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Abstract Resistance surfaces are often used to fill

gaps in our knowledge surrounding animal movement

and are frequently the basis for modeling connectivity

associated with conservation initiatives. However, the

methods for quantifying resistance surfaces are varied

and there is no general consensus on the appropriate

choice of environmental data or analytical approaches.

We provide a comprehensive review of the literature

on this topic to highlight methods used and identify

knowledge gaps. Our review includes 96 papers that

parameterized resistance surfaces (sometimes using

multiple approaches) for a variety of taxa. Data types

used included expert opinion (n = 76), detection

(n = 23), relocation (n = 8), pathway (n = 2), and

genetic (n = 28). We organized the papers into three

main analytical approaches; one-stage expert opinion,

one-stage empirical, and two-stage empirical, each

of which was represented by 43, 22, and 36

papers, respectively. We further organized the empir-

ical approaches into five main resource selection

functions; point (n = 16), matrix (n = 38), home

range (n = 3), step (n = 1), and pathway (n = 1). We

found a general lack of justification for choice of

environmental variables and their thematic and spatial

representation, a heavy reliance on expert opinion and

detection data, and a tendency to confound movement

behavior and resource use. Future research needs

include comparative analyses on the choice of envi-

ronmental variables and their spatial and thematic

scales, and on the various biological data types used to

estimate resistance. Comparative analyses amongst

analytical processes is also needed, as well as trans-

parency in reporting on uncertainty in parameter

estimates and sensitivity of final resistance surfaces,

especially if the resistance surfaces are to be used for

conservation and planning purposes.
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Introduction

Understanding animal movement is crucial for devel-

oping effective landscape-level conservation initia-

tives. Successful movement of animals across the

landscape may fulfill a number of biological pro-

cesses, including foraging, mating, migration, dis-

persal and gene flow, and is especially critical in

allowing individuals and populations to adjust (e.g.,
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redistribute) to a changing environment. However,

animal movement is one of the most difficult behav-

iors to observe and quantify. When movement can be

assessed, the number of individuals being studied is

often small, and/or there may be large gaps of time

between successive point locations along a movement

path. Resistance to movement values are typically

used to fill this gap in movement knowledge by

providing a quantitative estimate of how environmen-

tal parameters affect animal movement. In this con-

text, ‘resistance’ represents the willingness of an

organism to cross a particular environment, the

physiological cost of moving through a particular

environment, the reduction in survival for the organ-

ism moving through a particular environment, or an

integration of all these factors. Resistance estimation

is most commonly accomplished by parameterizing

environmental variables across a ‘resistance’ or ‘cost’

to movement continuum, where a low resistance

denotes ease of movement and a high resistance

denotes restricted movement, or is used to represent an

absolute barrier to movement. ‘Friction’ and ‘imped-

ance’ to movement or their inverse, ‘permeability’ and

‘conductivity’ to movement are also terms used to

describe these travel surfaces (Singleton et al. 2002;

Chardon et al. 2003; Sutcliffe et al. 2003). For

simplicity, the term ‘resistance surface’ will be used

to describe these movement surfaces for the remainder

of the paper.

The use of resistance surfaces in landscape ecology

and conservation biology has increased over the last

decade. In particular, resistance surfaces are used in

metapopulation and corridor studies to represent the

landscape between populations or habitat patches.

These studies have matured from simple ‘isolation-

by-distance’ or ‘isolation-by-barrier’ hypotheses to

recognizing that animal movement between popula-

tions is influenced by the varying environmental

conditions an individual encounters as it moves

through a landscape (Ferreras 2001; Adriaensen

et al. 2003). This is typically referred to as ‘isola-

tion-by-resistance’ (McRae 2006). Resistance sur-

faces are a quintessential element to contemporary

landscape genetics studies focused on assessing how

landscape structure affects the flow of genes across the

landscape (Manel et al. 2003; Spear et al. 2010).

Myriad methods have been used to model land-

scape resistance to movement. Techniques range from

very basic and data-light to complex and data-heavy.

Moreover, no general consensus has been reached

regarding the most accurate data sources and analyt-

ical methods for modeling resistance surfaces (Spear

et al. 2010). A summary of the methods used and their

pros and cons is needed in order to frame the current

state of knowledge surrounding resistance surface

modeling and provide guidance for future research.

Here, we provide a comprehensive literature review of

the data sources and analytical methods used for

deriving resistance surfaces. We discuss common

techniques, highlight unique approaches, and consider

the strengths and weaknesses of these methods.

Finally, we discuss directions for future research and

methodological improvement.

Methods

We focused our literature review on papers that dealt

explicitly with estimating resistance to movement

values for wildlife. We searched for papers in the ISI

Web of Science (ISI 2011) with the following search

criteria from January 2000 to June 2011: Topic =

(resistance OR cost OR effective distance OR lands-

cape permeability) AND (corridor* OR connect*

OR wildlife OR linkage); this resulted in 1,343

papers. We refined our results by restricting the search

to the following subject areas: Genetics and Heredity,

Biochemistry and Molecular Biology, Ecology, Envi-

ronmental Sciences, Multidisciplinary Sciences, Envi-

ronmental Studies, Zoology, Biology, Evolutionary

Biology, Veterinary Sciences, Biodiversity Conserva-

tion, Forestry, Agriculture, Dairy and Animal Science,

Management, Marine and Freshwater Biology, Ento-

mology, Geography, Fisheries, Oceanography,

Remote Sensing, and Ornithology. This restricted the

result to 693 papers, which we further refined by

excluding papers which were simulation exercises

only, did not deal explicitly with wildlife, and/or did

not estimate resistance values. This resulted in our

final sample of 96 papers distributed across 26

different journals. We purport that, although this is

not a full census of papers on resistance, the final set of

papers we reviewed represent a comprehensive survey

of current methods used to estimate resistance to

movement for wildlife.

To summarize each paper, we recorded the follow-

ing information: taxonomy and number of target

species, number and type of environmental variables,
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grain and extent of analysis, type of biological input

data, analytical approach, type of resource selection

function (RSF), and final range of resultant resistance

values (Appendix 1 in electronic supplementary

material). We distinguished among five types of

biological input data: (1) expert opinion, (2) detection

data, (3) relocation data, (4) pathway data, and (5)

genetic data, as defined below (‘‘Biological data’’

section). We refer to ‘analytical approach’ as the

analytical method(s) by which the environmental

variables were interpreted and transformed into a final

resistance surface. In this regard, we distinguished

among three analytical approaches: (1) ‘one-stage

expert approach’, in which the final resistance surface

was derived in a single step based solely on expert

opinion; (2) ‘one-stage empirical approach’, in which

the final resistance surface was derived in a single step

based on the analysis of biological data; and (3) ‘two-

stage empirical approach’, in which a set of alternative

resistance models were created based on expert

opinion and/or the analysis of biological data in the

first stage, followed by model selection based on the

analysis of biological data in the second stage. We also

distinguished among five types of RSFs that were used

within the one-stage and two-stage empirical

approaches: (1) point selection function (PSF), (2)

home range selection function (HSF), (3) matrix

selection function (MSF), (4) step selection function

(SSF), and (5) path selection function (PathSF), as

defined below (‘‘Resource selection functions’’ sec-

tion). Lastly, although we reviewed 96 papers, several

papers used more than one biological input data type

or analytical approach. Consequently, we refer to the

number of ‘instances’ in the text and tables, rather than

number of papers, as appropriate.

