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Structural Time Series Models

Andrew C. Harvey and Neil Shephard

1. Introduction

A structural time series model is one which is set up in terms of components
which have a direct interpretation. Thus, for example, we may consider the
classical decomposition in which a series is seen as the sum of trend, seasonal
and irregular components. A model could be formulated as a regression with
explanatory variables consisting of a time trend and a set of seasonal dummies.
Typically, this would be inadequate. The necessary flexibility may be achieved
by letting the regression coefficients change over time. A similar treatment may
be accorded to other components such as cycles. The principal univariate
structural time series models are therefore nothing more than regression models
in which the explanatory variables are functions of time and the parameters are
time-varying. Given this interpretation, the addition of observable explanatory
variables is a natural extension as is the construction of multivariate models.
Furthermore, the use of a regression framework opens the way to a unified
model selection methodology for econometric and time series models.

The key to handling structural time series models is the state space form with
the state of the system representing the various unobserved components such
as trends and seasonals. The estimate of the unobservable state can be updated
by means of a filtering procedure as new observations become available.
Predictions are made by extrapolating these estimated components into the
future, while smoothing algorithms give the best estimate of the state at any
point within the sample. A structural model can therefore not only provide
forecasts, but can also, through estimates of the components, present a set of
stylised facts; see the discussion in Harvey and Jaeger (1991).

A thorough discussion of the methodological and technical ideas underlying
structural time series models is contained in the monographs by Harvey (1989)
and West and Harrison (1989), the latter adopting a Bayesian perspective.
Since then there have been a number of technical developments and applica-
tions to new situations. One of the purposes of the present article is to describe
these new results.
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1.1. Statistical formulation

A structural time series model for quarterly observations might consist of
trend, cycle, seasonal and irregular components. Thus

Yt = ILl + o/t + 'Yt + Et, t = 1,... , T , (1.1)

where ILt is the trend, if1t is the cycle, 1't is the seasonal and St is the irregular.
All four components are stochastic and the disturbances driving them are
mutually uncorrelated. The trend, seasonal and cycle are all derived from
deterministic functions of time, and reduce to these functions as limiting cases.
The irregular is white noise.

The deterministic linear trend is

with J.Lo = a, continuity may
follows:

where TIt and ~t are mutually uncorrelated white noise disturbances with zero
means and variances, u~ and u~ respectively. The effect of TIt is to allow the
level of the trend to shift up and down, while~t allows the slope to change. The
larger the variances, the greater the stochastic movements in the trend. If
u~ = u~ = 0, (1.4) collapses to (1.2) showing that the deterministic trend is a
limiting case.

Let ,pt be a cyclical function of time with frequency Ac, which is measured in
radians. The period of the cycle, which is the time taken to go through its
complete sequence of values, is 2-rr/Ac' A cycle can be expressed as a mixture of
sine and cosine waves, depending on two parameters, a and {3. Thus

t/lt = a CDS Act + {3 sin Act, (1.5)

where (a2 + (32)1/2 is the amplitude and tan-1({3/a) is the phase. Like the
linear trend, the cycle can be built up recursively, leading to the stochastic
model

where Kt and K: are mutually uncorrelated with a common variance, u~, and p
is a damping factor, such that 0.;;; p .;;; 1. The model is stationary if p is strictly
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(1.2)

(1.3)

be preserved by introducing stochastic terms as

(1.4a)

(lAb)

("':)=p (CO.S Ac sin Ac)("'1;1 )+ (K:) ,"'I -sm Ac cos Ac "'1-1 KI (1.6)



less than one, and if Ac is equal to 0 or 1T it reduces to a first-order
autoregressive process.

A model of deterministic seasonality has the seasonal effects summing to
zero over a year. The seasonal effects can be allowed to change over time by
letting their sum over the previous year be equal to a random disturbance term
Wi' with mean zero and variance u:. Thus, if s is the number of season in the
year,

s-I s-I2: "It-j = Wt or "It = - 2: "It-j + Wt . (1.7)
j~O ' j=1

An alternative way of allowing seasonal dummy variables to change over
time is to suppose that each season evolves as a random walk but that, at any
particular point in time, the seasonal components, and hence the disturbances,
sum to zero. This model was introduced by Harrison and Stevens (1976, p.
217-218).

A seasonal pattern can also be modelled by a set of trigonometric terms at
the seasonal frequencies, Aj = 21Tj/S, j = 1, . . . , [s/2], where [s/2] is s/2 if s is
even and (s -1)/2 if s is odd. The seasonal effect at time t is then

[s/2)

"It = 2: ("IjCOS A/+ "It sin A/).
j~1

When s is even, the sine term disappears for j = s/2 and so the number of
trigonometric parameters, the "Ij and "I t, is always (s - 1 )/2, which is the same

as the number of coefficients in the seasonal dummy formulation. A seasonal
pattern based on (1.8) is the sum of [s/2] cyclical components, each with p = 1,
and it may be allowed to evolve over time in exactly the same way as a cycle
was allowed to move. The model is

[s/2]

'Yt = ~ ~,I'
j=l

where, following (1.6),

('Yi:)=(~O.8 Aj
'Yj,t 8m Aj

where Wit and wi~' j = 1, . . . , [s/2], are zero mean white noise processes which
are uncorrelated with each other with a common variance (7:. As in the cycles
(1.6) 'Y i~t appears as a matter of construction, and its interpretation is not
particularly important. Note that when s is even, the component at j = s/2

collapses to

')1,1 = ')1,1-1 cos Ai + Wil' (1.11)

If the disturbances in the model are assumed to be normally distributed, the
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(1.8)

(1.9)

sin Ai)('Yi:-l ) +.(Wi~t ) ,
COSAi 'Yi,t-l Wi,t

(1.10)
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hyper parameters (u~, u~, u:, u;, p, Ac, u;) may be estimated by maximum
likelihood. This may be done in the time domain using the Kalman filter as
described in Section 2, or in the frequency domain as described in Harvey
(1989, Chapter 4). Harvey and Peters (1990) present simulation evidence on
the performance of different estimators. Once the hyperparameters have been
estimated, the state space form may be used to make predictions and construct
estimators of the unobserved components.

EXAMPLE. A model of the form (1.1), but without the seasonal component,
was fitted to quarterly, seasonally adjusted data on US GNP from 194701 to
198802. The estimated variances of 111, ~1' K" and 151 were 0, 0.0015, 0.0664 and
0 respectively, while the estimate of p was 0.92. The estimate of Ac was 0.30,
corresponding to a period of 20.82 quarters. Thus the length of business cycles
is roughly five years.

A summary of the main structural models and their properties may be found
in Table 1. Structural time series models which are linear and time invariant,
all have a corresponding reduced form autoregressive integrated moving
average (ARIMA) representation which is equivalent in the sense that it will
give identical forecasts to the structural form. For example in the local level
model,

Yt = ILl + 6t ,

ILt=lLt-l+11t' (1.12)

where E, and 11, are mutually uncorrelated white noise disturbances, taking first
differences yields

.:1y, = 11, + E, - E,-l , (1.13)

which in view of its autocorrelation structure is equivalent to an MA(I) process
with a nonpositive autocorrelation at lag one. Thus Yt is ARIMA(O, 1, 1). By
equating autocorrelations at lag one it is possible to derive the relationship
between the moving average parameter and q, the ratio of the variance of TIt to
that of lOt, In more complex models, there may not be a simple correspondence
between the structural and reduced form parameters. For example in (1.1),
L1L1sYt is ARMA(2, s + 3), where L1s is the seasonal difference operator. Note
that the terminology of reduced and structural form is used in a parallel fashion
to the way it is used in econometrics, except that in structural time series
models the restrictions come not from economic theory, but from a desire to
ensure that the forecasts reflect features such as cycles and seasonals which are
felt to be present in the data.

In addition to the main structural models found in Table 1 many more
structural models may be constructed, Additional components may be intro-
duced and the components defined above may be modified. For example,
quadratic trends may replace linear ones, and the irregular component may be
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formulated so as to reflect the sampling scheme used to collect the data. If
observations are collected on a daily basis, a slowly changing day of the week
effect may be incorporated in the model, while for hourly observations an
intra-day pattern may be modelled in a similar way to seasonality. A more
parsimonious way of modelling an intra-day pattern, based on time-varying
splines, is proposed in Harvey and Koopman (1993).

1.2. Model selection

The most difficult aspect of working with time series data is model selection.
The attraction of the structural framework is that it enables the researcher to
formulate, at the outset, a model which is explicitly designed to pick up the
salient characteristics of the data. Once the model has been estimated, it
suitability can be assessed, not only by carrying out diagnostic tests, but also by
checking whether the estimated components are consistent with any prior
knowledge which might be available. Thus if a cyclical component is used to
model the trade cycle, a knowledge of the economic history of the period
should enable one to judge whether the estimated parameters are reasonable.
This is in the same spirit as assessing the plausibility of a regression model by
reference to the sign and magnitude of its estimated coefficients.

