-
order phases in the bipolar sequence. This is characteristic of phase
contributions from incomplete cancellation of eddy-currents or
inaccurate pre-emphasis. Complex phase behaviour with increas-
ing b-values was seen in the bipolar case while the unipolar
sequence lacked such crossings. This sequence difference is possi-
bly related to the fact that there were more gradient switches in
the diffusion-sensitizing gradients of the bipolar sequence, with
eddy-currents arising from more time-points. The specific timing
of gradient switches depended on the b-value. Eddy currents can-
cel each other if a gradient switch is closely followed in time by an
opposite gradient switch [17,31–33]. However, the switching of
strong gradients with relatively long temporal separation (as in dif-
fusion imaging) results in incomplete cancellation and residual
eddy currents.



Fig. 7. Fractional anisotropy (FA) and mean diffusivity (MD) at various levels of eddy-current correction. (a) A region of interest is shown by the dotted white line over the
relevant structures of the phantom, for display of MD and FA maps. (b) MD maps with and without higher order correction. (c) FA maps with and without higher order
correction.
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The linear accumulation of 0th-order phases could be related to
a drift in the centre frequency between the calibration and phan-
tom scans. The second- and third-order phases had relatively linear
accrual that persisted beyond the readout. This suggests the pres-
ence of eddy currents with relatively long time constants. Com-
pared to those with intermediate time constants, eddy-currents
with longer time constants have better self-cancellation properties
(following opposite gradient switches of trapezoidal diffusion
pulses). However, neither will completely cancel out since the gra-
dient switches are not coincident in time. The field camera is sen-
sitive to small residual eddy-current phases resulting from
incomplete cancellation [20,34,35].

The gradient pre-emphasis was on and its effects were included
in the measured phases. Thus, any residual eddy currents contrib-
ute to the shape of the observed phases. More comprehensive
models are required to fully describe eddy-current behaviour
[34,35]. The gradient impulse response method is free from model
restrictions and can measure residual eddy-currents phases that do
not conform to those predicted by simple models with limited sets
of exponential terms. In general, the specific shapes of the eddy-
current phases can only be predicted closely by characterizing
the entire frequency behaviour of the gradient system [34,35].

In a clinical setting, the TE would be determined by the maxi-
mum b-value in the set. The other (lower) b-values in the set would
have lower gradient amplitudes and thus, less eddy current
distortions. However, the purpose in this study was to measure
the maximum eddy-current contribution (by applying the diffu-
sion pulses at maximum gradient strength with shortest TE) to
determine the worst case scenario at each chosen b-value.

Decreases in FA with linear-order eddy-current correction were
consistent with expectations given an isotropic phantom with an
assumed FA value of zero. A further decrease in FA was seen with
higher-order correction in the unipolar sequence, since there were
more substantial higher-order eddy currents in the unipolar
sequence relative to the bipolar sequence. The MD was found to
be more robust against eddy-currents compared to the FA in this
isotropic phantom, since higher-order correction did not result in
significant changes in the MD in either the unipolar or bipolar
sequence. Differing MD values between bipolar and unipolar
sequences could have been because they were estimated at differ-
ent TEs and result in different SNRs. In a truly isotropic phantom
where FA is zero, noise results in an upward bias in the FA and a
negative bias in the MD (due to an apparently insufficient decay
in the diffusion signal). In addition to noise, the positive bias in
the measured FA could also have been caused by systemic errors
including the calibration of the diffusion gradients, the possibility
that the phantom did not truly have an FA of zero, or by the pres-
ence of mechanical motion. Although the same b-values were used
for comparison between the unipolar and bipolar sequence, differ-
ent waveforms resulting in different diffusion times could also



Fig. 8. Comparison between registration and eddy-current correction. Intensity profiles for six diffusion-encoding directions in (b)–(e) are plotted for a relevant section of the
image shown within the dotted lines in (a), for the unipolar sequence with a b-value of 1000 s/mm2. (a) The image of intensity profiles is shown for the unregistered,
uncorrected case. Intensity plots are shown (b) without registration or eddy-current correction, (c) after affine image registration, (d) after linear-order eddy-current
correction, and (e) higher-order eddy-current correction including third orders.
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have led to a different q-values, and hence, signal intensity. The use
of minimum TEs in this study reflects how the sequences would be
used in clinical practice.
Comparison of eddy-current corrected images with affine image
registration shows that eddy-current correction with phases from
the field camera performs better than image registration. In the
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presence of higher-order eddy-current distortions, it was expected
that affine image registration would leave residual misalignment
artifacts. The ability to correct distortions with image registration
will depend on the anatomy of interest and the nature of the
eddy-current distortions. The drawback of affine image registra-
tion is that even if the distortions can be aligned, the intensities
may not be fully recovered. Image registration has been shown
to be suboptimal for diffusion images that have significant contrast
changes due to directional anisotropy [36,37]. Another disadvan-
tage of image registration is SNR dependency. It was found that
image registration performed better on diffusion images obtained
at lower b-values than those at higher b-values where the SNR
was low [38]. Eddy-current correction with the field camera is
expected to perform well regardless of the SNR in the image. How-
ever, the drawback of eddy-current correction with the field cam-
era is that extra hardware is required.