Results and discussion

Overview of modeling resistance surfaces

We provide a brief outline of the resistance surface

modeling process as background for interpreting the

literature review (Fig. 1).

In step one of the modeling process, one or more

environmental variables are selected that are either

known or assumed to influence movement of a target

species. These variables are represented with geospa-

tial layers that are either developed for the study area

or are readily available. The geospatial layers are then

scaled appropriately (e.g., resampled to a coarser

spatial resolution) to the species/phenomenon of

Step one:
Select environmental 

variables

Biological 
data

Expert 
opinion

Resource 
selection 
function

X1

X2

X1

X2

X3

Resistance 
Surface

X3

RS1

RS2

RS3

Resistance 
surfaces

Resource 
selection 
function

Biological 
data

STAGE 
ONE

STAGE 
TWO

Step two:
Select biological 

data

Step three:
Select   and apply 
analytical process

Step four:
Apply  resistance 

estimates to 
environmental variables

Resistance 
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Resistance 
Surface

Fig. 1 Biological data

types and analytical

processes commonly used to

derive resistance surfaces
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interest and are represented either as raw data,

classified into a desired set of classes (e.g., land cover

classes), or transformed using various functions (e.g.,

Gaussian transformation of elevation).

In step two, biological data on which the estimation

of resistance values will be based are chosen and may

include detection data (i.e., presence-only or pres-

ence–absence points), relocation data (e.g., capture–

recapture), pathway data (i.e., travel paths), genetic

data (i.e., genotypes of individuals), or a combination

of these types. If empirical data are lacking, then

expert opinion can be used in its place.

Once environmental and biological data are in

hand, step three involves selecting an analytical

approach by which to estimate resistance values. If

biological data are unavailable, then an expert-only

approach must be used and there is no analytical

process per se. If biological data are available, the type

of biological data will usually drive the selection of the

analytical approach. However, the analytical approach

may be chosen first and then the biological data

collected to meet the requirements of the model. In

either case, the analytical approach usually entails

selecting an appropriate RSF given the type of

biological data and researcher preference. In addition,

the approach selected may include two stages: first to

derive a set of candidate resistance surfaces, and

second to select the ‘‘best’’ of the candidates.

In step four, once the resistance values are

estimated, a final resistance surface is created by

applying the results to the grids of the previously

selected environmental variables. Depending on the

biological data and analytical approach employed and

the intended use of the resistance surface (e.g.,

corridor design, population modeling), multiple resis-

tance surfaces (e.g., to reflect model uncertainty) may

be retained for use in the subsequent application.

However, some studies are only interested in assessing

the degree to which environmental variables may be

affecting movement and thus do not develop a ‘final’

resistance surface.

Taxonomic bias

Eight taxonomic classes, 25 orders, and 59 families

were represented in our sample (Table 1). The Mam-

malia class (86 % of studies), the Carnivora order

(46 % of studies), and the Felidae family (17 % of

studies) were the most highly represented. Four

Table 1 Taxonomic focus (including Phylum, Class, Order

and Family) in 96 studies aimed at producing a resistance

surface

Taxonomic divisions Number

of papersa
Percentage

of papersb

Phylum

Chordata 124 129

Arthropoda 10 10

Class

Mammalia 83 86

Amphibia 17 18

Aves 16 17

Insecta 8 8

Reptilia 8 8

Arachinidia 1 1

Actinopterygii 1 1

Branchiopoda 1 1

Order

Carnivora 45 46

Artiodactyla 19 20

Rodentia 13 14

Passeriformes 11 11

Anura 10 10

Caudata 7 7

Testudines 4 4

Lepidoptera 4 4

Squamata 4 4

Ephemeroptera 2 2

Proboscidea 2 2

Falconiformes 1 1

Trichoptera 1 1

Erinaceomorpha 1 1

Dasyuromorphia 1 1

Cypriniformes 1 1

Cladocera 1 1

Columbiformes 1 1

Hemiptera 1 1

Tubulidentata 1 1

Ixodida 1 1

Sirenia 1 1

Piciformes 1 1

Strigiformes 1 1

Galliformes 1 1

Family

Felidae 16 17

Mustelidae 11 11

Cervidae 10 10
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studies used generic species as a proxy for real species

(Adriaensen et al. 2003; Rae et al. 2007; Pinto and

Keitt 2009; Watts et al. 2010). Of the 14 studies that

modeled more than one species, resistance values were

modeled separately for each species in 10 of the

studies and were combined into a single resistance

model in four of the studies. Not surprisingly, large

and charismatic species of conservation concern were

the focus of the majority of studies, although amphib-

ians were also represented surprisingly well, while

birds and invertebrates were less often the focus.

Environmental variables

Estimates of resistance to movement are predicated on

the choice of environmental variables, and the choice

of both thematic and spatial scale (grain and extent)

for representing those variables. Despite the universal

importance of these choices, there was surprisingly

little attention given to the selection and representation

of environmental variables in the majority of the

studies reviewed. Thirty-nine different environmental

variables were used to model resistance (Table 2).

Land use/land cover was the most widely used

variable, followed by roads, elevation, hydrology,

and slope. In 36 studies, only a single environmental

variable was used, in 54 studies two to five variables

were used, and in the remaining six studies, 6–10

variables were used. In these multi-variable studies,

with one exception (Wasserman et al. 2010), variables

were combined after analyzing the variables individ-

ually or fit simultaneously in the statistical model (e.g.,

via multiple logistic regression) to produce a single

resistance surface.

With regards to the choice of environmental

variables, ideally only those variables that are believed

to have an influence on the movement of the target

species are included, but more often than not, this type

of a priori knowledge is lacking. Furthermore, envi-

ronmental variables may be chosen as a proxy for

landscape characteristics that an individual actually

perceives and responds to as it moves through the

landscape. For example, if understory cover is not

available as an environmental layer, secondary forest

cover may be used as a proxy. However, in a review of

least-cost models, Sawyer et al. (2011) criticized the

use of proxies for landscape features that may affect

animal movement due to weaknesses in predictive

power.

In addition, the source and accuracy of environ-

mental data varies widely among studies. Spatial data

are sometimes collected via GPS units with varying

degrees of accuracy, but the majority of spatial

environmental data come from remotely-sensed (RS)

satellite or aerial imagery, typically using either a

manual ‘‘heads-up’’ mapping approach or a semi-

automated classification method. Acceptable error

rates (if error rates are assessed at all) in layers derived

from RS imagery are not standardized (Loveland et al.

2000), and although the target of most classifications is

85 % correct classification, many fall short of that goal

(Foody 2002). Because image interpretation takes

specialized software and training, the majority of

papers reviewed chose to use extant environmental

data. Unfortunately, these extant data are typically

derived from imagery that is years, if not decades, old.

In study areas where the environmental variables have

remained mostly constant during this time-lag, this

may not be a problem, but in more dynamic study

areas, temporal appropriateness of the data must be

scrutinized. When using RS data to derive habitat

Table 1 continued

Taxonomic divisions Number

of papersa
Percentage

of papersb

Ursidae 10 10

Bovidae 6 6

Ambystomatidae 6 6

Bufonidae 5 5

Canidae 4 4

Sciuridae 4 4

Ranidae 4 4

Hyaenidae 3 3

Acanthizidae 2 2

Heteromyidae 2 2

Parulidae 2 2

Nymphalidae 2 2

Elephantidae 2 2

Cricetidae 2 2

Colubridae 2 2

Emydidae 2 2

Families represented by one paper 40 42

a Number of approaches used is more than 96 since more than

one approach was used in some papers
b Percentage of approaches used, rounded to nearest whole

number. Percentage is more than 100 since more than one

approach was used in some papers
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characteristics, seasonality must also be considered,

especially in areas that have pronounced wet and dry

seasons, or with species that exhibit distinct ecological

differences from one season to the next. Although

the availability of timely and affordable RS images

and associated environmental layers is increasing, this

will likely remain an issue for layers that are only

periodically updated like roads, housing, and census

data.

