Andrew Mccallum

Andrew Mccallum
University of Massachusetts Amherst | UMass Amherst · School of Computer Science

About

393
Publications
52,783
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
56,304
Citations

Publications

Publications (393)
Article
Clustering algorithms are often evaluated using metrics which compare with ground-truth cluster assignments, such as Rand index and NMI. Algorithm performance may vary widely for different hyperparameters, however, and thus model selection based on optimal performance for these metrics is discordant with how these algorithms are applied in practice...
Article
We study algorithms for approximating pairwise similarity matrices that arise in natural language processing. Generally, computing a similarity matrix for n data points requires Omega(n^2) similarity computations. This quadratic scaling is a significant bottleneck, especially when similarities are computed via expensive functions, e.g., via transfo...
Preprint
Transition-based parsers for Abstract Meaning Representation (AMR) rely on node-to-word alignments. These alignments are learned separately from parser training and require a complex pipeline of rule-based components, pre-processing, and post-processing to satisfy domain-specific constraints. Parsers also train on a point-estimate of the alignment...
Preprint
Knowledge bases (KBs) are often incomplete and constantly changing in practice. Yet, in many question answering applications coupled with knowledge bases, the sparse nature of KBs is often overlooked. To this end, we propose a case-based reasoning approach, CBR-iKB, for knowledge base question answering (KBQA) with incomplete-KB as our main focus....
Preprint
Full-text available
We introduce ChemDisGene, a new dataset for training and evaluating multi-class multi-label document-level biomedical relation extraction models. Our dataset contains 80k biomedical research abstracts labeled with mentions of chemicals, diseases, and genes, portions of which human experts labeled with 18 types of biomedical relationships between th...
Preprint
Full-text available
Question answering (QA) over real-world knowledge bases (KBs) is challenging because of the diverse (essentially unbounded) types of reasoning patterns needed. However, we hypothesize in a large KB, reasoning patterns required to answer a query type reoccur for various entities in their respective subgraph neighborhoods. Leveraging this structural...
Preprint
We study algorithms for approximating pairwise similarity matrices that arise in natural language processing. Generally, computing a similarity matrix for $n$ data points requires $\Omega(n^2)$ similarity computations. This quadratic scaling is a significant bottleneck, especially when similarities are computed via expensive functions, e.g., via tr...
Preprint
Full-text available
At the foundation of scientific evaluation is the labor-intensive process of peer review. This critical task requires participants to consume and interpret vast amounts of highly technical text. We show that discourse cues from rebuttals can shed light on the quality and interpretation of reviews. Further, an understanding of the argumentative stra...
Preprint
Full-text available
A major factor contributing to the success of modern representation learning is the ease of performing various vector operations. Recently, objects with geometric structures (eg. distributions, complex or hyperbolic vectors, or regions such as cones, disks, or boxes) have been explored for their alternative inductive biases and additional represent...
Preprint
Full-text available
For over thirty years, researchers have developed and analyzed methods for latent tree induction as an approach for unsupervised syntactic parsing. Nonetheless, modern systems still do not perform well enough compared to their supervised counterparts to have any practical use as structural annotation of text. In this work, we present a technique th...
Preprint
Previous work has shown promising results in performing entity linking by measuring not only the affinities between mentions and entities but also those amongst mentions. In this paper, we present novel training and inference procedures that fully utilize mention-to-mention affinities by building minimum arborescences (i.e., directed spanning trees...
Preprint
Full-text available
Learning vector representations for words is one of the most fundamental topics in NLP, capable of capturing syntactic and semantic relationships useful in a variety of downstream NLP tasks. Vector representations can be limiting, however, in that typical scoring such as dot product similarity intertwines position and magnitude of the vector in spa...
Preprint
Full-text available
It is often challenging for a system to solve a new complex problem from scratch, but much easier if the system can access other similar problems and description of their solutions -- a paradigm known as case-based reasoning (CBR). We propose a neuro-symbolic CBR approach for question answering over large knowledge bases (CBR-KBQA). While the idea...
Preprint
Hierarchical clustering is a critical task in numerous domains. Many approaches are based on heuristics and the properties of the resulting clusterings are studied post hoc. However, in several applications, there is a natural cost function that can be used to characterize the quality of the clustering. In those cases, hierarchical clustering can b...
Preprint
Full-text available