It was found that performing the first step of the full iterative
procedure (as described in Wilm et al. [20]), i.e., conjugate phase
reconstruction, was adequate for removing bulk object shifts aris-
ing from higher-order terms. Conjugate-phase correction without
iterative methods was sufficient because the field variations were
slowly-varying [39]. In general, iterative methods would be neces-
sary [20] and faster methods [40] have been developed to speed up
the reconstruction process.

Only a single transverse slice was imaged in the phantom,
which was unaffected by eddy-current components that vary in
the z-direction. However, it is expected that correction would work
well for all orientations since the eddy-current phases were mea-
sured in three dimensions on a sphere. With the NMR probes
located at a fixed radius on a sphere, the volume over which the
correction can be performed can be extended outside the radius
of the field camera unless there are spatial non-linearities in the
gradients. The non-uniformity of the field produced by gradient
coils was not taken into account for the determination of the probe
locations. Gradients were assumed to be linear within the 20 cm
diameter of the field camera.

Oscillations were seen in some phase coefficients, particularly
the y gradient, which could be due to mechanical resonances
[34,41] or possibly related to the EPI readout [20]. Mechanical
vibrations could be the cause of the residual signal variation
between different diffusion-encoding directions seen in Fig. 4.
Another possible cause for this signal variation could be the eddy
currents from the first diffusion lobe affecting the 180� refocusing
pulse. Incomplete refocusing can result in non-linear effects across
the image, which would be different for each diffusion-encoding
direction. Correcting for incomplete refocusing would require mea-
surement of eddy-current phases during the refocusing pulse, as
well as subsequent correction of unwanted phase contributions
in the slice-refocusing gradients for every diffusion-encoding
direction.

The addition of parallel imaging can be used to reduce the read-
out train length and hence the level of distortions. However, in this
study, the temporal eddy-current phases showed accumulation
early in the readout, suggesting that eddy-current correction may
offer improvements even for the short readouts enabled by parallel
imaging. Reducing the FOV by the use of orthogonal excitation and
refocusing pulses is an alternative approach for reducing distortion
levels. Similar distortion levels can be maintained, for example, by
using a parallel-imaging reduction factor of two with a doubled
FOV and the same readout length. Although parallel imaging
enables larger FOVs without increasing the level of distortions,
the reduced-FOV method (by orthogonal excitation pulses)
remains useful for imaging smaller FOVs where parallel imaging
can be less effective due to the lack of coil-sensitivity variation
over these smaller FOVs. In this study, the reduced-FOV method
was used to effectively minimize the readout length, and hence,
the level of distortions before eddy-current correction. Although
the current reduced-FOV approach only allowed a single slice to
be acquired, alternative reduced FOV methods have been demon-
strated for imaging multiple contiguous slices. This includes tilted
excitation methods [42,43] and a method where additional refo-
cusing pulses are applied for recovering the magnetization after
the orthogonal excitation and refocusing pulses [44].

Future work in eddy-current correction would benefit from
improvements that have been made to field-camera technology
to allow continuous monitoring of the phases using a time-inter-
leaved approach [45], which would allow monitoring of the phases
during the diffusion-encoding pulse itself. It is also possible to
compute the impulse-response function by deconvolution meth-
ods [34,35]. The gradient impulse-response function could be com-
puted once and applied to any gradient waveform including the
diffusion-encoding gradients. In addition, concurrent field-moni-
toring can be achieved with fluorine-based field probes [46,47],
which would allow simultaneous acquisition of the imaging data
and measurement of field offsets for eddy-current correction.
5. Conclusions

The use of a field camera is a valuable approach for characteriz-
ing the time-varying nature of eddy currents of higher spatial
orders. This study has demonstrated that there are higher levels
of second- and third-order eddy-currents in the unipolar spin-echo
diffusion sequence compared to the bipolar diffusion sequence.
Second-order eddy-current correction results in improved image
quality and reduced misalignment artifacts, particularly for the
unipolar diffusion sequence. In choosing between the unipolar
and bipolar sequences for performing diffusion imaging in the
presence of bulk motion, both the echo time and the level of
higher-order eddy-current contributions should be considered.
The unipolar sequence offers shorter echo times, while the bipolar
sequence, as well as being velocity-compensated, offers the advan-
tage of reduced higher-order eddy currents.
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