Classical time series analysis is based on the theory of stationary stochastic
processes, and this is the starting point for conventional time series model
building. Nonstationarity is handled by differencing, leading to the ARIMA
class of models. The fact that the simpler structural time series models can be
made stationary by differencing provides an important link with classical time
series analysis. However, the analysis of series which are thought to be
stationary does not playa fundamental role in structural modelling methodol-
ogy. Few economic and social time series are stationary and there is no
overwhelming reason to suppose that they can necessarily be made stationary
by differencing, which is the assumption underling the ARIMA methodology
of Box and Jenkins (1976). If a univariate structural model fails to give a good
fit to a set of data, other univariate models may be considered, but there will
be an increased willingness to look at more radical alternatives. For example, a
search for outliers might be initiated or it may be necessary to concede that a
structurally stable model can only be obtained by conditioning on an observed
explanatory variable.

Introducing explanatory variables into a model requires access to a larger
information set. Some prior knowledge of which variables should potentially
enter into the model is necessary, and data on these variables is needed. In a
structural time series model the explanatory variables enter into the model side
by side with the unobserved components. In the absence of these unobserved
components the model reverts to a regression, and this perhaps makes it clear
as to why the model selection methodology which has been developed for
dynamic regression is appropriate in the wider context with which we are
concerned. Distributed lags can be fitted in much the same way as in
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econometric modelling, and even ideas such as the error-correction mechanism
can be employed. The inclusion of the unobserved time series components
does not affect the model selection methodology to be applied to the
explanatory variables in any fundamental way. What it does is to add an extra
dimension to the interpretation and specification of certain aspects of the
dynamics. For example, it provides a key insight into the vexed question of
whether to work with the variables in levels or first differences, and solves the
problem by setting up a general framework within which the two formulations
emerge as special cases.

The fact that structural time series models are set up in terms of components
which have a direct interpretation means that it is possible to employ a model
selection methodology which is similar to that proposed in the econometrics
literature by writers such as Hendry and Richard (1983). Thus one can adopt
the following criteria for a good model: parsimony, data coherence, consis-
tency with prior knowledge, data admissibility, structural stability and en-
compassing.

2. Linear state space models and the Kalman filter

The linear state space form has been demonstrated to an extremely powerful
tool in handling all linear and many classes of nonlinear time series models; see
Harvey (1989, Chapters 3 and 4). In this section we introduce the state space
form and the associated Kalman filter. We show how the filter can be used to
deliver the likelihood. Recent work on smoothing is also discussed.

2.1. The linear state space form

Suppose a multivariate time series Y t possesses N elements. This series is
related to a p x 1 vector at> which labelled the state, via the measurement

equation

Yt=ZtUt+Xrl3+et, t=I,...,T. (2.1)

Here Zt and Xt are nonstochastic matrices of dimensions N x p and N x k
respectively, {3 is a fixed k-dimensional vector and Et is a zero mean, N x 1
vector of white noise, with variance Ht'

The measurement equation is reminiscent of a classical regression model,
with the state vector representing some of the regression coefficients. How-
ever, in the state space form, the state vector is allowed to evolve over time.
This is achieved by introducing a transition equation, which is given by

at = Ttat-l + W;~ + Rt'T1t' t = 1, . . . , T , (2.2)

where T" W, and R, are fixed matrices of size (p x p), (p x k) and (p x g)
respectively, Tlr is a zero mean and 8-dimensional vector of white noise, with
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variance Q" In the literature 11, and f:s have always been assumed to be
uncorrelated for aIls #- t. In this paper we will also assume that 11, and f:, are
uncorrelated, although Anderson and Moore (1979) and more recently De
Jong (1991) and Koopman (1993) relax this assumption.

The inclusion of the R, matrix is somewhat arbitrary, for the disturbance
term can always be redefined to have a variance R,Q,R;. However, the
transition equation above is often regarded as being more natural. The
transition equation involves the state at time zero and so to complete the state
space form we need to tie down its behaviour. We assume that ao has a mean ao
and variance Po' Further, ao is assumed to be uncorrelated with the noise in
the transition and measurement equations. This completed state space form is
said to be time invariant if Z" X" H" w" R, and Q, do not change over time.

To illustrate these general points we will put the univariate structural model
(1.1) of trends, seasonals and cycles discussed in Section 1 into time invariant
state space form by writing a, = (IL" {3" "" "'-1' . . . , ",-s+2' 1/1" 1/1:)', where

Y, = (1 0 1 0 0 ... 0 1 O)a, + f:, , (2.3a)

1 1 0 0 0 ... 0 0 0 0

01000...00 0 0
0 0 -1 -1 -1 ... -1 -1 0 0
0 0 1 0 0 ... 0 0 0 0

a= 0 0 0 1 0 ... 0 0 0 0 a
I :: : :: :: : : t-l

0 0 0 0 0 ... 1 0 0 0
0 0 0 0 0 . . . 0 0 p cos Ac P sin Ac

0 0 0 0 0 . . . 0 0 -p sin Ac P cos Ac

11,
(,
(J),
0

+ 0

0
K,

*
K,

2.2. The Kalman filter

In most structural time series models the individual elements of a, are
unobservable, either because of the presence of some masking irregular term f:,
or because of the way a, is constructed. However, the observations do carry
some information which can be harnessed to provide estimates of the \.mknow-
able a,. This estimation can be carried out using a variety of information sets.
We will write Ys to denote this information, which will be composed of all the
observations recorded up to time s and our initial knowledge of aD. The two
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most common forms of estimation are smoothing, where we estimate at using
Yr, and filtering, where we estimate using only ~. We will focus on various
aspects of smoothing in Section 2.4, but here we look at filtering.

Filtering allows the tracking of the state using contemporaneously available
information. The optimal, that is minimum mean square error, filter is given by
the mean of the conditional density of at' given Yt, which is written as atl~.
The Kalman filter delivers this quantity if the observations are Gaussian. If
they are non-Gaussian the Kalman filter provides the optimal estimator
amongst the class of linear estimators. Here we develop the filter under
Gaussianity; see Duncan and Horn (1972) for an alternative derivation.

We start at time zero with the knowledge that ao - N(ao, Po). If we combine
the transition and measurement equations with this prior and write Yo to
express the information in it, then

(Ul ) (( alia ) ( PliO P1IOZ~))Yl IYo-N Zlallo+Xd3' ZlPllo Fl '

where

PliO = T1PoT~ + R1QIR~ ,

alia = Tiao + Wt/3 .

Usually, we write Vt = Yt - ZtUtlO - Xt/3 as the one-step ahead forecast error.
It is constructed so that viI Yo - N(O, Ft). Consequently, using the usual
conditioning result for multivariate normal distributions as given, for example,
in Rao (1973)

al I YI - N(ap PI) , (2.6)

where

al = aiiO + PlloZ~F~IVI , PI = PliO - PlloZ~F~IZIPIIO'

This result means that the filter is recursive. We will use the following
notation throughout the paper to describe the general results: at-II Yt-l -
N(at-t> Pi-I), at I Yt-l - N(atlt-l' Pill-I) and vt I Yt-l - N(O, Ft). The precise
definition of these densities is given in the following three sets of equations.
First the prediction equations

°'1'-1 = T,O'-1 + w,13 ,

then the one-step ahead forecast equations

tit = Yt - Ztatlt-l - Xt{3 ,
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(2.4)

F1 = ZlPIIOZ~ + HI ,

(2.5)

(2.7)

(2.8)Ptlt-t = TtPt-tT; + RtQ,R; ,

Ft = Z~tlt-lZ; + Ht , (2.9)
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and finally the updating equations

at = atlt-t + Ptlt-tZ;F;tVt and Pt = Ptlt-t - Ptlt-tZ;F;tZtPtlt-t .

One immediate result which follows from the Kalman filter is that we can
write the conditional joint density of the observations as

T T

f(yp. . . , Yr I Yo) = IT f(Yt I Yt-l) = IT f(vt I Yt-l) .
t=1 t=1

This fracturing of the conditional joint density into the product of conditionals
is called the prediction error decomposition. If at is stationary, an uncondition-
al joint density can be constructed since the initial conditions, ao and Po, are
known. The case where we do not have stationarity has been the subject of
some interesting research in recent years.