Knowledge bases often consist of facts which are harvested from a variety of sources, many of which are noisy and some of which conflict, resulting in a level of uncertainty for each triple. Knowledge bases are also often incomplete, prompting the use of embedding methods to generalize from known facts, however, existing embedding methods only mode...
Preprint
Full-text available
Most unsupervised NLP models represent each word with a single point or single region in semantic space, while the existing multi-sense word embeddings cannot represent longer word sequences like phrases or sentences. We propose a novel embedding method for a text sequence (a phrase or a sentence) where each sequence is represented by a distinct se...
Preprint
Full-text available
Large Transformer-based language models can aid human authors by suggesting plausible continuations of text written so far. However, current interactive writing assistants do not allow authors to guide text generation in desired topical directions. To address this limitation, we design a framework that displays multiple candidate upcoming topics, o...
Preprint
Full-text available
Universal schema (USchema) assumes that two sentence patterns that share the same entity pairs are similar to each other. This assumption is widely adopted for solving various types of relation extraction (RE) tasks. Nevertheless, each sentence pattern could contain multiple facets, and not every facet is similar to all the facets of another senten...
Preprint
Full-text available
Query by Example is a well-known information retrieval task in which a document is chosen by the user as the search query and the goal is to retrieve relevant documents from a large collection. However, a document often covers multiple aspects of a topic. To address this scenario we introduce the task of faceted Query by Example in which users can...
Preprint
ive summarization is the task of compressing a long document into a coherent short document while retaining salient information. Modern abstractive summarization methods are based on deep neural networks which often require large training datasets. Since collecting summarization datasets is an expensive and time-consuming task, practical industrial...
Preprint
Full-text available
Tools to explore scientific literature are essential for scientists, especially in biomedicine, where about a million new papers are published every year. Many such tools provide users the ability to search for specific entities (e.g. proteins, diseases) by tracking their mentions in papers. PubMed, the most well known database of biomedical papers...
Preprint
Bottom-up algorithms such as the classic hierarchical agglomerative clustering, are highly effective for hierarchical as well as flat clustering. However, the large number of rounds and their sequential nature limit the scalability of agglomerative clustering. In this paper, we present an alternative round-based bottom-up hierarchical clustering, t...
Preprint
Due to large number of entities in biomedical knowledge bases, only a small fraction of entities have corresponding labelled training data. This necessitates a zero-shot entity linking model which is able to link mentions of unseen entities using learned representations of entities. Existing zero-shot entity linking models however link each mention...
Preprint
Full-text available
Geometric embeddings have recently received attention for their natural ability to represent transitive asymmetric relations via containment. Box embeddings, where objects are represented by n-dimensional hyperrectangles, are a particularly promising example of such an embedding as they are closed under intersection and their volume can be calculat...
Preprint
A case-based reasoning (CBR) system solves a new problem by retrieving `cases' that are similar to the given problem. If such a system can achieve high accuracy, it is appealing owing to its simplicity, interpretability, and scalability. In this paper, we demonstrate that such a system is achievable for reasoning in knowledge-bases (KBs). Our appro...
Preprint
We explore the suitability of unsupervised representation learning methods on biomedical text -- BioBERT, SciBERT, and BioSentVec -- for biomedical question answering. To further improve unsupervised representations for biomedical QA, we introduce a new pre-training task from unlabeled data designed to reason about biomedical entities in the contex...
Preprint
The discrepancy between maximum likelihood estimation (MLE) and task measures such as BLEU score has been studied before for autoregressive neural machine translation (NMT) and resulted in alternative training algorithms (Ranzato et al., 2016; Norouzi et al., 2016; Shen et al., 2016; Wu et al., 2018). However, MLE training remains the de facto appr...
Preprint
Self-supervised pre-training of transformer models has revolutionized NLP applications. Such pre-training with language modeling objectives provides a useful initial point for parameters that generalize well to new tasks with fine-tuning. However, fine-tuning is still data inefficient -- when there are few labeled examples, accuracy can be low. Dat...
Article
Full-text available
Existing deep active learning algorithms achieve impressive sampling efficiency on natural language processing tasks. However, they exhibit several weaknesses in practice, including (a) inability to use uncertainty sampling with black-box models, (b) lack of robustness to labeling noise, and (c) lack of transparency. In response, we propose a trans...
Preprint