To avoid errors associated with RS and GPS spatial

data, one approach is to limit data layers to those with

consistent and high accuracy rates. In the papers

reviewed, nine studies restricted environmental variables

to topographic variables like slope (Epps et al. 2007),

aspect (Clark et al. 2008), bathymetry (Flamm et al.

2005), or elevation (Vignieri 2005) that were presumably

more accurate than interpreted variables like vegetation

cover. Another approach is to evaluate the environment

within a buffer around each animal detection or move-

ment pathway, where the buffer encompasses the

positional error of the data (Adriaensen et al. 2003;

Braunisch et al. 2010). Though these inaccuracies cannot,

at the moment, be avoided, they should at least be

acknowledged in studies of this type (Beier et al. 2008).

Table 2 Environmental variables, spatial grain, thematic scale

and study area extent used in 96 studies aimed at producing a

resistance surface

No. of

papersa

Environmental variable

Land cover/land use 80

Roads and other linear features 37

DEM; hydrology 22

Slope 18

Human development (e.g. buildings, culverts/weirs) 11

Percent canopy cover 6

Settlements; aspect 5

Human population density 4

Compound topographic index; traffic data; land

management/zoning

3

Temperature; NDVI; topographic exposure;

topographic ruggedness index; precipitation

2

Already developed habitat/non-habitat map;

anisotropic surface; bathymetry; climactic

suitability; current velocity; depth to bedrock;

distance from presence point; flow rate; percent

rock; persistent spring snow cover; predation risk;

relief; seral stage based on DBH; soil density;

solar exposure; substrate type; topographic

position; topographic smoothness; vapor density;

vegetation height; water depth

1

No. of environmental variables used

1 36

2–5 54

6–10 6

Thematic scale

Continuous 7

Categorical 65

Continuous & categorical 24

Grain (m)

0–1 7

2–5 8

6–10 11

11–20 9

21–30 22

31–50 5

51–100 16

101–500 11

501–1,000 7

1,001–5,000 4

5,001–50,000 1

Not provided 8

Table 2 continued

No. of

papersa

Study area extent (km2)b

0–10 10

11–20 6

21–50 3

51–100 8

101–500 17

501–1,000 10

1,001–5,000 23

5,001–10,000 7

10,001–20,000 6

20,001–50,000 6

50,001–100,000 6

100,001–500,000 11

[500,000 4

Not provided 2

a Total number of papers is greater than 96 due to the use of

more than one parameter, grain size, or study area extent
b If study area extent was not provided, where possible, the

study area extent was estimated from the figure provided
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With regard to the choice of thematic scale for

representing environmental variables, 65 of the papers

reviewed used only categorical variables, 24 used a

combination of categorical and continuous variables,

and seven used only continuous variables (Table 2). In

many cases, the thematic scale chosen differed from

the scale of the raw data. There are myriad ways to

transform the scale of the raw data to more appropri-

ately represent how the target species perceives an

environmental attribute. For example, discrete data

such as points (e.g., houses) and lines (e.g., roads) can

be transformed into a continuous surface by calculat-

ing the distance to the nearest feature or computing a

kernel density estimate of the feature (Cushman and

Lewis 2010). Categorical data can be altered by

aggregating similar categories into a reduced number

of classes (O’Brien et al. 2006). Continuous data can

be converted into categorical data by binning it into

ranges, although this should be done with caution as

this can lead to bias and introduce artificial boundaries

not perceived by the target species (McGarigal and

Cushman 2005; Cushman and Landguth 2010). Lastly,

continuous environmental data can be transformed

using various mathematical functions (e.g., Gaussian,

linear or power functions), often to reflect nonlinear

relationships between the species and the environ-

mental gradient (Cushman et al. 2006). Despite the

myriad ways to transform the thematic scale of

environmental data, in the studies reviewed, transfor-

mations were generally applied arbitrarily and without

explicit consideration of their potential influence on

the results. Indeed, only a handful of the studies in our

review objectively compared alternative thematic

scales of the same environmental variable.

With regards to the choice of spatial scale (grain

and extent) for representing environmental variables,

there was extreme variability among the studies

reviewed; grain size ranged over four orders of

magnitude (1 m to 50 km) (Table 2). Many studies

simply adopted the grain of the source data (e.g., 30 m

for land cover derived from Landsat imagery) without

explicitly considering whether the grain should have

been coarsened for the application. Ideally, grain size

should be determined based on the scale at which the

target species perceives and responds to heterogeneity

in the environment (Wiens 1989). Estimates of this

functionally relevant scale are typically based on

expert opinion and/or previous autecological studies

(Cushman et al. 2010), but objective methods can be

used to determine the optimum grain size—at least

above the lower limit set by the source data—when

biological data are available (Thompson and McGa-

rigal 2002). Surprisingly, only six of the papers

reviewed adopted this approach (McRae and Beier

2007; Rae et al. 2007; Broquet et al. 2009; Koscinsky

et al. 2009; Murphy et al. 2010; Nichol et al. 2010),

and they often reached different conclusions regarding

the best grain size, illustrating the point that one scale

does not fit all species and that the finest scale

available is not always the best scale for the target

species. In addition, species may be responding to

different environmental cues at different scales

(Thompson and McGarigal 2002). Therefore, it may

be more appropriate to identify the optimum grain for

each environmental variable separately and to com-

bine the results in the final resistance surface, as was

done by Jaquiery et al. (2011), rather than try to find a

single ‘‘optimum’’ grain for all variables.

Study area extent ranged over six orders of

magnitude (2.36 km2 to 3.2 million km2) in the stud-

ies reviewed (Table 2, Appendix 1 in electronic

supplementary material). Study area extent is usually

driven by research objectives; however, it is worth

noting that choice of extent may influence the

estimation of resistance values. For example, Short

Bull et al. (2011) used genetic data to estimate

resistance for black bears across 12 different study

areas with different extents. The optimal resistance

surface varied by study area. Attention must also be

paid to choice of study area boundary. Koen et al.

(2010) cautioned that the hard edges of study areas

may cause a bias in the estimate of resistance values

and recommended placing buffers at the edges of map

boundaries to avoid these boundary effects.

Biological data

Perhaps the most obvious difference among the studies

reviewed was the type of biological data used, which

included: (1) expert opinion, (2) detection data, (3)

relocation data, (4) pathway data, and (5) genetic data

(Table 3). Note, expert opinion is not biological data,

but it is often used in place of biological data or in

combination with biological data, so it is included

here. These data types were typically used alone, but in

some cases they were used in combination in a two-

stage approach, as discussed below.
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Expert opinion

Expert opinion was used in 76 instances, 33 of these

combined expert opinion with another biological data

type (Table 3). We assumed the use of literature to

inform expert opinion in most cases. Additionally, we

classified papers as using expert opinion if researcher

opinion was used in any part of the estimation procedure.

For example, in instances where estimation procedures

were used that were not able to take advantage of full

optimization techniques due to computational limita-

tions, the parameter space and/or a priori resistance

surfaces were based in part on expert opinion.