2.3. Initialization for non-stationary modelsl

We will derive the likelihood for a model in state space form using the
argument in De long (1988a). A slightly different approach can be found in
Ansley and Kohn (1985). We present a isimplified derivation based partly on
the results in Marshall (1992a). For ease of exposition {3 will be assumed to be
zero and all the elements in ao can be taken to be nonstationary. We start by
noting that if we write y = (y~, y;, . . . , y~)', then

f( ) = f(ao = O)f(y I ao = 0) . (2.12)
y f(ao = 0 I y)

The density f(y I ao = 0) can be evaluated by applying the Kalman filter and
the prediction error decomposition if we initialize the filter at ao = 0 and
Po = O. We denote this filter by KF(O, 0), and the corresponding output as a: ,
a~t-l and v:. The density f(ao = 0) has a simple form, which leaves us with the
problem of f(ao = 0 I y). If we write v* = (v~', v;',. . . , v;' )', then we can use
the result that v* is a linear combination of y in order to write f(ao = 0 I y) =
f(ao = 0 I v*). To be able to evaluate f(ao = 0 I v*) we will need to define F as a
block diagonal matrix, with blocks being Ft and A as a matrix with row blocks
ZtGt~I' where Gt = Tt+l(I - KtZt)Gt-p Go = Tp and Kt = Ptlt~IZ:F;1 (the
so-called Kalman gain). In all cases the quantities are evaluated by the Kalman
filter under the startup condition Po = O. Then as

vt(ao) = Yt - E(Yt I Yt~p ao) = Yt - Ztatlt-l(ao) , (2.13)

I The rest of Section 2 is more technical and can be omitted on first reading without loss of

continuity.
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and

at+llt(ao) = Tt+lat!t-l(aO) + Tt+1Ktvt(aO)

= Tt+l(I - KtZt)atlt-l(aO) + Tt+1KtYt

= GtaO + a;+llt ,

T T

ICy) = -tlogIPol-ta~p~lao-t L loglF,l-t L V:'F;lV:
1=1 1=1

Traditionally, nonstationary state space models have been initialised into two
ways. The first is to use a diffuse prior on Uo I Yo; this is to allow the diagonal
elements of Po to go to infinity. We can see that in the limit the result from this
is that

T T

l(y) + t log IPol--+ -t 2: log IP11- t 2: v; 'p;IV;
1=1 1=1

- 1 I IS 1- 1 ' ('-1
"2 og T 'ISr-'T ST

= -tlogISTI-tlogIPI

- tV*'(P-1 - P-1A(A'P-1A)-IA'P-1)v* .

An approximation to (2.21) can be obtained for many models by
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KF(ao, Po) with the diagonal elements of Po set equal to large, but finite,
values. The likelihood is then constructed from the prediction errors once
enough observations have been processed to give a finite variance. However,
the likelihood obtained from (2.21) is preferable as it is exact and numerically
stable.

The other main way nonstationary models are initialised is by taking clO to be
an unknown constant; see Rosenberg (1973). Thus ao becomes a nuisance
parameter and Po is set to zero. In this case, in the limit, the likelihood
becomes

= - t log IFI- Hv* - Aao)' F-1(v* - Aao) , (2.23)

the term a~STaO in (2.22) appearing when (p~l + ST)-l is expanded out. We
can concentrate ao out at its maximum likelihood value tzo =
(A'F-1A)-lA'F-1v*, to deliver the profile or concentrated likelihood function

c(y) = -t log IFI- tv.'(F-1 - F-1A(A'F-1A)-1 A'F-1)v. . (2.24)

The difference between the profile likelihood and the likelihood given in (2.21)
is simply the log ISTI term. The latter is called a marginal or restricted
likelihood in the statistics literature; cf. McCullagh and NeIder (1989, Chapter
7). It is based on a linear transformation of y making the data invariant to ao'

The term log ISTI can have a significant effect on small sample properties of
maximum likelihood (ML) estimators in certain circumstances. This can be
seen by looking at some results from the paper by Shephard and Harvey (1990)
which analyses the sampling behaviour of the ML estimator of q, the ratio of
the variances of 1ft and eo in the local level model (1.12). When q is zero the
reduced form of the local level model is strictly noninvertible. Evaluating the
probability that q is estimated to be exactly zero for various true values of q

Table 2
Probability that ML estimator of signal-noise ratio q is exactly equal to ...

Marginal likelihood
T-l q=O q=O.Ol q=O.l q=1,~10

A. C. Harvey and N. Shephard

(2.22)

0.12
0.01
0.00

Profile likelihood
T - 1 q = 0 q = 0.01 q = 0.1 q = 1 q = 10

10 0.% 0.95 0.88 0.60 0.44
30 0.96 0.87 0.49 0.20 0.13
50 0.96 0.72 0.28 0.08 0.05



and sample sizes, gives the results summarised in Table 2. It can be seen that
using a profile likelihood instead of a marginal results in a much higher
probability of estimating q to be zero. Unless q is actually zero, this is
undesirable from a forecasting point of view since there is no discounting of
past observations. This provides a practical justification for the use of diffuse
initial conditions and marginal likelihoods.

2.4. Smoothing

Estimating at using the full set of observations Y T is called smoothing. The
minimum mean square estimator of at using YT is E at I YT. An extensive
review of smoothing is given it} Anderson and Moore (1979, Chapter 7).

Recently there have been some important developments in the way E at I Y T
is obtained; see, for example, De long (1988b, 1989), Koho and Ansley (1989)
and Koopman (1993). These breakthroughs have dramatically improved the
speed of the smoothers. The new results will be introduced by using the
framework of Whittle (1991). For ease of exposition, Rt will be assumed to be
an identity matrix and f3 will be assumed to be zero.

Under Gaussianity, E at I YT is also the mode of the density of at I YT. Thus
we can use the general result that under weak regularity, if to is a generic
density function and m denotes the mode, then

af(x, z) I = o. af(x I z)
I = 0 if and only if ax x=m

ax x=m

The smoother can therefore be found by searching for turning points in the
joint density of a~, a~, . . . , a~, y~, . . . , y~, the logarithm of which is

D = constant - t(ao - aoyp~l(ao - ao)

T
- t 2: (Yt - ZtatYH;I(Yt - Ztat)

t=1
T

- t 2: (at - Ttat-lYQ;I(at - Ttat-l) .
t=1

aD I -1 -1 I -1
( ):;-=ZtHt Et-Qt T/t+Tt+lQt+lT/t+l fort=l,...,T. 2.27

"at

Equating to zero, writing the solutions as at and Et = Yt - Ztat and ~I = al-

Ttat-l results in the backward recursion

A T-1( A Q (Z 'H -1 A T ' Q -l A »at-l = t at - t t t Et + t+l t+l T/t+l

=T;I(at-llt), t=l,...,T, (2.28)

Thus
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as
Z ' -1. Q -IA T"' Q -l A 0 (229)tHt Et - t 11t + t+l t+l 11t+l = . .

The staTting point aT = aT is given by the Kalman filter. Unfortunately, using

1Jt = Qt(T;+1Q ;}1 1Jt+1 + Z;H;16,) , (2.30)

will lead to a numerically unstable filter even though mathematically this result
holds exactly. Koopman's (1993) shows that it can be stabilised by computing
8, not by y, - Z,a" but by

i, = H,(F;lV,- K;T;+1Q;+\iJt+l)' (2.31)
where F, and K, are computed using KF(O, 0) and vI = v; - Z,Gt-lS;lST' Thus

the efficient smoother uses (2.28), (2.30) and (2.31).
Recently, Harvey and Koopman (1992) have proposed using the smoothed

estimates of EI and TIt to check for outliers and structural breaks, while
Koopman (1993) uses them to implement a rapid EM algorithm and Koopman
and Shephard (1992) show how to construct the exact score by smoothing.

3. Explanatory variables

Stochastic trend components are introduced into dynamic regression models
when the underlying level of a nonstationary dependent variable cannot be
completely explained by observable explanatory variables. The presence of a
stochastic trend can often be rationalised by the fact that a variable has been
excluded from the equation because it is difficult, or even impossible, to
measure. Thus in Harvey et al. (1986) and Slade (1989), a stochastic trend is
used as a proxy for technical progress, while in the demand equation for UK
spirits estimated by Ansley and Kohn (1989) the stochastic trend can be
thought of as picking up changes in tastes. Such rationalisation not only lends
support to the specification of the model, but it also means that the estimated
stochastic trend can be analysed and interpreted.

If stochastic trends are appropriate, but are not explicitly modelled, their
effects will be picked up indirectly by time trends and lags on the variables.
This can lead to a proliferation of lags which have no economic meaning, and
which are subject to common factors and problems of inference associated with
unit roots. An illustration of the type of problems which can arise with such an
approach in a single equation context can be found in Harvey et al. (1986),
where a stochastic trend is used to model productivity effects in an employment
output equation and is compared with a more traditional autoregressive
distributed lag (ADL) regression model with a time trend. Such problems may
become even more acute in multivariate systems, such as vector autoregres-
sions and simultaneous equation models; see Section 5.