We present a surprisingly simple yet accurate approach to reasoning in knowledge graphs (KGs) that requires \emph{no training}, and is reminiscent of case-based reasoning in classical artificial intelligence (AI). Consider the task of finding a target entity given a source entity and a binary relation. Our non-parametric approach derives crisp logi...
Preprint
Full-text available
Accurate parsing of citation reference strings is crucial to automatically construct scholarly databases such as Google Scholar or Semantic Scholar. Citation field extraction (CFE) is precisely this task---given a reference label which tokens refer to the authors, venue, title, editor, journal, pages, etc. Most methods for CFE are supervised and re...
Preprint
Full-text available
Given questions regarding some prototypical situation -- such as Name something that people usually do before they leave the house for work? -- a human can easily answer them via acquired experiences. There can be multiple right answers for such questions with some more common for a situation than others. This paper introduces a new question answer...
Article
Understanding the meaning of text often involves reasoning about entities and their relationships. This requires identifying textual mentions of entities, linking them to a canonical concept, and discerning their relationships. These tasks are nearly always viewed as separate components within a pipeline, each requiring a distinct model and trainin...
Article
The field of artificial intelligence has experienced a dramatic methodological shift towards large neural networks trained on plentiful data. This shift has been fueled by recent advances in hardware and techniques enabling remarkable levels of computation, resulting in impressive advances in AI across many applications. However, the massive comput...
Preprint
Hierarchical clustering is a fundamental task often used to discover meaningful structures in data, such as phylogenetic trees, taxonomies of concepts, subtypes of cancer, and cascades of particle decays in particle physics. When multiple hierarchical clusterings of the data are possible, it is useful to represent uncertainty in the clustering thro...
Article
Leveraging new data sources is a key step in accelerating the pace of materials design and discovery. To complement the strides in synthesis planning driven by historical, experimental, and computed data, we present an automated, unsupervised method for connecting scientific literature to inorganic synthesis insights. Starting from natural language...
Preprint
We introduce Grinch, a new algorithm for large-scale, non-greedy hierarchical clustering with general linkage functions that compute arbitrary similarity between two point sets. The key components of Grinch are its rotate and graft subroutines that efficiently reconfigure the hierarchy as new points arrive, supporting discovery of clusters with com...
Preprint
Understanding the meaning of text often involves reasoning about entities and their relationships. This requires identifying textual mentions of entities, linking them to a canonical concept, and discerning their relationships. These tasks are nearly always viewed as separate components within a pipeline, each requiring a distinct model and trainin...
Preprint
Full-text available
Existing deep active learning algorithms achieve impressive sampling efficiency on natural language processing tasks. However, they exhibit several weaknesses in practice, including (a) inability to use uncertainty sampling with black-box models, (b) lack of robustness to noise in labeling, (c) lack of transparency. In response, we propose a transp...
Preprint
Self-supervised pre-training of transformer models has shown enormous success in improving performance on a number of downstream tasks. However, fine-tuning on a new task still requires large amounts of task-specific labelled data to achieve good performance. We consider this problem of learning to generalize to new tasks with few examples as a met...
Preprint
Full-text available
Multi-hop question answering (QA) requires an information retrieval (IR) system that can find \emph{multiple} supporting evidence needed to answer the question, making the retrieval process very challenging. This paper introduces an IR technique that uses information of entities present in the initially retrieved evidence to learn to `\emph{hop}' t...
Conference Paper
Automatically matching reviewers to papers is a crucial step of the peer review process for venues receiving thousands of submissions. Unfortunately, common paper matching algorithms often construct matchings suffering from two critical problems: (1) the group of reviewers assigned to a paper do not collectively possess sufficient expertise, and (2...
Conference Paper
Hierarchical clustering is typically performed using algorithmic-based optimization searching over the discrete space of trees. While these optimization methods are often effective, their discreteness restricts them from many of the benefits of their continuous counterparts, such as scalable stochastic optimization and the joint optimization of mul...
Conference Paper
We introduce Grinch, a new algorithm for large-scale, non-greedy hierarchical clustering with general linkage functions that compute arbitrary similarity between two point sets. The key components of Grinch are its rotate and graft subroutines that efficiently reconfigure the hierarchy as new points arrive, supporting discovery of clusters with com...