The main issue with expert opinion data is that,

even though experts may be drawing from their own

previous research, the data are not truly empiri-

cal, making it difficult to objectively evaluate

performance. Expert opinion has generally been

shown to provide suboptimal parameterization of

environmental variables when compared to empirical

approaches (Pearce et al. 2001; Clevenger et al. 2002;

Seoane et al. 2005), and thus has been criticized for its

use in the development of resistance models (Cush-

man et al. in press). Moreover, because experts are

often drawing from experience with habitat selection

of their target species and not movement per se, these

values should be considered proxies for movement at

best. However, given the paucity of empirical data on

many species in many places, more often than not

expert opinion is the only option available on which to

base a resistance model, and in many cases the

urgency of conservation action requires that expert

opinion be used as an interim solution until empirical

data can be obtained (Compton et al. 2007).

Table 3 Analytical approach, type of biological data and type of Resource Selection Function used in 96 studies aimed at deriving a

resistance surface

Analytical approach Data type RSF No. of

approachesa (%)b

One-stage expert Expert None 43c (43 %)

One-stage empirical Detection Point 12d (12 %)

Relocation Home range 3 (3 %)

Relocation Matrix 1 (1 %)

Genetic Matrix 5e (5 %)

Detection Matrix 1f (1 %)

Two-stage

expert–empirical

Expert–genetic Matrix 20 (20 %)

Expert–detection Matrix 6 (6 %)

Expert–detection Point 3 (3 %)

Expert–relocation Matrix 2 (2 %)

Expert–pathway Step 1 (1 %)

Expert–pathway Path 1 (1 %)

Two-stage

empirical

Detection–genetic Point–matrix 1 (1 %)

Relocation–genetic Matrix–matrix 2 (2 %)

See text for a definition of data type and RSFs
a Number of approaches used is more than 96 since more than one approach was used in some papers
b Percentage of approaches used, rounded to nearest whole number. Percentage is more than 100 since more than one approach was

used in some papers
c Four of these papers used empirical data to validate the expert-derived resistance surface
d Three of these papers used genetic data or a measure of vocal dissimilarity to validate the resistance surface derived from detection

data
e Three of these did not involve optimization of resistance values, but calculated proportion of land cover types within a strip

between populations and validated with genetic data. Technically, the resistance values were empirically derived from the locations

of the genetic samples and thus could be classified as detection data
f This study did not involve optimization of resistance values but calculated proportion of land cover types within a strip between

populations and validated with detection data
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Detection data

Detection data are defined by single point locations of

unknown individuals. If multiple locations of the same

individuals are recorded (e.g., via telemetry or

capture–recapture), but the individual locations are

treated as independent detections in the analysis, then

the data are still considered detection data.

Detection data were used in 23 instances (Table 3)

and included both presence-only data (n = 19) and

presence–absence data (n = 4). The main difference

between presence-only and presence–absence data is

that the latter contains observations assumed to

represent true absences while the former do not, and

the methods of statistical analysis may differ. In the

papers reviewed, detection data were obtained in a

wide variety of ways, including: sightings (Bartelt

et al. 2010), pellet counts (Beazley et al. 2005), nests

(Kuroe et al. 2011), vocalizations (Laiolo and Tella

2006), traps (Wang et al. 2008), hair snares (Cushman

et al. 2006; Wasserman et al. 2010), tracks or other

sign (Epps et al. 2011), and telemetry studies (Chet-

kiewicz and Boyce 2009). Note, presence points

collected via telemetry studies likely represent loca-

tions from fewer individuals than are collected through

other methods, so the assumption that the samples

represent a random sample of the entire population is

often harder to justify (Manly et al. 2010). Moreover,

care must also be taken to ensure independence of

points from telemetry studies since they are intrinsi-

cally serially autocorrelated (Cushman 2010). For

these reasons, data from telemetry studies are probably

best treated as pathway data (as discussed below).

While detection data are often the most easily-

acquired empirical data, there are a variety of issues

associated with using detection data to parameterize

resistance surfaces. Most importantly, detection data

are point-specific, meaning that movement is inferred

instead of directly measured. Also, there is no

generally accepted method for translating habitat

selection indices based on detections into resistance

values for movement (Beier et al. 2008). Errors can

arise from this inference because detections usually

represent within-home range habitat use patterns and

thus may not adequately reflect how environments

affect animals during movements such as dispersal

and migration (Cushman et al. in press), although in a

recent study on cougar dispersal, it was shown that

habitat preference of dispersers was similar to habitat

preference of resident adults (Newby 2011). In

addition, if detections are biased towards protected

areas where individuals are disproportionately found,

any measured habitat preferences may not be appli-

cable to the matrix between them, especially if the

range of environmental conditions differs in the

matrix, as it is likely to do. This is particularly relevant

if resistance to movement between protected areas is

the focus of the conservation application (e.g., corridor

design).

Relocation data

Though relocation data are sometimes associated with

translocation of animals, we are defining relocation

data as having two or more sequential locations of the

same individual, but not at a sufficiently frequent

interval to treat each sequence as a movement

pathway. A commonly used example of relocation

data is mark–recapture data. With relocation data, the

focus is on the matrix between locations rather than the

specific pathways between locations or the point

locations themselves. Clearly, relocation data is pre-

ferred over static detection data when the focus is

estimating resistance to movement of individuals

through the landscape.

Relocation data were used in only eight instances

(Table 3). The paucity of studies using relocation data

reflects the greater difficulty of capturing, marking and

re-capturing or re-sighting individuals compared to

detecting species’ presence. Relocation data were used

in two different ways. In the first approach, relocation

data were used to compute movement speeds (Stevens

et al. 2006), homing rates (Desrochers et al. 2011),

movement rates (Ricketts 2001), exchange rates

(Sutcliffe et al. 2003), or dispersal rates (Michels

et al. 2001) through various environments or between

habitat patches without knowing the actual movement

paths. In most of these studies, inferred travel routes

(e.g., least cost paths) between locations were used to

calculate resistance values that best explained the

observed movement rates. However, Stevens et al.

(2006) used a controlled laboratory experiment to

calculate movement speeds of individuals across

various homogeneous substrates. Caution should be

exercised when using movement speed alone to infer

resistance, as it may not account for all three

components of resistance: willingness to cross, phys-

iological cost and reduction in survival. The main
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issue with relocation data used in this manner is that

the movement paths between points are unknown and

therefore must be inferred. Thus, there is an added

unknown level of uncertainty in the final estimates of

resistance associated with the method of inferring

movement paths.

In the second approach, relocation data were used

to construct home ranges (Graham 2001; Kautz et al.

2006; Thatcher et al. 2009). In these studies, travel

paths between relocations within the delineated home

ranges were not inferred at all; rather, the composition

of the home ranges was compared to that available

within the study area to assign habitat preferences,

which were then transformed into resistance values. A

major issue with home range data, like detection data,

is that movement is inferred instead of directly

measured, and there is added uncertainty due to

variability in the method of home range determination.

Additionally, home range estimation commonly

results in including expanses of area that are not

actually used by individuals, especially when using the

Minimum Convex Polygon home range estimator

(Worton 1995). However, the main issue with the

methods used in all of these studies is that there was no

formal evaluation of alternative resistance values; the

final resistance values were merely assigned based on

the computed habitat preferences.