Other stochastic components, such as time-varying seasonals or cycles, can
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also be included in a model with explanatory variables. Since this raises no new
issues of principle, we will concentrate on stochastic trends.

3.1. Formulation and estimation

A regression model with a stochastic trend component may be written

Yl=JLt+X;8+B" t=1,...,T, (3.1)

where ILl is a stochastic trend (1.4), Xt is a k x 1 vector of exogenous
explanatory variables, [) is a corresponding vector of unknown parameters, 8t is
a normally distributed, white noise disturbance term with mean zero and
variance a;. A standard regression model with a deterministic time trend
emerges as a special case, as does a model which could be estimated efficiently
by OLS regression in first differences; in the latter case a; = a~ = O.

In the reduced form of (3.1), the stochastic part, ILl + 81' is replaced by an
ARIMA(O, 2, 2) process. If the slope is deterministic, that'is a~ = 0 in (1.3), it
is ARIMA(O, 1, 1). Box and Jenkins (1976, pp. 409-412) report a distributed
lag model fitted to first differences with an MA(1) disturbance term. This
model can perhaps be interpreted more usefully as a relationship in levels with
a stochastic trend component of the form

ILt = ILt-l + {3 + 'TIt . (3.2)

Maximum likelihood estimators of the parameters in (3.1) can be con-
structed in the time domain via the prediction error decomposition. This is
done by putting the model in state space form and applying the Kalman filter.
The parameters 8 and {3 can be removed from the likelihood function either by
concentrating them out of form of a profile likelihood function as in Kohn and
Ansley (1985) or by forming a marginal likelihood function; see the discussion
in Section 2.3. The marginal likelihood can be computed by extending the state
so as to include {3 and 8, even though they are time-invariant, and then
initializing with a diffuse prior.

The difference between the profile and marginal likelihood is in the
determinantal term of the likelihood. There are a number of arguments which
favour the use of marginal likelihoods for inference in small samples or when
the process is close to nonstationarity or noninvertibility; see Tunnicliffe-
Wilson (1989). In the present context, the difference in behaviour shows up
most noticeably in the tendency of the trend to be estimated as being
deterministic. To be more specific, suppose the trend is as in (3.2). The
signal-noise ratio is q = u:/u. and if this is zero the trend is deterministic. The
probability that q is estimated to be zero has been computed by Shephard
(1993a). Using a profile likelihood by concentrating out {3 leads to this
probability being relatively high when q is small but nonzero. The properties of
the estimator obtained from the marginal likelihood are much better in this
respect.
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3.2. Intervention analysis

Intervention analysis is concerned with making inferences about the effects of
known events. These effects are measured by including intervention, or
dummy, variables in a dynamic regression model. In pure intervention analysis
no other explanatory variables are present.

Model (3.1) may be generalized to yield the intervention model

y, = J.L, + x;a + Aw, + 13" t = 1, . . . , T , (3.3)

where w, is the intervention variable and A is its coefficient. The definition of
w, depends on the form which the intervention effect is assumed to take. If the
intervention is transitory and has an effect only at time t, w, is a pulse variable
which takes the value one at the time of the intervention, t = T, and is zero
otherwise. More generally the intervention may have a transitory effect which
dies away gradually, for example, we may have w, = cp'-T, when Icpl < 1, for
t ;;:.: T. A permanent shift in the level of the series can be captured by a step
variable which is zero up to the time of the intervention and unity thereafter.
An effect of this kind can also be interpreted as a transitory shock to the level
equation in the trend, in which case it appears as a pulse variable in (1.4a).
Other types of intervention variable may be included, for example variables
giving rise to changes in the slope of the trend or the seasonal pattern. The
advantage of the structural time series model framework over the ARIMA
framework proposed by Box and Tiao (1975) is that it is much easier to
formulate intervention variables having the desired effect on the series.

Estimation of a model of the form (3.3) can be carried out in both the time
and frequency domains by treating the intervention variable just like any other
explanatory variable. In the time domain, various tests can be constructed to
check on the specification of the intervention; see the study by Harvey and
Durbin (1986) on the effect of the UK seat belt law.

4.1. Seemingly unrelated time series equations (SUTSE)

The structural time series models introduced in Section 1 have straightforward
multivariate generalisations. For instance, the local level with drift becomes,
for an N-dimensional series y, = (Ylt> . . . , YN,)',

Y, = IL, + E, , E, - NID(O, 1:E) ,

J.L, = J.LH + (3 + 17, , 17, - NID(O, 1:1) , (4.1)

where 1:E and 1:1) are nonnegative definite N x N matrices. Such models are
called seemingly unrelated time series equations (SUTSE) reflecting the fact
that the individual series are connected only via the correlated disturbances in

4. Multivariate time series models
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the measurement and transition equations. Estimation is discussed in
Fernandez (1990).

The maximisation of the likelihood function for this model can be computa-
tionally demanding if N is large. The evaluation of the likelihood function
requires O(N3) floating point operations and, although {3 can be concentrated,
there are still N x (N + 1) parameters to be estimated by numerical optimi-
sation. However, for many applications there are specific structures on Ie and
I." that can be exploited to make the computations easier. One example is
where Ie and I." are proportional, that is I." = qIe' Such a system is said to be
homogeneous. This structure allows each of the series in Yt to be handled by
the same Kalman filter and so the likelihood can be evaluated in O(N)
operations. Further, Ie can be concentrated out of the likelihood, leaving a
single parameter q to be found by numerical maximisation. The validity of the
homogeneity assumption can be assessed by using the Lagrange multiplier test
of Fernandez and Harvey (1990).

4.2. Error components models

Consider the classical error components model

Yit=p.+.Aj+Vt+wit, i=l,...,N, t=l,...,T, (4.2)

where J.L repr,esents the overall mean and Ai, vt and Wit are unit specific and
time specific effects respectively, assumed to be serially and mutually in-
dependent, Gaussian and with expected values equal to zero. The dynamic
versions of this model studied in the literature usually include lagged depen-
dent variables and autoregressive processes for the components Vt and wit; see
Anderson and Hsiao (1982).

A more natural approach to the specification of dynamic error components
models, can be based on the ideas of structural time series models. This is
suggested by Marshall (1992b), who allowed both time specific and time-unit
specific effects to evolve over time according to random walk plus noise
processes. The error components model becomes

Yit = ILit + Et + E~ ,
ILit = ILi,t-l +1'It +1'1~ , (4.3)

where /-Lit is the mean for unit i at time t and Et' E~, lIt and 1I~ are assumed to be
independent, zero mean, Gaussian random variables, with variances u;, u;.,
u~ and u~. respectively. This model is a multivariate local level model, with
the irregular and level random shocks decomposed as common effects, Et and
lIt, and specific effects, E~ and 1I~' This means that

l:E=u;.I+u;u' and l:TJ=u~.I+u~u', (4.4)

where L is the N-dimensional unit vector and I the identity matrix.
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If (T~ and (T~. are equal to zero, the model reduces to the static error
components model discussed in (4.2). On the other hand if (T~ is greater than
zero, but (T~. is equal to zero, the N time series have, apart from a time
invariant effect, the same time-dependent mean. In this situation, the time
series are cointegrated in the sense of Engle and Granger (1987).

Optimal estimates of the components /Lit can be obtained by means of the
Kalman filter. That requires the manipulation of N x N matrices and so it
becomes cumbersome if N is large. However, the idea of homogeneity can be
used to reduce these calculations dramatically. Take for each time t the
average of the observations across units and the first N - 1 deviations from this
average. Thus, in an obvious notation, (4.3) becomes

(Yit - it) = (#Lit - iit) + (8; - i;), (4.6a)

(#Lit - ii/) = (#Li,/-l - iiH) + (TJ~ - Tin , (4.6b)

i=l,...,N-l, t=l,...,T,
with the equations in (4.5) and (4.6) being statistically independent of one
another. As the transformation to this model is nonsingular, the estimation of
the trends /Lit can be obtained from this model instead of from the original
error components model. The estimation of the average level can be carried
out by running a univariate Kalman filter over the average values of the
observations it' The remaining N - I equations can be dealt with straight-
forwardly as they are a homogeneous system, with variances proportional to
(I - u'/N), where 1 and t are now N -I-dimensional unit matrices and

vectors.
The Kalman filter which provides the estimator of !it using the information

available up to time t is

where fit is the MSE of iiiI' given by

- ( - 2Pt = Pt-l + U 11

These recursions are run from t = 2 and with initial values liil = Yl and
PI = (u; + u;./N). With respect to the formulae to obtain the estimators of the
components (/Lit - iil) using the information up to time t, m~ and their MSEs,
p~, these have exactly the same form as \4.7) and (4.8) but with (u~ + u~./N)
and (u~ + u~./ N) replaced by «N - l)u'1./N) and «N - l)u;./ N) respective-
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Yt = fit + £t + it ,

fit = fit-l +1Jt + ii:
( 4.5a)

(4.5b)

2 2 )2(Pt-l + U 11 + u 11'+ u~.IN) -
( - + U2 + U2 .IN + U2 + u;.IN)

Pt-l 11 11 .

