Andrew D RichardsonNorthern Arizona University | NAU
Andrew D Richardson
Ph.D.
About
348
Publications
138,679
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
48,563
Citations
Introduction
Additional affiliations
July 2017 - present
July 2009 - June 2017
Education
September 1998 - May 2003
September 1996 - May 1998
September 1988 - May 1992
Publications
Publications (348)
The allocation of nonstructural carbon ( NSC ) to growth, metabolism and storage remains poorly understood, but is critical for the prediction of stress tolerance and mortality.
We used the radiocarbon ( ¹⁴ C ) ‘bomb spike’ as a tracer of substrate and age of carbon in stemwood NSC , CO 2 emitted by stems, tree ring cellulose and stump sprouts rege...
Terrestrial plants remove CO2 from the atmosphere through photosynthesis, a process that is accompanied by the loss of water vapour from leaves. The ratio of water loss to carbon gain, or water-use efficiency, is a key characteristic of ecosystem function that is central to the global cycles of water, energy and carbon. Here we analyse direct, long...
Aim: To quantify the intra-community variability of leaf-out (ICVLo) among dominant trees in temperate deciduous forests, assess its links with specific and phylogenetic diversity, identify its environmental drivers and deduce its ecological consequences with regard to radiation received and exposure to late frost.
Location: Eastern North America...
Remote sensing capabilities to monitor evergreen broadleaved vegetation are limited by the low temporal variability in the greenness signal. With canopy greenness computed from digital repeat photography (PhenoCam), we investigated how canopy greenness related to seasonal changes in leaf age and traits as well as variation of trees’ water fluxes (c...
We will demonstrate the project plan to use flux footprint analysis (Kljun et al., 2015) and plant trait maps derived from AOP data (Wang et al., 2020) to quantify the ecological similarity of temporally dynamic flux source regions.
Accurate simulation of plant phenology is important in Earth system models as phenology modulates land-atmosphere coupling and the carbon cycle. Evaluations based on grid-cell average leaf area index (LAI) can be misleading because multiple plant functional types (PFT) may be present in one model grid cell and PFTs with different phenology schemes...
Our understanding of the terrestrial carbon cycle is strongly focussed on C fixation in the leaf, the process of photosynthesis, while the process whereby trees actually sequester C in durable form, i.e., tissue growth, has received much less attention and is neglected in global vegetation models 1,2. Significant uncertainty exists in estimating th...
Intra-annual density fluctuations (IADFs) are triggered by environmental cues, but whether they are distributed uniformly throughout the stem is not well documented. The spatial distribution of IADFs could help us understand variations in cambial sensitivity to environmental cues throughout the tree. We investigate how IADF distribution varies radi...
A long‐standing goal of ecology has been to understand the cycling of carbon in forests. This has taken on new urgency with the need to address a rapidly changing climate. Forests serve as long‐term stores for atmospheric CO2, but their continued ability to take up new carbon is dependent on future changes in climate and other factors such as age....
How variations in carbon supply affect wood formation remains poorly understood in particular in mature forest trees. To elucidate how carbon supply affects carbon allocation and wood formation, we attempted to manipulate carbon supply to the cambial region by phloem girdling and compression during the mid- and late-growing season and measured effe...
Photosynthesis by terrestrial plants represents the majority of CO2 uptake on Earth, yet it is difficult to measure directly from space. Estimation of gross primary production (GPP) from remote sensing indices represents a primary source of uncertainty, in particular for observing seasonal variations in evergreen forests. Recent vegetation remote s...
The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) was launched to the International Space Station on 29 June 2018 by the National Aeronautics and Space Administration (NASA). The primary science focus of ECOSTRESS is centered on evapotranspiration (ET), which is produced as Level‐3 (L3) latent heat flux (LE) data p...
Anthropogenic nitrogen (N) deposition and resulting differences in ecosystem N and phosphorus (P) ratios are expected to impact photosynthetic capacity, i.e. maximum gross primary productivity (GPPmax). However, the interplay between N and P availability with other critical resources on seasonal dynamics of ecosystem productivity remain largely unk...
Projected changes in temperature and precipitation are expected to influence spring and autumn vegetation phenology and hence the length of the growing season in many ecosystems. However, the sensitivity of green‐up and senescence to climate remains uncertain. We analyzed 488 site years of canopy greenness measurements from deciduous forest broadle...