Pathway data

Pathway data is defined by having two or more

sequential locations of the same individuals, but at a

sufficiently frequent interval to treat each sequence as

a movement pathway (under the assumption that it

represents the true pathway). Here, the focus is

squarely on the specific connections between locations

rather than the ambiguous matrix between locations or

the point locations themselves. Pathway data is much

preferred over static detection data and relocation data

when the focus is estimating resistance to movement

of individuals through the landscape.

Despite the clear advantages of pathway data, it was

used in only two instances (Cushman and Lewis 2010;

Richard and Armstrong 2010). The paucity of studies

using pathway data reflects practical and economic

tradeoffs associated with obtaining relocations at

frequent intervals, but also may reflect unfamiliarity

with the methods for analyzing movement paths by

researchers.

To obtain meaningful movement pathways and thus

meet the implicit assumption of both step and path

analyses (see below), the interval between point

locations must be relatively short to reduce the

uncertainty associated with the interval between

locations. Unfortunately, there is no consensus on

how short is short enough, because it depends on the

species’ vagility. For example, if a species has the

ability to move 1 km in 1 h, and the spatial resolution

of the environment is 100 m, then a fix interval of 1 h

is probably far too long because there are too many

possible pathways through the landscape that the

species could take between two points say 500 m

apart. However, a 10 min interval would likely

capture the exact pathway at the resolution of 100 m.

Because of this issue, pathway analyses are probably

best suited to animals that can be monitored fre-

quently, typically via GPS telemetry. Indeed, the

advent of GPS telemetry has enabled the acquisition

time interval between fixes to be dramatically reduced,

enabling movement pathways to be generated for both

short- and far-ranging species.

Using the entire pathway may confound different

types of movement such as local movements within

resource patches, movements between resource

patches within home ranges, migration movements,

and dispersal movements. This may translate to the

final resistance surfaces if environmental variables

confer different levels of resistance to different types

of movement. Therefore, we recommend attempting

to decouple these behaviors before the paths are used

for estimating resistance to movement. While this

issue is particularly evident with pathway data, it is an

important issue in all resistance modeling studies

regardless of the type of biological data used.

Genetic data

Movement need not refer to the movement of

individuals directly; it can also refer to the movement

of genes—by individuals over generations. Genetic

data were used in 28 instances to derive resistance

surfaces, plus an additional five instances to validate a

resistance surface (Table 3). Genetic data consist of

genetic samples collected at multiple locations and, in

contrast to relocation and pathway data, genetic

data does not require resampling individuals over

time. Genetic data are used to measure the genetic

distance between locations, either between individuals
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(Cushman et al. 2006) or between populations (Ema-

resi et al. 2011), and thus infer rates of gene flow, or to

estimate gene flow directly (Wang et al. 2009).

Genetic distance or estimates of gene flow are then

evaluated against measures of geographic distance

under alternative resistance models to find the best

estimates of resistance. Of the 28 instances, 14 used a

between-population measure of genetic distance, 12

used a between-individual measure, and two used a

direct measure of gene flow between populations.

Despite their prevalence, population-based methods

have been criticized because individuals must be

assigned to discrete populations even if the population

is continuously distributed, and because they assume

an island-matrix population structure that may be

inappropriate for certain species or study areas (Shirk

et al. 2010). Cushman and Landguth (2010) found that

genetic distances between individuals provide the

most robust estimates of resistance. However, popu-

lation-based approaches may be the most practical

means of analysis for some species and study areas

(e.g., when populations are organized into discrete

local populations). When migration rates among

discrete local populations can be readily measured, a

direct measure of gene flow, through siblingship and

parentage assignments, may be the best approach

(Wang et al. 2009).

In the past, the main issue with genetic data was the

difficulty, inaccuracy and high cost of genotyping.

However, in recent years these practical constraints

have lessened dramatically, making genetic data a

practical option in most cases. Consequently, the use

of genetic data for parameterizing resistance surfaces

appears to be on the rise (Spear et al. 2010). However,

there are other issues with the use of genetic data. One

issue is that estimates of gene flow may be temporally

mismatched to the current landscape of interest

(Landguth et al. 2010). Another is that resistance to

movement of individuals (who are carrying genes

across the landscape) is not measured directly, in

contrast to relocation and pathway data. Estimates of

gene flow between locations, whether inferred or not,

reflect the movement of many individuals over many

generations, presumably travelling along many differ-

ent pathways. This makes genetic data appealing,

since it effectively integrates the movements of many

individuals over time and thus leads to a more synoptic

measure of landscape resistance. Moreover, since gene

flow reflects only successful movements, it integrates

the movements that matter most to the species—those

that result in successful breeding.

Analytical approaches

A wide variety of analytical approaches were used

among the papers reviewed, which made any classi-

fication of approaches extremely challenging. Never-

theless, we found it useful to group papers into three

categories: (1) ‘one-stage expert approach’, (2) ‘one-

stage empirical approach’, and (3) ‘two-stage empir-

ical approach’ (Fig. 1). Strictly speaking, the one-

stage expert approach is not analytical, but it is in fact

the most common approach used for deriving resis-

tance surfaces, so it is included here.

One-stage expert approach

In the ‘one-stage expert approach’, expert opinion is

used to derive the final resistance surface in a single

step; no statistical modeling is used in the process. If

biological data are used at all, it is used merely to

inform expert opinion (Zimmermann and Breitenmo-

ser 2007) or to validate the derived surface (Coulon

et al. 2004).

A one-stage expert approach was used in 43

instances (Table 3). In these studies, experts were

typically asked to provide numerical resistance values

to each environmental layer from a bounded parameter

space (e.g., 0–10 or 0–100) that would reflect resis-

tance to movement during home range use, migration

or dispersal. A final resistance surface was created by

applying the resistance values to each environmental

layer and summing the values. If weights were being

used to reflect the relative importance of each

environmental variable, these were incorporated via

a weighted product (Singleton et al. 2002) or a

weighted geometric mean (Beier et al. 2008). In some

cases, experts were asked to derive a habitat suitability

index from the environmental variables, and the

inverse of the habitat suitability values were taken as

the resistance values (LaRue and Nielsen 2008).

Because experts come from varying backgrounds

and research experiences, they likely have diverging

opinions regarding resistance or habitat suitability

values (Johnson and Gillingham 2004). Consequently,

various methods can be used to reduce the variation in

expert opinion. For example, responses can be

smoothed by simply averaging the submitted values
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or applying a trimmed mean by omitting the highest

and lowest values (Compton et al. 2007). Variation

can also be addressed through expert consensus, either

by gathering the experts in one place or by using an

iterative process where resistance values are re-

compiled until a consensus is reached (Freeman and

Bell 2011). A more structured method of dealing with

variation in expert opinion is to use an analytical

hierarchy process (AHP) (Saaty 1980), where the

assigned values are standardized through the use of

decision-making trees. An advantage of the AHP

process is that it produces an index of consistency. If

consistency scores are below 0.1, then the responses

among experts are deemed consistent; whereas, if they

are above 0.1, then re-assessment may take place to

reduce variability (Magle et al. 2009). Because

environmental variables may differ in the magnitude

of their influence on species movement, experts can be

asked to weight variables in terms of their influence

(Beier et al. 2009), or the weighting can be completed

in the AHP process. For example, Estrada-Peña (2003)

applied time weights to the resistance surface by

increasing weights as a function of distance to emulate

tick feeding time on hosts. Experts can also be asked to

identify landscape attributes that are barriers to

movement or to estimate the cumulative resistance

value that would result in a barrier to movement

(Rabinowitz and Zeller 2010).