. (4.8)



ly and with initial values mil = (Yil - Yl) for i = 1, . . . , N - 1. The estimators
of each #Lit> mit> and its MSE, Pit> are given by

mit=mt+m~, i=l,...,N-l, t=l,...,T,- * . (4.9)
Pit=Pt+Pit, l=l,...,N-l, t=l,...,T,

while mNt is obtained by differencing.

EXAMPLE. In Marshall (1992b), a error components model of the form given
above, but with a fixed slope as in (3.2), is estimated for the logarithm of the
quarterly labour costs time series in Austria, Belgium, Luxembourg and The
Netherlands. The sample period considered in 1970 to 1987 and so N = 4 and
T = 72. The maximum likelihood estimates of the parameters were

u;=O, u;.=0.115XlO-3, (4.10)
u~ = 0.249 X 10-3 , u~. = 0.159 X 10-3.

4.3. Explanatory variables in SUTSE models

The introduction of explanatory variables into the SUTSE model opens up the
possibility of incorporating ideas from economic theory. This is well illustrated
in the paper by Harvey and Marshall (1991) on the demand for energy in the
UK. The assumption of a translog cost function leads to the static share
equation system

Sj=aj+Lajjlog(p/1j), i=l,...,N, (4.11)
j

where the ai' i = 1, . . . , Nand aij' i, j = 1, . . . , N, are parameters, Si is the
share of the i-th input, Pj is the (exogenous) price of the j-th input and Tj is an
index of relative technical progress for the input j which takes the factor
augmenting form; see Jorgenson (1986).

The model can be made dynamic by allowing the log Tjt, relative technical
progress at time t for input j, to follow a random walk plus drift

log1jt=logTj,t-l+Pj+ijjt, i=1,.."N. (4.12)

If the random disturbance term Ejt is added to each share equation, this leads
to a system of share equations which can be written in matrix form as

Yt = ILt + AXt + 6t , 6t - NID(O, .Ie) ,
ILt = 1Lt-l + (3 + 11" 11t - NID(O, .I'I) , (4.13)

where YI is an N x 1 vector of shares (SI' . . . , SN)" Here ILl is an N x 1 vector
depending on the a;, a;j and log <, so that the i-th element of ILl is ai +
E aij log 'Tit> while A is an N x N matrix of a;j and xI is the N x 1 vector of the
log Pj/s.
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Harvey and Marshall (1991) estimated (4.13) under the assumption of
statistical homogeneity, that is 1:1) = q1:. and found this to be a reasonable
assumption using the LM test referred to in Section 4.1. One equation was
dropped to ensure that the shares summed to one. Finally restrictions from
economic theory, concerning cost exhaustion, homogeneity and symmetry,
were incorporated into the A matrix.

4.4. Common trends

Many economic variables seem to move together, indicating common underly-
ing dynamics. This feature of data has been crystalised in the econometric
literature as the concept of cointegration; see, for example Engle and Granger
(1987) and Johansen (1988). Within a structural time series framework this
feature can be imposed by modifying (4.1) so as to construct a common trends
model

Yt = elLt + St , St - NID(O, 1:,) ,
ILt=lLt-l+{3*+Tlt, Tlt-NID(O,l:".), (4.14)

where 8 is a N x K fixed matrix of factor loadings. The K x K matrix X.,,* is
constrained to be a diagonal matrix and 8ij = 0 for j > i, while 8ii = 1 in order
to achieve identifiability; see Harvey (1989, pp. 450-451). As X.,,* is diagonal,
the common trends, the elements of fJ-:, are independent.

The common trends model has K ~ N, but if K = N, it is equivalent to the
SUTSE model, (4.1), with {3 = 8{3* and X." = 8X.,,*8' where 8 and X.,,* are the
Cholesky decomposition of X.". This suggests first estimating a SUTSE model
and carrying out a principal components analysis on the estimated X." to see
what value of K accounts for a suitably large proportion of the total variation.
A formal test can be carried out along the lines suggested by Stock and Watson
(1988), but its small sample properties have yet to be investigated in this
context. Once K has been determined, the common trends model can be
formulated and estimated.

EXAMPLE. Tiao and Tsay (1989) fitted various multivariate models to the
logarithms of indices of monthly flour prices in three cities, Buffalo, Min-
neapolis and Kansas City, over the period from August 1972 to November
1980. In their comment on this paper, Harvey and Marshall fit (4.1) and

Table 3
Principal components analysis of estimated covariance matrix of trend disturbances

Eigenvalues Cumulative proportion Eigenvectors

7.739 0.965 -0.55 -0.59 -0.59
0.262 0.998 0.35 0.48 -0.81
0.015 1.00 0.76 -0.65 -0.06
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a principal components analysis on the estimated I17' The results,
Table 3, indicate that the first principal component dominates the

variation in the transition equation and represents the basic underlying price in
the three cities. Setting K equal to one or two might be appropriate.

Models with common components have also been used in the construction of
leading indicators; see Stock and Watson (1990).

Many economic variables are measured by using sample survey techniques.
Examples include the labour force surveys which are conducted in each
member state of the European Community. It is now quite common practice to
analyse the results from repeated surveys using time series methods.

If sample surveys are nonoverlapping, then the survey errors are indepen-
dent and a simple model for the vector of characteristics at time t, Of' might be

y,=O,+s" s,-N(O,H,), t=l,...,T, (4.15)

where the sampling errors s, are independent over time and are independent of
0,. A simple estimator of 0, would then be y,. However, by imposing a model
on the evolution of 0" an improvement in the precision of the estimate is
possible. This improvement will be very marked if 0, moves very slowly and H,
is large.

Scott and Smith (1974) suggested fitting ARIMA models to 0,; see also Smith
(1978) and Jones (1980). A more natural approach is to use structural models.
The analysis of repeated, nonoverlapping surveys is based on the same
principles as standard time series model building except that constraints are
imposed on the measurement error covariance matrix through sampling theory.

EXAMPLE. Consider the repeated sample survey of a set of proportions Ow
°2" . . . , Opt, using simple random sampling with sample size n, for t = 1, . . . , T.
If p = 2, and y, denotes the sample proportion in group one, the simple model

( 0,(1- 0,»)y,=O,+E" s,-N 0, n, ,

1
°'=1+ ( )' (4.16)

exp -a,

a, = a'-I + 'TI, , 'TI, - NID(O, u~) ,

will allow °1, = 0, and °2' = 1 - 0, to evolve over time in the range zero to one. If
p is greater than two or the state a, evolves in a more complicated way,
perhaps with seasonals, the model can be modified appropriately. However,
the modelling principle is unchanged, sampling theory dictates the measure-
ment error and time series considerations the transition equation. A discussion
of the way in which such models can be estimated may be found in Section 6.2.

conduct
given in

4.5. Modelling and estimation for repeated surveys
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When the repeated surveys are overlapping the model for the measurement
equation can become very involved. A clear discussion of the principles
involved is given in Scott and Smith (1974). More recent work in this area
includes Hausman and Watson (1985), Binder and Dick (1989), Tam (1987),
Pfeffermann and Burck (1990) and Pfeffermann (1991).

The work of Pfeffermann (1991) fits well within the framework of this
discussion. He identifies three features of overlapping samples which may
effect the way the measurement error is modelled. The first is the way the
sample is rotated. For example a survey consisting of four panels which are
interviewed quarterly, three of the panels will have been included in past
surveys while one is wholly new. Thus each panel will remain in the panel for
four quarters. This rotation will interact with the second feature of overlapping
surveys, the correlation between individual observations. Pfeffermann, in
common with most researchers in this area, relies on Henderson's behavioural
model for the i-th individual of the survey made at time t. The model is

Yit - 9, = P(Yi.I-1 - 9t-t) + Cl)il , Cl)il - NID(O, u:,) , Ipi < 1 .

( 4.17)

The Pfeffermann model is completed by the third feature, which is that the
design of the sllrvey is ignorable, although this assumption can be relaxed at
the loss of algebraic simplicity.