Abstract. Photosynthesis by terrestrial plants represents the majority of CO<sub>2</sub> uptake on Earth, yet it is difficult to measure directly from space. Estimating Gross Primary Production (GPP) from remote sensing indices is a primary source of uncertainty, in particular for observing seasonal variations in evergreen forests. Recent vegetatio...
Urbanization has caused environmental changes, such as urban heat islands (UHIs), that affect terrestrial ecosystems. However, how and to what extent urbanization affects plant phenology remains relatively unexplored. Here, we investigated the changes in the satellite-derived start of season (SOS) and the covariation between SOS and temperature (R...
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Monitoring vegetation phenology is critical for quantifying climate change impacts on ecosystems. We present an extensive dataset of 1783 site-years of phenological data derived from PhenoCam network imagery from 393 digital cameras, situated from tropics to tundra across a wide range of plant functional types, biomes, and climates. Most cameras ar...
Many plant phenological events are sensitive to temperature, leading to changes in the seasonal cycle of ecosystem function as the climate warms. To evaluate the current and future implications of temperature changes for plant phenology, researchers commonly use a metric of temperature sensitivity, which quantifies the change in phenology per degre...
Multiple lines of evidence suggest that plant water-use efficiency (WUE)—the ratio of carbon assimilation to water loss—has increased in recent decades. Although rising atmospheric CO2 has been proposed as the principal cause, the underlying physiological mechanisms are still being debated, and implications for the global water cycle remain uncerta...
This paper describes the formation of, and initial results for, a new FLUXNET coordination network for ecosystem-scale methane (CH 4 ) measurements at 60 sites globally, organized by the Global Carbon Project in partnership with other initiatives and regional flux tower networks. The objectives of the effort are presented along with an overview of...
Carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are the greenhouse gases largely responsible for anthropogenic climate change. Natural plant and microbial metabolic processes play a major role in the global atmospheric budget of each. We have been studying ecosystem-atmosphere trace gas exchange at a sub-boreal forest in the northeaste...
Temperature is a primary environmental control on ecological systems and processes at a range of spatial and temporal scales. The surface temperature of organisms is often more relevant for ecological processes than air temperature, which is much more commonly measured. Surface temperature influences—and is influenced by—a range of biological, phys...
• Key message
Dynamic global vegetation models are key tools for interpreting and forecasting the responses of terrestrial ecosystems to climatic variation and other drivers. They estimate plant growth as the outcome of the supply of carbon through photosynthesis. However, growth is itself under direct control, and not simply controlled by the amou...
Carbon dynamics within trees are intrinsically important for physiological functioning, in particular growth and survival, as well as ecological interactions on multiple timescales. Thus, these internal dynamics play a key role in the global carbon cycle by determining the residence time of carbon in forests via allocation to different tissues and...
The authors modify the schematic plots in their article [...]
Premise of the Study
We investigated the spatial and temporal patterns of vegetation phenology with phenometrics derived from PhenoCam imagery. Specifically, we evaluated the Bioclimatic Law proposed by Hopkins, which relates phenological transitions to latitude, longitude, and elevation.
Methods
“Green‐up” and “green‐down” dates—representing the...
APPENDIX S1. Site characteristics of the PhenoCam sites used in the present study.
Snow is important for local to global climate and surface hydrology, but spatial and temporal heterogeneity in the extent of snow cover make accurate, fine-scale mapping and monitoring of snow an enormous challenge. We took 184,453 daily near-surface images acquired by 133 automated cameras and processed them using crowdsourcing and deep learning t...
PhenoCam sites used in the analysis and their characteristics.
‘Number of Images’ refers to the number of images used at each site that did not have a crowd consensus label of ‘bad image’.
(CSV)
Filenames for the 2013 images with gold standard classifications.
See [33] to access the original images.
(CSV)
View from the PhenoCam at Paradise Jackson Visitor Center, Mount Rainier National Park, Washington, USA.
(TIF)
Filenames for the 172,927 good images used in the analyses and their crowd consensus labels.
See [33] to access the original images.
(CSV)
SVM output weights for determining snow vs. no snow from the last (fc7) layer of the trained Places365-VGG model.