A one-stage expert approach is perhaps the least

quantitatively rigorous of the approaches used,

because there is no way to objectively parameterize

resistance surfaces. However, a one-stage expert

approach should not be too easily dismissed, as it

allows experts to synthesize knowledge about com-

plex habitat relationships obtained from disparate

studies that may otherwise be difficult to incorporate

into a resistance surface.

One-stage empirical approach

In a ‘one-stage empirical approach’, a statistical model

is confronted with biological data to find the optimum

resistance surface given the data; usually, some

combination of expert opinion and previously pub-

lished research is used to select environmental vari-

ables, their scale, and the functional form of the

relationship between each variable and resistance

(e.g., Gaussian, linear, power).

A one-stage empirical approach was used in 22

instances; however, in seven of these instances the

biological data were not used to optimize the resis-

tance surface (Table 3). Most of the analytical studies

developed a RSF based on detection data and then

used the inverse of the selection index to obtain

resistance values, but there was a wide variety of

statistical methods used to create the RSF, including

logistic regression analysis (Pullinger and Johnson

2010), maximum entropy and ecological niche factor

analysis (Wang et al. 2008; Kuemmerele et al. 2011),

and a variety of other less conventional approaches

(e.g., Ferreras 2001; Flamm et al. 2005; Kindall and

VanManen 2007; Kuroe et al. 2011). In three

instances, relocation data were used to construct home

ranges, which were the basis for a simple RSF that

assigned resistance values based on measured habitat

preferences without optimizing the surface (Graham

2001; Kautz et al. 2006; Thatcher et al. 2009). In five

instances, genetic data were used to derive the RSF;

however, three of these cases used a strip-based

approach (where proportion of environmental features

within a rectangular strip between populations were

used) to estimate resistance values and no optimiza-

tion was performed (Emaresi et al. 2011). Two studies

developed RSFs based on genetic data and attempted

to optimize resistance values in a single stage (Wang

et al. 2009; Shirk et al. 2010).

These latter two studies are unique in their attempts

to use landscape genetic techniques to sample the full

parameter space. While the optimization of resistance

based on detection data is relatively straightforward

and computationally efficient using conventional

statistical methods, this is not the case with movement

data such as relocation data, pathway data, and genetic

data. Because of the exponentially large number of

possible resistance surfaces in multivariate analyses,

and the computational demands of analyzing move-

ment paths (either inferred or observed), a full

optimization of all environmental parameters has not

yet been achieved. However, Wang et al. (2009) and

Shirk et al. (2010) have used two different landscape

genetics techniques to successfully perform a con-

strained optimization. Wang et al. (2009) created a

range of a priori resistance surfaces using three

environmental variables. One parameter was always

assigned a blanket resistance value of 1 (since

resistance values are relative) and the other two layers

were assigned every possible combination of
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resistance values from 1 to 10 in 0.1 unit increments.

The relative least-cost distances between population

pairs were compared with the 95 % confidence

interval of relative rates of gene flow estimated from

the molecular data. All resistance surfaces whose

relative least-cost distances between all population

pairs fell within their expected ranges, based on the

molecular analysis, were considered to be biologically

accurate. Shirk et al. (2010) developed a framework

that allows for interactions among variables and non-

linear responses using a quasi-unconstrained param-

eter space. First, they performed a univariate optimi-

zation of each of four environmental variables by

systematically increasing and decreasing the resis-

tance values until a unimodal peak of support (using

genetic data) was reached. Then, they obtained a

multivariate model by summing all the optimized

univariate surfaces and systematically optimizing the

parameters for one variable while holding the other

layers constant, and iteratively repeating this process

until the parameter estimates stabilized.

Two-stage empirical approach

In a ‘two-stage empirical approach’, expert opinion

and/or biological data are used to derive a suite of

alternative resistance surfaces in the first stage, which

are confronted with biological data and a model

selection procedure in the second stage to select the

best resistance surface. Note, given the ubiquitous

involvement of experts in all approaches, such as

selecting environmental variables and choosing the

functional form of the relationship between each

variable and resistance, the distinction between this

approach and the one-stage empirical approach is

perhaps a matter of degree and not an absolute

dichotomy.

A two-stage empirical approach was used in 36

instances, 33 of which used expert opinion in stage one

to derive the alternative resistance surfaces (Table 3).

In the majority of these studies (n = 28), expert

opinion was used to derive a limited, often small, set of

alternative resistance surfaces (i.e., candidate models)

based on specific hypothesized relationships between

the environment and resistance to movement—in the

spirit of model selection and multi-model approaches

to statistical inference (Burnham and Anderson 2002).

This approach was combined with detection data

(Chardon et al. 2003), relocation data (Desrochers

et al. 2011), pathway data (Richard and Armstrong

2010) and genetic data (Koscinsky et al. 2009) in the

second stage to select the best surface. In the

remaining studies (n = 8), expert opinion was used

to constrain the resistance parameter space, from

which a priori resistance surfaces were constructed in

sufficient number and distribution to effectively

sample that parameter space. Here, expert opinion

was used mainly to determine the range of plausible

resistance values for each environmental variable; the

candidate models or resistance surfaces were derived

merely as a practical solution to model optimization

within the constrained parameter space. This approach

was combined with detection data (Janin et al. 2009),

relocation data (Sutcliffe et al. 2003), pathway data

(Cushman and Lewis 2010) and genetic data (Cush-

man et al. 2006) in the second stage to select the best

surface. Finally, it should be noted that in both cases,

expert opinion is used to select the environmental

variables and the functional form of the relationship

between each variable and resistance; thus, both are

clearly expert-guided approaches.

Surprisingly, only three papers used empirical data

to develop a suite of resistance surfaces which were

then subjected to model selection through the use of an

independent empirical data set of a different data type

(Table 3).

Resource selection functions

In the context of resistance surface modeling, we

consider a RSF to be any model that yields estimates of

environmental resistance or habitat selection based on

patterns observed in biological data (Fig. 2).

Point selection function (PSF)

A PSF seeks to find the combination of environmental

parameters that best explains the distribution of

detections based on presence-only or presence–

absence points. Importantly, it is the characteristics

of the point locations themselves and not the connec-

tions between points that are assessed in a PSF.

Resistance is typically given as the inverse of the final

selection index.

A PSF was used in 16 instances (Table 3). In most

of these cases (n = 12), the PSF was derived from

detection data and optimized using an objective

statistical procedure such as logistic regression
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(Chetkiewicz and Boyce 2009). However, in a few of

these cases, alternative parameterizations of the PSF

were derived by experts a priori and the detection data

were used simply to select the parameters with the

most biological support (Janin et al. 2009).

An important issue with any PSF derived from

presence-only points is determining what constitutes

the ‘‘available’’ environment. Regarding this, there

appears to be no accepted standard, but methods such

as paired logistic regression (also referred to as

‘conditional logistic regression’ and ‘case-controlled

logistic regression’) that compare each presence point

to what is locally available within a meaningful

ecological neighborhood seem to us to be superior to

other methods (Pullinger and Johnson 2010). Of

course, a PSF derived from presence–absence points

does not suffer this issue and seems to us to be superior

than one derived from presence-only data. The main

issue with any PSF is the need to infer resistance to

movement from resource selection at point locations.

Home range selection function (HSF)

A HSF seeks to find the combination of environmental

variables that best explains the distribution of home

ranges derived from relocation data. Importantly, it is

the characteristics of the home ranges and not the

specific connections between relocations that are

assessed in a HSF. Resistance is typically given as

the inverse of the final selection index.