With these assumptions it is possible to derive the behaviour of the
measurement error in a model. If we use y;;j to denote the i individual at time
t, from a panel established at time t - j, then we can write

. 1 LM .
-1-1 I-I'Y, = M Yit' J=0,1,2,3,

i=1

as the aggregate survey estimate of 9, from the panel established at time t - j,
then

U~ t 1
YI= y;

-I
1

e,~ (~

where
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( -/ )13/ -/-1 ::-2 = T13,-1 + 11/ .
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(4.19)

(4.20)



The covariance of TIt will be

0 0 0
)1 0 0 . (4.21)

010
001

The model can be handled by using the Kalman filter to estimate °t'
as well as the hyperparameters p, and O'~. In some cases the individual panel
results will not be available, but instead only the aggregate will be recorded.
Then the measurement equation becomes

* - ( -I + -1-1 + -1-2 -1-3
)YI - YI YI Y1 + YI

=8 + 1 ( -I + -1-1 + -1-2 + -1-3
)1 4 EI EI EI EI .

5. Simultaneous equation system

This section considers how simultaneous equation models can be estimated
when stochastic trend components of the kind described in Section 4 are
specified in some or all of the structural equations. We draw on the paper by
Streibel and Harvey (1993), which develops and compares a number of
methods for the estimation of single equations using instrumental variable (IV)
procedures or limited information maximum likelihood (LIML). The question
of identifiability is dealt with in Harvey and Streibel (1991).

5.1. Model formulation

Consider a dynamical simultaneous model in which some or all of the structural
equations contain stochastic trend components, which, to simplify matters, will
be assumed to follow a multivariate random walk. Thus

rYt = 4J1Yt-l + ... + 4JrYt-r + BOXt + ... + BsXt-s + SILt + Et ,
- + (5.1)ILt - ILt-l TIt'

where r is an N x N matrix of unknown parameters, 4J1, . . . , 4Jr are N x N
matrices of autoregressive parameters, Bo,..., Bs are N x K matrices of
parameters associated with the K x 1 vector of exogenous variables Xt and its
lagged values, ILt is an n x 1 vector of stochastic trends, S is an N x n selection
matrix of ones and zeros, such that each of the stochastic trends appears in a
particular equation, and TIt and Et are mutually independent, normally distribut-
ed white noise disturbance vectors with positive definite covariance matrices 1:'1
and 1:. respectively. Equations which do not contain a stochastic trend will
usually have a constant term and if the exogenous variables are stochastic, it
will be assumed that they are generated independently of ILt and Et.

The model is subject to restrictions which usually take the form of certain
variables being excluded from certain equations on the basis of prior economic
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knowledge. In a similar way, it will normally be the case that there is some
rationale for the appearance of stochastic trend components in particular
equations. Indeed many econometric models contain a time trend. For
example the wage equation in the textbook Klein model has a time trend which
is explained in terms of union pressure. Time trends also appear because of
technical progress just as in single equations. The argument here is that such
effects are more appropriately modelled by stochastic trends.

Pre-nmltiplying (5.1) by r-1 gives the econometric reduced form. Dropping
the lags, this may be written as

y, = BIL, + IIx, + £, , (5.2)

where n = r-1B, e; = r-1et and (J = r-1s. If stochastic trends only appear in
some of the equations, that is 1,,;;;; n < N, then (5.2) contains common trends;
see Section 4.4.

The presence of stochastic trend components in an econometric model has
interesting implications for conventional dynamic simultaneous equation
models, for the corresponding reduced form models, and for the associated
vector autoregression (VAR) for (y;, x; y. Some of the points can be illustrated
with a simple demand and supply system. Let Ylt denote quantity, YZt price and
Xt an exogenous variable which is stationary after first differencing, that is
integrated of order one, and write

D: Ylt = 'YIYZt + ILl + EIt ,

S: YIt = 'YzYZt + f3Xt + EZt . (5.3)

The stochastic trend component ILl may be a proxy for changes in tastes. The
first equation could be approximated using lags of Yl and Yz, but long lags may
be needed and, unless ILl is constant, a unit root is present; compare the
employment-output equation of Harvey et al. (1986). The econometric
reduced form is

where 81 = Yz/(-Yz - YI)' 8z = 1/(yz - YI)' and so on. Thus there is a common

trend. This can be regarded as a reflection of the fact that there is just a single
co-integrating relationship, namely the supply curve; compare a similar, but
simpler, example in Engle and Granger (1987, p. 263). Attempting to estimate
a reduced form with lagged variables but without the stochastic trends runs into
complications; if first differences are taken the stochastic part of the model is
strictly noninvertible, so the approximation is not valid, while in levels any
inference must take account of the unit root; see Sims, Stock and Watson
(1990). The VAR representation of (y;,x;)' is also subject to constraints
because of the common trend, and although estimation can be carried out
using the method of Johansen (1988), the point remains that long lags may be
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Ylt = 81ILt + '7TIXt + 6~t ,

Y2t = 82ILt + '7T2X2 + 6;t , (5.4)



required for a satisfactory approximation and so the number of parameters
may be very large for moderate size Nand K.

In summary, models which approximate stochastic trends by lags may be
highly unparsimonious and uninformative about dynamic relationships. If
economic theory does suggest the presence of stochastic trend components,
therefore, there are likely to be considerable gains from estimating the implied
structural relationships directly. If the complete system of equations can be
specified, a full information maximum likelihood (FIML) procedure may be
employed. If only a subsystem is specified, but all the predetermined variables
are named, a limited information maximum likelihood (LIML) procedure is
appropriate. When the rest of the system has not been specified at all, ML
methods cannot be applied, but a valid instrumental variable (IV) estimator
can be obtained.

5.2. Instrumental variable estimation

Suppose the equation of interest is written in matrix notation as

y=ZS+u

where Z is a T x m matrix with observations on explanatory variables and u is
a T x 1 vector of disturbances with mean zero and covariance matrix, u;V. The
explanatory variables may include variables which are not exogenous. How-
ever, the K exogenous variables in the system provide a set of instrumental
variables contained in a T x K matrix, X.

Multiplying (5.5) through by a T x T matrix L with the property that
L'L = V-I yields

Ly = LZ8 + Lu , (5.6)

where Var(Lu) = u;I. If the same transformation is applied to X, the matrix of
optimal instruments is formed over a multivariate regression of LZ on LX.
The resulting IV estimator is then

a = (Z'L'PvLZ)-lZ'L'PvLy, (5.7)

where Pv is the idempotent projection matrix Pv = LX(X'y-lX)-lX'L'. It is
known as generalized two stage least squares (G2SLS). Under standard
regularity conditions, as in Bowden and Turkington (1984, p. 26), r1/2 a has a
limiting normal distribution. If Y is unknown, but depends on a finite number
of parameters which can be estimated consistently, the asymptotic distribution
is unaffected. When there are no lagged endogenous variables in (5.5) it can be
shown that the G2SLS estimator is at least as efficient as 2SLS in the sense that
the determinant of its asymptotic covariance matrix cannot exceed the
determinant of the corresponding expression for 2SLS. In a similar way, it can
be shown that G2SLS is more efficient than an IV estimator in which
instruments are formed from X without first transforming by L.
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We now consider the estimation of a model which contains a random walk
component as well as explanatory variables, that is

Yt = ILt + z;(j + Et, t = 1, . . . , T . (5.8)

If Zt were exogenous, the GLS estimator of /) could be computed by applying
the Kalman filter appropriate for the stochastic part of the model, ILl + eo to
both Yt and Zt and regressing the innovations from Yt on those from Zt; see
Kohn and Ansley (1985). The same approach may be used with IV estimation.
In the notation of (5.5) the Kalman filter makes the transformations Ly, LZ
and Lx. However, the L matrix is now (T - 1) x T because the diffuse prior
for ILl means that only T - 1 innovations can be formed. The variables in (5.8)

may be differenced so as to give a stationary disturbance term. Thus

.1y,=.1z;8+u" t=2,...,T, (5.9)
where u, = 11, + ..18,. This equation corresponds more directly to (5.5) than does
(5.8) since a covariance matrix may be constructed for the disturbance vector
and the associated L matrix is square. However, postmultiplying this matrix by
the (T-1) x 1 vector of differenced y,'s gives exactly the same result as
postmultiplying the L matrix for (5.8) by the T x 1 vector of y,'s.

A number of estimation procedures for (5.8) are considered in Streibel and
Harvey (1993). In the preferred method, a consistent estimator of 5 is first
obtained by applying a suitable IV estimator to (5.9); if there are no lagged
dependent variables, 2SLS will suffice. Consistent estimators of the hyper-
parameters are then obtained from the residuals, and these estimators are used
to construct a feasible IV estimator of the form (5.7). There are a number of
ways of estimating the hyperparameters. In simple cases, closed form expres-
sions based on the residual autocorrelations are available but, even with 5
known, such estimators are not efficient. However, what would be the ML
estimator if 5 were known can always be computed by an iterative optimisation
procedure. Given values of the hyperparameters, an IV estimate is constructed
for 5. The hyperparameters are then estimated by ML applied to the residuals.
This procedure is then iterated to convergence. Although iterating will not
change the asymptotic properties of the estimators of 5 or the hyperparameters
when there are no lagged dependent variables, it may yield estimators with
better small sample properties. When this stepwise estimation procedure is
used to estimate an equation in a simultaneous equation system it may be
referred to as G2SLS/ML. All the above procedures can be implemented in
the frequency domain as well as the time domain.