(CSV)
Confusion matrices for crowdsource consensus, CNN-SVM models, and MODIS data product.
(PDF)
Global change is shifting the seasonality of vegetation in ecosystems around the globe. High‐frequency digital camera imagery, and vegetation indices derived from that imagery, is facilitating better tracking of phenological responses to environmental variation. This method, commonly referred to as the ‘phenocam’ approach, is well suited to several...
Non-structural carbohydrates (NSCs), the stored products of photosynthesis, building blocks for growth and fuel for respiration, are central to plant metabolism, but their measurement is challenging. Differences in methods and procedures among laboratories can cause results to vary widely, limiting our ability to integrate and generalize patterns i...
Despite the importance of nonstructural carbohydrates (NSC) for growth and survival in woody plants, we know little about whole‐tree NSC storage. The conventional theory suggests that NSC reserves will increase over the growing season and decrease over the dormant season. Here, we compare storage in five temperate tree species to determine the size...
Plants store nonstructural carbohydrates (NSCs), such as sugars and starch, to use as carbon and energy sources for daily maintenance and growth needs as well as during times of stress. Allocation of NSCs to storage provides an important physiological strategy associated with future growth and survival, and thus understanding the seasonal patterns...
Remote sensing of radiative indices must balance spatially and temporally coarse satellite measurements with finer-scale, but geographically limited, in-situ surface measurements. Instruments mounted upon an Unmanned Aerial Vehicle (UAV) can provide small-scale, mobile remote measurements that fill this resolution gap. Here we present and validate...
Tree-grass ecosystems are widely distributed. However, their phenology has not yet been fully characterized. The technique of repeated digital photographs for plant phenology monitoring (hereafter referred as PhenoCam) provide opportunities for long-term monitoring of plant phenology, and extracting phenological transition dates (PTDs, e.g., start...
Shifts in vegetation phenology are a key example of the biological effects of climate change1-3. However, there is substantial uncertainty about whether these temperature-driven trends will continue, or whether other factors-for example, photoperiod-will become more important as warming exceeds the bounds of historical variability4,5. Here we use p...
Near-surface remote sensing and in situ photography are powerful tools to study how climate change and climate variability influence vegetation phenology and the associated seasonal rhythms of green-up and senescence. The rapidly-growing PhenoCam network has been using in situ digital repeat photography to study phenology in almost 500 locations ar...
Land surface phenology (LSP) has been widely retrieved from time series of various satellite instruments in order to monitor climate change and ecosystem dynamics. However, any evaluation of the quality of LSP data sets is quite challenging because the in situ observations on a limited number of individual trees, shrubs, or other plants are rarely...
Despite decades of research, gaining a comprehensive understanding of carbon (C) cycling in forests remains a considerable challenge. Uncertainties stem from persistent methodological limitations and the difficulty of resolving top-down estimates of ecosystem C exchange with bottom-up measurements of individual pools and fluxes. To address this, we...
In deciduous forests, spring leaf phenology controls the onset of numerous ecosystem functions. While most studies have focused on a single annual spring event, such as budburst, ecosystem functions like photosynthesis and transpiration increase gradually after budburst, as leaves grow to their mature size. Here, we examine the “velocity of green-u...
Insect outbreaks can significantly influence carbon (C) and water balances of forests. Forest tent caterpillars (FTC) (Malacosoma disstria Hübner) are one of the most prominent insects found in aspen forests in Canada and have the potential to considerably influence regional C and water fluxes. In the summer of 2016, an FTC infestation occurred in...
Temperate and boreal conifer forests are dormant for many months during the cold season. Climate change is altering the winter environment, with increased temperature, altered precipitation, and earlier snowmelt in many locations. If significant enough, these changes may alter patterns of dormancy and activity of evergreens. Here we studied the fac...
Heterotrophic respiration (Rh), microbial processing of soil organic matter to carbon dioxide (CO2), is a major, yet highly uncertain, carbon (C) flux from terrestrial systems to the atmosphere. Temperature sensitivity of Rh is often represented with a simple Q10 function in ecosystem models and earth system models (ESMs), sometimes accompanied by...