A HSF was used in only three instances (Table 3).

None of these cases involved optimizing the HSF

based on the home range data; in two of these cases

they compared the composition of the home ranges to

that of the study area in order to assign a habitat

preference index to each environmental condition and

then assigned resistance as the inverse of the prefer-

ence index (Graham 2001; Kautz et al. 2006).

The issues with a PSF also apply to a HSF.

However, at least conceptually, a HSF is closer to the

ideal of addressing resistance to movement than a PSF

because a home range includes the area an individual

moves through to meet their local resource needs.

Despite this conceptual advantage, however, a HSF

does not overcome the fundamental limitation of

having to infer resistance to movement from point

data.

Matrix selection function (MSF)

A MSF seeks to find the combination of resistance

parameters that best explains the movement of indi-

viduals or their genes between locations, but without

knowing or assuming the actual movement paths

between locations. Specifically, a MSF derives from a

measure of the ecological distance between two points

separated by a resistant matrix, where the ecological

distance increases as the geographic distance and

resistance between points increases. A MSF seeks to

find the resistance parameters that maximizes the

correlation between the ecological distance and the

frequency of movement of individuals or their genes

between locations.

A MSF was used in 38 instances, making it by far

the most commonly used RSF (Table 3). In most of
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these cases (n = 28), alternative parameterizations of

the MSF were derived by experts a priori and either

detection data (n = 6), relocation data (n = 2) or

genetic data (n = 20) were used to select the param-

eters with the most biological support. The cases

involving detection data seem contrary to the idea of a

MSF; however, in these cases the MSF was used in the

context of a metapopulation model to explain

observed patch occupancy (or presence). In only three

cases was the MSF optimized (within constraints) in a

one-stage empirical approach using an objective

statistical procedure based on either relocation data

(n = 1) or genetic data (n = 2).

A MSF has several important features. First, a MSF

evaluates environmental resistance directly, as

opposed to a PSF that evaluates habitat selection

directly and produces an index that must be translated

into resistance post hoc. Second, a MSF evaluates the

environmental resistance between locations without

requiring information on the actual movement paths,

which are required by both step and PathSFs (see

below). Third, a MSF does not require the arbitrary

designation of ‘available’, which is a challenge that

confronts all other selection functions. Lastly, A MSF

is the only selection function suited to multiple types

of biological data, including detection data, relocation

data and genetic data.

The main issue with any MSF is choosing a measure

of ecological distance, and there are several, including:

(1) least cost distance, which is equal to the cumulative

cost along the least cost path between points (Epps et al.

2007); (2) least cost path length, which is equal to the

geographic distance along the least cost path between

points (Koscinsky et al. 2009); (3) least cost corridor,

which is equal to the cumulative cost within the least

cost corridor between points (Savage et al. 2010); (4)

resistance distance, which is equal to the cumulative

resistance of the matrix between points based on circuit

theory (McRae 2006; Klug et al. 2011); and (5) resistant

kernel distance, which is equal to the kernel-weighted

(e.g., Gaussian) least cost distance between points

(Compton et al. 2007). Currently, there is no one

preferred measure of ecological distance. McRae and

Beier (2007) compared how least cost distance and

resistance distance performed and found resistance

distance to be better, while Schwartz et al. (2009) found

the opposite. Savage et al. (2010) found the least cost

corridor measure to outperform least cost distance.

Foltête et al. (2008) did not find any difference between

the least cost distance and least cost path length. In the

studies reviewed, there were 23 instances of least cost

distance, eight of least cost path length, one of least cost

corridor, and four of resistance distance. Many studies

used more than one measure of ecological distance.

Regardless of the measure of ecological distance

chosen, care must be taken to address the inherently

high level of correlation with straight geographic

distance (Cushman and Landguth 2010). Another issue

with the MSF approach, as stated above, is that they are

very computationally demanding which has, to date,

prevented a full optimization of resistance estimates.

Step selection function (SSF)

A SSF seeks to find the combination of resistance

parameters that best explains the movement of indi-

viduals between locations, and is derived from path-

way data where specific movement paths can be

meaningfully assigned and decomposed into discrete

segments or steps between sequential locations. A SSF

derives from a measure of the cost distance along each

segment compared to the cost distance along random

segments of equal length. Note, here the cost distance

is measured along each segment of the observed

pathway rather than along an arbitrary modeled path as

in a MSF.

A SSF was used in only one instance, making it one

of the two least commonly used types of RSF

(Table 3). In this case, alternative resistance surfaces

were derived by experts a priori and the pathway data

were used to select the surface that best discriminated

between observed and random segments (Richard and

Armstrong 2010).

A SSF is one of the most powerful selection

functions for deriving resistance surfaces, because it

derives directly from observed movement pathways.

As with any selection function that compares use to

availability, one of the main issues with any SSF is

choosing the spatial (and temporal) constraints on

availability. For example, should the beginning point

of each random segment be the same as the paired

observed segment or should it be shifted by a random

distance and direction and, if so, how far? The

implications of these decisions on the final parameter

estimates are unknown. Another issue arises when

available steps are chosen close to the observed step,

making the available steps highly correlated and

representative of only habitat near the observed step.
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This runs the risk of omitting from the analysis

important landscape characteristics that an individual

is actually avoiding, making the analysis result in a

gradient of resistance for preferred habitat types.

Path selection function (PathSF)

A PathSF is similar to a SSF except that the entire

movement path is assessed as a single pathway as

opposed to a series of steps. A PathSF was also used in

only one instance (Table 3). In this case, alternative

resistance surfaces were derived by experts a priori

and the pathway data were used to select the surface

that best discriminated between observed and random

paths (Cushman and Lewis 2010).

A PathSF is arguably the most powerful selection

function for deriving resistance surfaces, because

inferences are made directly from observed movement

pathways. One advantage of using the entire path as the

observational unit rather than the individual segments is

that fine-scale habitat selection can be captured and

pseudoreplication and autocorrelation issues can be

avoided by preserving the topology of the entire path

(Cushman 2010). Another advantage is that a PathSF

allows inferences to be made about environmental

features between observed points. Despite these advan-

tages, however, a PathSF cannot escape the issue of

arbitrariness in the designation of ‘available’. In

Cushman and Lewis (2010), studying black bears

(Ursus americanus) in northern Idaho, available paths

were randomly shifted a distance between 0 and 20 km

(based on a black bear’s average dispersal distance) in

latitude and longitude, and randomly rotated between 0�
and 360�. An alternative to the approach used by

Cushman and Lewis (2010) is to simulate individual

movement paths by drawing from empirical distribu-

tions of number of steps, step length, step orientation

and total path length (B. Compton and K. McGarigal,

unpublished report). This approach is a trade-off

between preserving the exact topology of the observed

paths and representing the underlying ‘population’ from

which the observed paths were drawn, but an empirical

comparison of these two approaches has not been done.

Conclusions and recommendations

In this review, we assessed current practices for

deriving resistance surfaces and have arrived at

several conclusions in three overarching categories:

(1) selection and definition of environmental vari-

ables, (2) use of biological data and analytical

processes, and (3) evaluation of resistance surfaces.