5.3. Maximum likelihood estimation

It is relatively easy to construct the likelihood function for a model of the form
(5.1). Maximising this function then gives the FIML estimators. Of course this
may not be straightforward computationally, and the estimators obtained for
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anyone particular equation may be very sensitive to misspecification in other
parts of the system.

If interest centres on a single equation, say the first, and there is not enough
information to specify the remaining equations, a limited information estima-
tion procedure is appropriate. In a model of the form (5.1) where ut is
NID(O, l1), the LIML estimator of the parameters in the first equation can be
obtained by applying FIML to a system consisting of the first (structural)
equation and the reduced form for the endogenous variables appearing in that
equation. Since the Jacobian of this system is unity, the estimator can be
computed by iterating a feasible SURE estimator to convergence; see Pagan
(1979).

Now consider the application of LIML in a Gaussian system with stochastic
trends generated by a multivariate random walk. It will also be assumed that
the system contains no lags, although the presence of lags in either the
endogenous or exogenous variables does not alter the form of the estimator.
Thus

rYt=ILt+BXt+Et, Var(Et)=!., (5.10)

with r being positive definite and ILt given by (5.1). Hence the reduced form is

Yt = IL: + llXt + E:, Var(E:) =!: = r-1!.(r-1)' , (5. 11 a)

IL: = IL:-l + 71:, Var(T/:) = 1:; = r-1!.,(r-1)' , (5.11b)

where YZt is g x 1, xlt is k x 1, and both Elt and l1lt may be correlated with the
corresponding disturbances in the other structural equations. Prior knowledge
suggests the presence of a stochastic trend in (5.10). There is no information
on whether or not stochastic trends are present in the other structural
equations in the system, and so they are included for generality. The reduced
form for the endogenous variables included in (5.10) may be written as

YZt = fJ-;t + llZXt + 8;t , (5.13a)

* * *fJ-zt = fJ-Z,t-l +'1/Zt' (5,13b)

The LIML estimator is obtained by treating (5.12) and (5.13) as though they
were the structural form of a system and applying FIML. The Jacobian is unity
and estimation proceeds by making use of the multivariate version of the GLS
algorithm described in Harvey (1989, p. 133).

Streibel and Harvey (1993) derive the asymptotic distribution of the LIML
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estimator and compare the asymptotic covariance matrix of the estimators of f3
and 'Y with the corresponding matrix from the G2SLS/ML estimation proce-
dure for a model without lagged endogenous variables. If 4'1 = q4e in (5.10),
where q is a scalar, the multivariate part of the model is homogenous; see
Section 4. In this case G2SLS/ML is as efficient as LIML. Indeed efficiency is
achieved with G2SLS without iterating, provided an initial consistent estimator
of q is used.

Although G2SLS/ML is not, in general, asymptotically efficient as compared
with LIML, the Monte Carlo experiments reported in Streibel and Harvey
suggest that in small samples its performance is usually better than that of
LIML. Since it is much simpler than LIML, it is the recommended estimator.

6. Nonlinear and non-Gaussian models

Relaxing the requirement that time series models be linear and Gaussian opens
up a vast range of possibilities. This section introduces the work in this field
which exploits the structural time series framework. It starts with a discussion
of conditionally Gaussian nonlinear state space models and then progresses to
derive a filter for dynamic generalised linear models. Some recent work on
exact filters for nonlinear, non-Gaussian state space models is outlined. Finally,
some structural approaches to modelling changing variance is discussed.

6.1. Conditionally Gaussian state space models

The state space form and the Kalman filter provides such a strong foundation
for the manipulation of linear models that it is very natural to try to extend
their use to deal with nonlinear time series. Some progress can be made by
defining a conditionally Gaussian state space model

y, = Z,(Yt-l)a, + X,!3 + 6, , 6, - N(O, H,(Yt-l» ,
(6.1)a, = T,(Yt-l)at-l + w,!3 + T'J, , T'J,- N(O, Q,(Y,-t».

Here 8/ and TJs are assumed to be independent for all values of t and s. In this
model the matrices in the state space model are allowed to depend on Y/-P the
available information at time t - 1. The Kalman filter still goes through in this
case and so the likelihood for the model can be built up from the prediction
error decomposition.

The theory behind this type of modelling framework has been studied at
considerable length in Liptser and Shirayev (1978). The following examples
illustrate its flexibility.

EXAMPLE. The coefficient of a first-order autoregression can be allowed to
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follow a random walk, as Yt-l is in Yt-l' Thus

Yt = Yt-lUH + Et , Et - NID(~, 0';) , (6.2)

Ut=Ut-l+T'/t' T'/t-NID(O,O'.,).

EXAMPLE. Some macro-economic time series appear to exhibit cycles in which
the downswing is shorter than the upswing. A simple way of capturing such a
feature is to specify a cyclical component which switches from one frequency to
another as it moves from downswing into upswing and vice versa. This could be
achieved by setting

{ A .f A AA = l' I 1/1'1,-1 - 1/1'-1>0,
c . A A A :S;;AA2, If 1/1'11-1 - 1/11-1 :s;; 0, 1 2' (6.3)

where 1bt!1-1 and Ibl-1 are estimates of the state of the cycle at times t and t - 1
respectively, made at time t - 1. This model, which belongs within the class of

threshold models described in Tong (1990), in effect fits two separate linear
cycle models to the date, the division taking place and Ibt!t-l -lbl-1 switches
sign.

6.2. Extended Kalman filter

For ease of exposition suppose Y t and at are univariate and

Yt = Zt(aJ + Et , Et - NID(O, u;(at» , (6.4)

at = Tt(at-l) + TJt , TJt - NID(O, u~(at-l» .

This model cannot be handled exactly by using the Kalman filter. However, for
some functions it is possible to expand Zt(ut) and Tt(Ut-l) using a Taylor series
to give

If, in addition, the dependence of the variances on the states is dealt with by
replacing them by estimates, made at time t -1,
model becomes
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then the new approximate

Et - N(O, O"~(atlt-l» ,

TIt - N(O, u~(at-l)) .

(6.6)
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This model is then in the conditionally Gaussian framework and so the Kalman
filter can be used to estimate the state. Since the model itself is an approxi-
mation, we call the conditionally Gaussian Kalman filter an extended Kalman
filter for the original model (6.4); see Anderson and Moore (1979, Chapter 8).

EXAMPLE. Suppose the logistic transformation is being used to keep z/(u/)
between zero and one as in (4.16). Then

Then the expanded model becomes

This idea can be used to construct a model of opinion polls. Suppose there are
just two parties. If the level of support for one party is modelled as a logistic
transformation of a Gaussian random walk and the measurement error
originates from using a simple random sample size np then

- + N(O 2) 2 IL,(l - IL,)
Y, - IL, E" E, - ,0'" 0', = , (6.9a)

n,

al = al-l + TlI , TlI - NID(O, (T~) .

As ILl is unknown, this model cannot be analysed by using the Kalman filter.
Instead, an estimate of al can be made at time t - 1, written aliI-I> and it can
be used to replace ILl in the variance. One of the problems with this approach is
that this model does not constrain the observations to lie between zero and
one, as el is assumed Gaussian. Although this could be a problem if ILl were to
be close to zero or one, this is unlikely to pose a difficulty for moderate sample
sizes.

The Kalman filter can be applied in the standard way once the logistic
transformation has been Taylor expanded. The resulting model is
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(6.9c)

= mt-l + exp(-Ot-l)m;-l(Ut - °t-l) + Et'

Et - N (0, mt-l(ln~ mt-l)),



allow for irregular observations, was followed by Shephard and Harvey (1989)
in their analysis of opinion poll data from the British general election
campaigns of October 1974, 1979, 1983 and 1987.

6.3. Non-Gaussian state space models

Although the Gaussian state space form provides the basis for the analysis of
many time series, it is sometimes not possible to adequately model the data, or
a transformation of it, in this way. Some series, such as count data, are
intrinsically non-Gaussian and so using a Gaussian model could harm forecast-
ing precision. In this section we outline the methods for directly modelling
non-Gaussian series.

