Andrew Smart

Andrew Smart
Google Inc. | Google · Research Department

About

23
Publications
2,009
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
765
Citations
Citations since 2017
21 Research Items
764 Citations
20172018201920202021202220230100200300400
20172018201920202021202220230100200300400
20172018201920202021202220230100200300400
20172018201920202021202220230100200300400

Publications

Publications (23)
Preprint
Full-text available
Understanding the landscape of potential harms from algorithmic systems enables practitioners to better anticipate consequences of the systems they build. It also supports the prospect of incorporating controls to help minimize harms that emerge from the interplay of technologies and social and cultural dynamics. A growing body of scholarship has i...
Preprint
Full-text available
Inappropriate design and deployment of machine learning (ML) systems leads to negative downstream social and ethical impact -- described here as social and ethical risks -- for users, society and the environment. Despite the growing need to regulate ML systems, current processes for assessing and mitigating risks are disjointed and inconsistent. We...
Preprint
Full-text available
Machine learning (ML) approaches have demonstrated promising results in a wide range of healthcare applications. Data plays a crucial role in developing ML-based healthcare systems that directly affect people's lives. Many of the ethical issues surrounding the use of ML in healthcare stem from structural inequalities underlying the way we collect,...
Article
Full-text available
In response to growing concerns of bias, discrimination, and unfairness perpetuated by algorithmic systems, the datasets used to train and evaluate machine learning models have come under increased scrutiny. Many of these examinations have focused on the contents of machine learning datasets, finding glaring underrepresentation of minoritized group...
Preprint
Full-text available
The use of counterfactuals for considerations of algorithmic fairness and explainability is gaining prominence within the machine learning community and industry. This paper argues for more caution with the use of counterfactuals when the facts to be considered are social categories such as race or gender. We review a broad body of papers from phil...
Article
The use of counterfactuals for considerations of algorithmic fairness and explainability is gaining prominence within the machine learning community and industry. This paper argues for more caution with the use of counterfactuals when the facts to be considered are social categories such as race or gender. We review a broad body of papers from phil...
Preprint
How should we decide which fairness criteria or definitions to adopt in machine learning systems? To answer this question, we must study the fairness preferences of actual users of machine learning systems. Stringent parity constraints on treatment or impact can come with trade-offs, and may not even be preferred by the social groups in question (Z...
Preprint
Full-text available
Rising concern for the societal implications of artificial intelligence systems has inspired demands for greater transparency and accountability. However the datasets which empower machine learning are often used, shared and re-used with little visibility into the processes of deliberation which led to their creation. Which stakeholder groups had t...
Preprint
Full-text available
In response to algorithmic unfairness embedded in sociotechnical systems, significant attention has been focused on the contents of machine learning datasets which have revealed biases towards white, cisgender, male, and Western data subjects. In contrast, comparatively less attention has been paid to the histories, values, and norms embedded in su...
Preprint
Machine learning (ML) fairness research tends to focus primarily on mathematically-based interventions on often opaque algorithms or models and/or their immediate inputs and outputs. Such oversimplified mathematical models abstract away the underlying societal context where ML models are conceived, developed, and ultimately deployed. As fairness it...
Preprint
Recent research on algorithmic fairness has highlighted that the problem formulation phase of ML system development can be a key source of bias that has significant downstream impacts on ML system fairness outcomes. However, very little attention has been paid to methods for improving the fairness efficacy of this critical phase of ML system develo...
Preprint
Rising concern for the societal implications of artificial intelligence systems has inspired a wave of academic and journalistic literature in which deployed systems are audited for harm by investigators from outside the organizations deploying the algorithms. However, it remains challenging for practitioners to identify the harmful repercussions o...
Preprint
Full-text available
We examine the way race and racial categories are adopted in algorithmic fairness frameworks. Current methodologies fail to adequately account for the socially constructed nature of race, instead adopting a conceptualization of race as a fixed attribute. Treating race as an attribute, rather than a structural, institutional, and relational phenomen...

Network

Cited By

Projects

Project (1)
Archived project