First, not surprisingly, there was tremendous variety of

environmental variables used across studies owing to

differences in the species and ecological systems

under investigation (Table 2). In some cases, research-

ers used model selection procedures to select the

number and combination of variables used to derive

the resistance surface that best explained observed

biological data. However, in most cases, little or no

attention was paid to the sensitivity of the results to the

choice and/or number of environmental variables used

to construct the resistance surface. In addition, we

discovered very few studies that evaluated choices for

representing each environmental variable in terms of

the measurement scale (continuous or categorical) and

spatial resolution (i.e., grain size). For example, of the

22 papers that used elevation, none compared the

representation of elevation as a continuous surface (or

a continuous function of elevation) versus discrete

elevation classes. Likewise, while there is no inher-

ently correct spatial resolution for representing an

environmental attribute, since it varies among species

and ecological processes and is usually unknown to

the researcher prior to the analysis, our review

identified only a handful of studies that evaluated

how spatial resolution affected the optimization of the

resistance surface (McRae and Beier 2007; Rae et al.

2007; Broquet et al. 2009; Koscinsky et al. 2009;

Murphy et al. 2010; Nichol et al. 2010). Indeed, this

may not be as important as choice of thematic

representation of environmental variables since the

grain size may have little effect on the relative

cumulative cost of a corridor (Cushman and Landguth

2010). However, given the almost unlimited number

of ways to represent the environment in terms of the

number and choice of variables and the spatial and

thematic scale, there is a need for more comparative

studies to determine sensitivity of results to these

choices and to recommend robust methods for finding

the optimal representation given that it cannot be

known a priori.

Second, the papers reviewed used a wide variety of

data types and analytical methods to reach the same

goal—estimating resistance to movement (Table 3).

Despite heavy criticism, expert opinion was used in

80 % of the papers reviewed and was the only source
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of information in 43 % of the papers. Reliance on

expert opinion is likely to continue in the future as

there are many species and/or systems for which

empirical data do not yet exist and yet conservation

concerns demand immediate action. Genetic data were

the second most heavily used data type (38 % of

papers) and its use appears to be increasing due to the

increased ease, accuracy, and affordability of geno-

typing. The increasing appeal of genetic data may also

be that it provides a measure of functionally relevant

movement between populations or sites—movement

that results in successful breeding. Detection data

(consisting of both presence-only and presence–

absence data) was the third most common data type

(23 % of papers), despite the fact that resistance to

movement must be inferred from detection data. Due

to the prevalence of detection data in wildlife studies,

it is likely that methods based on detection data will

continue to figure prominently in resistance modeling

in the foreseeable future. Since estimating resistance

to movement was a putative goal of the studies

reviewed, we found it alarming that movement data in

the form of relocations (8 % of papers) or pathways

(2 % of papers) was the least used data type. The

paucity of individual movement data in such studies is

likely due to the practical, logistical and/or economic

difficulties of collecting movement data. However,

with the increased availability of GPS telemetry, it is

likely that the use of movement data will increase in

the future.

Despite the dramatic differences among data types,

there have been few attempts to critically and objec-

tively evaluate these differences. Clevenger et al.

(2002) found that empirical data generally outper-

formed expert opinion, Shirk et al. (2010) found that

their optimized resistance model was superior to the

expert-based model and Cushman and Lewis (2010)

found that that using genetic distances between

individuals resulted in a similar resistance surface to

one developed using movement paths. Clearly, there is

an urgent need for more comprehensive comparative

studies that seek to clarify the tradeoffs associated

with each data type.

Third, not surprisingly, given the variety of types of

biological data used, a variety of RSFs were used to

estimate resistance values. Indeed, one of the most

challenging aspects of this review was trying to

understand and organize the myriad analytical

approaches used by researchers to derive the final

resistance surface. We offer an organizational scheme

that distinguishes among five basic types of RSFs, and

we encourage future researchers to adopt this scheme.

Each selection function corresponds to a different

analytical framework for estimating the final resis-

tance values, and each has inherent issues (discussed

previously) that should be considered in every appli-

cation. Two of these issues are particularly notewor-

thy. First, all of the selection functions except the MSF

require the researcher to designate what constitutes

‘available’ for comparison with the ‘use’ data. This

adds a degree of arbitrariness to the analysis that to our

knowledge has not been addressed in the context of

resistance surface modeling, but needs to be. Second,

while PSFs derived from detection data have been

over-utilized in resistance surface modeling, in our

opinion, PathSFs derived from pathway data have

been under-utilized. Pathway data are the only data

type that provide unambiguous spatial representation

of how animals move through the environment to meet

their local resource needs and they may be constructed

to assess within home range movements, dispersal or

migration depending on the source data. MSFs derived

from genetic data are complementary to PathSFs

because they can assess multi-generational movement

of effective dispersers (i.e., those that disperse and

reproduce), albeit at the cost of having to infer

resistance to movement through a matrix based on a

chosen measure of ecological distance.

A pervasive issue in resistance surface modeling

studies is that these methods rely on the assumption

that animals make movement decisions based on the

same preferences they use in selecting habitat. This

may not be an issue if this assumption is true.

However, if animals are driven by something other

than resource selection during movement events, the

two behaviors need to be separated when estimating

resistance values. This issue is perhaps most apparent

with pathway data. Because the use of local resources

(e.g., food and cover) and movement through the

environment to find and obtain those local resources

are typically difficult to discern in pathway data, it is

challenging to parse out environmental conditions

associated with local resource use from those confer-

ring resistance to movement. Moreover, the move-

ment data may confound local movements within

resource patches, movements between resource

patches within home ranges, migration movements

between seasonal use areas, and dispersal movements
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between natal and breeding sites or among breeding

sites. There is no reason to assume that the environ-

ment will affect resource use and different types of

movement the same. While this issue is most notable

with pathway data, it also applies to other data types,

with the possible exception of genetic data which

generally deals principally with movement associated

with successful reproduction. We are not aware of any

attempts to address this issue in resistance modeling

studies and recommend that it be a priority in future

studies.

Given the myriad sources of uncertainty in the

modeling process and the propagation of errors from

imperfect environmental data to the collection and

analysis of the biological data, model sensitivity and

uncertainty should be assessed in any study that uses

resistance surfaces, especially when expert opinion is

involved (Rae et al. 2007; Beier et al. 2009). Less than

a third of the papers reviewed performed sensitivity

analyses, either on corridor location resulting from the

analysis (Rayfield et al. 2010) or on statistical

differences between the resistance surfaces them-

selves (Compton et al. 2007). The incorporation of

uncertainty into resistance models was much less

common, with only a few papers creating models

based on the probability distribution of parameter

estimates (Kuroe et al. 2011). Performing sensitivity

analyses or incorporating uncertainty in parameter

estimates are especially important for research that

will result in conservation recommendations or con-

servation action. Presumably, much of the research

that seeks to estimate resistance will use the resultant

resistance surfaces in connectivity modeling and these

connections or corridors will be promoted to planners

and land managers for implementation. Presenting the

full range of possibilities for proposed actions adds

transparency to the process and increases the likeli-

hood of buy-in from land managers and the public

alike.

Applying the resistance estimates in connectivity

modeling was not the focus of this review, but it is

worth mentioning that the use of these resistance

estimates to identify corridors may have far-reaching

consequences. Conservation and public resources may

be used to implement wildlife corridors based upon

resistance surfaces. To this end, we recommend more

comparative research into each step of the resistance

estimation process—the selection and definition of

environmental variables, the choice of biological data

type, and the analytical process. This will help to

assess the relative influence of each step in the process

and its influence on the accuracy of resistance

estimates. Ultimately, comparative analyses will lead

to filling in gaps in our knowledge around resistance

surface modeling and lead to more effective and

successful conservation measures.
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