Phenology is a valuable diagnostic of ecosystem health, and has applications to environmental monitoring and management. Here, we conduct an intercomparison analysis using phenological transition dates derived from near-surface PhenoCam imagery and MODIS satellite remote sensing. We used approximately 600 site-years of data, from 128 camera sites c...
The global carbon cycle is strongly controlled by the source/sink strength of vegetation as well as the capacity of terrestrial ecosystems to retain this carbon. These dynamics, as well as processes such as the mixing of old and newly fixed carbon, have been studied using ecosystem models, but different assumptions regarding the carbon allocation s...
Vegetation phenology controls the seasonality of many ecosystem processes, as well as numerous biosphere-atmosphere feedbacks. Phenology is also highly sensitive to climate change and variability. Here we present a series of datasets, together consisting of almost 750 years of observations, characterizing vegetation phenology in diverse ecosystems...
Phenology is a first‐order control on productivity and mediates the biophysical environment by altering albedo, surface roughness length and evapotranspiration. Accurate and transparent modelling of vegetation phenology is therefore key in understanding feedbacks between the biosphere and the climate system.
Here, we present the phenor r package an...
Forest phenology is a multi-scale phenomenon, arising from processes in leaves and trees, with effects on the ecology of plant communities and landscapes. Because phenology controls carbon and water cycles, which are commonly observed at the ecosystem scale (e.g. eddy flux measurements), it is important to characterize the relation between phenopha...
Near-surface remote sensing and in situ photography are powerful tools to study how climate change and climate variability influence vegetation phenology and the associated seasonal rhythms of green-up and senescence. The rapidly-growing PhenoCam network has been using in situ digital repeat photography to study phenology in almost 500 locations ar...
Plant phenology is a sensitive indicator of the effects of global change on terrestrial ecosystems and controls the timing of key ecosystem functions including photosynthesis and transpiration. Aerial drone imagery and photogrammetric techniques promise to advance the study of phenology by enabling the creation of distortion-free orthomosaics of pl...
Time series of vegetation indices (e.g. normalized difference vegetation index [NDVI]) and color indices (e.g. green chromatic coordinate [GCC]) based on radiometric measurements are now available at different spatial and temporal scales ranging from weekly satellite observations to sub-hourly in situ measurements by means of near-surface remote se...
Clouds and aerosols increase the fraction of global solar irradiance that is diffuse light. This phenomenon is known to increase the photosynthetic light use efficiency (LUE) of closed-canopy vegetation by redistributing photosynthetic photon flux density (400-700. nm) from saturated, sunlit leaves at the top of the canopy, to shaded leaves deeper...
Near surface (i.e., camera) and satellite remote sensing metrics have become widely used indicators of plant growing seasons. While robust linkages have been established between field metrics and ecosystem exchange in many land cover types, assessment of how well remotely-derived season start and end dates depict field conditions in arid ecosystems...
Long-term, continuous digital camera imagery and tower-based radiometric monitoring were conducted at a representative hardwood forest site in the Northeastern United States, part of the AmeriFlux network. In this study, the phenological metrics of the leaf area index (LAI), plant area index (PAI) and associated transition dates (e.g., timing of th...
Satellite derived vegetation indices (VIs) are broadly used in ecological research, ecosystem modeling, and land surface monitoring. The Normalized Difference Vegetation Index (NDVI), perhaps the most utilized VI, has countless applications across ecology, forestry, agriculture, wildlife, biodiversity, and other disciplines. Calculating satellite d...
Over the last two decades, satellite-derived estimates of biophysical variables have been increasingly used in operational services, requiring quantification of their accuracy and uncertainty. Evaluating satellite-derived vegetation products is challenging due to their moderate spatial resolution, the heterogeneity of the terrestrial landscape, and...
Eddy covariance methodologies have greatly improved our understanding of the forest carbon cycle, including controls over year-to-year variability in productivity (measured as net ecosystem productivity, NEP, where NEP is the difference between the mass of carbon fixed by photosynthesis and that lost by ecosystem respiration). However, establishing...
The Mediterranean-type oak/grass savanna of California is composed of widely spaced oak trees with understory grasses. These savanna regions are interspersed with large areas of more open grasslands. The ability of remotely sensed data (with various spatial resolutions) to monitor the phenology in these water-limited oak/grass savannas and open gra...