The key to modelling non-Gaussian time series. is the non-Gaussian state
space form. It will be built out of two assumptions. Firstly the measurement
equation is such that we can write

This assumes that given the state at, the observation Y t is independent of all the
other states and observations, Thus at is sufficient for Yt' The second
assumption is that the transition equation is such that

T
[(ap , , , , aT I yo) = [(all yo) IT [(at I at-I) ,

t=2

that is the state follows a Markov process.
Filtering can be derived for a continuous state by the integrals

[(at I Yt-l) = J [(at I at-l)[(at-l I Yt-l) dat-l ,

Thus it is technically possible to carry out filtering, and indeed smoothing, for
any state space model if the integrals can be computed. Kitagawa (1987) and
Pole and West (1990) have suggested using particular sets of numerical
integration rules to evaluate these densities. The main drawback with this
general approach is the computational requirement, especially if parameter
estimation is required. This is considerable if a reasonable degree of accuracy is
to be achieved and the dimension of the state is larger; the dimension of the
integral will equal the dimension of the state and so will be 13 for a basic
structural model for monthly data. It is well known from the numerical analysis
literature that the use of numerical integration rules to evaluate high-dimen-
sional integrals is fraught with difficulty.

The computational explosion associated with the use of these numerical
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integration rules has prompted research into alternative methods for dealing
with non-Gaussian state space models. Recent work by West and Harrison
(1989) and West, Harrison and Migon (1985) has attempted to extend the use
of the Kalman filter to cover cases where the measurement density is a member
of the exponential family, which includes the binomial, Poisson and gamma
densities, while maintaining the Gaussian transition density. As such this tries
to extend the generalised linear model, described in McCullagh and NeIder
(1989), to allow for dynamic behaviour.

For ease of exposition we will only look at the extension of the local level
model to cover the exponential family measurement density 0 More specifically,
we will assume that

( 1 ) ( 2 ) (YIILI-a(ILI» )FYI ILl =b YI,UIE exp 2 ,
UEI (6.14)

1 1 ( (ILl - ILt-I)2 )/(IL, ILt-l) = Y27fu~ exp 2u~

and follow the development given in West and Harrison (1989). Here U;I will
be assumed to be known at time t. By selecting a(o) and b(.) appropriately, a
large number of distributions can result. A simple example of this is the
binomial distribution

n!
-1,( 1 ) - I Y'(l - )n,-y,J'YI7TI-YI!(nl-Yt)!7T1 7Tt ,

7TtILl = log 1 - 7T ' a(IL,) = 10g(1 + exp(IL,» ,
I

2 nt! (6.16)
b(y" U Et) = ,( - ) "

Yr' nl YI'

Although it is relatively straightforward to place densities into their exponen-
tial form, the difficulty comes from filtering the unobservable component ILl as
it progresses through time. Suppose we have a distribution for ILl-II Yl-l' The

first two moments of this prior will be written as mt-l and PI-I' The random
walk transition means that the first two moments of ILl 1 YI-l will be

mlll-l = ml-1 , PIII-l = PI-l + u; . (6.17)

As the measurement density is in the exponential family, it is always possible
to find a conjugate density. Generically it takes the form

/(IL,I Yt-l) = c(rtlt-l' Stlt-l)exp(lLlrtll-1 - s'lt-la(IL,» . (6.18)

For a particular form of this density it is typically possible to select rlll-l and
S/I/-l so that the first two moments of this density match m/ll-l and PIlI-I' Thus
the actual prior density of IL, 1 Y,-t will be approximated by a density which has

which is obtained by writing
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- 2 2 .
c(r,I,-1 + y,lU e" s,I,-1 + (l/u e,»

felL, I Y,) = c(rp Sf) exp(rtlLt - Sta(lLt» ,

Further

where

By finding the first two moments of this density, implied values for mt and Pt
can be deduced, so starting the cycle off again. As the approximate density of
Yt I Yt-l is known analytically, a maximum quasi-likelihood procedure can be
used to estimate the unknown parameters of this model by using a predictive
distribution decomposition of the joint density of the observations

so

2
U ePtlt-l

2 ,Pt Ptlt-l +Ue

this is the usual Kalman filter.
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EXAMPLE. If the measurement density is binomial then the conjugate prior is
beta,

~( IY ) r(r'I'-1 + S'I'-I) r
I -1 (1 )' I I -I J"Tr = 'Trtl-I -'Tr tI-, ,-I r(r'I'-I)r(S'I'-I) , "

But as IL, = log 'Tr,/1 - 'Tr, it follows that using our prior knowledge of IL"

m,ll-l = ElL, I Y'-1 = 1'(r'll-l) -1'(S'I'-I) ,

P'It-1 =Var IL, I Y'-1 = 1(r'I,-I) + 1(s'I'-I)'

where '}'(.) is the digamma function and i{) is its derivative, we can allow rlll-l
and 8t!I-l to be selected numerically. When rlll-l and 8111-1 are updated to give
rl and 8" the corresponding ml and PI can be deduced from

mt = y(rJ - Y(St) , (6.29)

Pt = 1'(rt) + 1'(St) .

This completes the cycle, since mt+llt = mt and Pt+llt = Pt + u~.

The work on the dynamic generalised linear model and the extended Kalman
filter share some important characteristics. The most important of these is that
both are approximations, where the degree of approximation is difficult to
determine. In neither case does the filtered estimate of the state possess the
important property that it is the minimum mean square error estimate.

An alternative approach is to design transition equations which are conju-
gate to the measurement density so that there exists an exact analytic filter. In
the last five years there has been some important work carried out on these
exact non-Gaussian filters. Most of this work has been based on a gamma-beta
transition equation; see the discussion in Lewis, McKenzie and Hugus (1989).
A simple example is
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Thus the expectation of the level remains the same, but its variance increases
just as it does in a Gaussian local model.

Gamma-beta transition equations have been used by Smith and Miller
(1986) in their analysis of extreme value time series to enable them to forecast
athletic world records. Harvey and Fernandes (1989a) exploited them to study
the goals scored by the England football team, against Scotland in their
matches at Hampden Park. A more interesting example from an economic
viewpoint is the paper by Harvey and Fernandes (1989b) on insurance claims.
Both papers use a Poisson measurement equation

!(Ytlat)=e-ata:t
Yt!

As a gamma is the conjugate prior to a Poisson distribution, this model is
closed by using a gamma-beta transition equation, for the use of Bayes'
theorem shows that

This means that if ao = bo = 0, the filtered estimate of at is

t-l

L wiYt~i
a i=Ot - 1I y - - - t-Eat t - bt L wi

i=O

which is an exponentially weighted moving average of the observations. The
one-step ahead predictive distribution is

f(Yt I Yt-

which is negative binomial and so the likelihood for this model can be
computed using the predictive distribution decomposition, as in (6.22).

6.4. Stochastic variance models

One of the most important modelling techniques to emerge in the 1980s was
autoregressive conditional heteroskedasticity (ARCH); see En~;le (1982) and
Bollerslev (1986). These authors suggested modelling the variability of a series
by using weights of the squares of the past observations. The important
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that is the one step ahead predictive distribution depends on the variable hr,
Thus the conditional variance of the process is modelled directly, just like in
ARMA models the conditional mean is modelled directly.

Although the development of these models has had a strong influence in the
econometric literature, a rather different modelling approach has been sug-
gested in the finance literature; see, for example, Hull and White (1987),
Chesney and Scott (1989) and Melino and Turnbull (1990). These papers have
been motivated by the desire to allow time varying volatility in opinion pricing
models, so producing a more dynamic Black-Scholes type pricing equation.
This requires that the volatility models be written down in terms of continuous
time Brownian motion. In general ARCH models do not tie in with such a
formulation, although as Nelson (1991) shows there are links with EGARCH.

The finance models, which are usually called stochastic volatility models,
although we prefer to call them stochastic variance models, have some very
appealing properties. They directly model the variability of the series, rather
than the conditional variability. Thus they are analogous to the structural
models discussed in the rest of this paper which are all direct models for the
mean of the series at a particular point in time. A simple example is

Y/ = £/ exp(h,l2) , £/ - NID(O, 1) ,

h, = Uo + alht-l + 71/ , 71/ - NID(O, O'~) . (6.38)

where, for simplicity, s, and l1s are assumed to be independent for all t and s.
Here the logarithm of the standard deviation of the series follows an AR(l)
process, which has an obvious continuous time generalisation. It is not
observable, but it can be estimated from the linear state space form

where e; is independent an identically distributed, but not Gaussian. In fact
Ee; =.= -1.27 and Var e; = 4.93; see Abramowitz and Stegun (1970, p. 943).
The Kalman filter provides the minimum mean square linear estimator of hi
from the log y; series. Further, the corresponding smoother inherits the same
property of being the best linear estimator given the whole data set.

As YI is the product of two strictly stationary processes, it must also be
strictly stationary. Thus for any stochastic variance model, the restrictions
needed to ensure the stationarity of Y I are just the standard restrictions to
ensure the stationarity of the process generating hi; compare the simplicity of
this to the GARCH(1, 1) model, as analysed by Nelson (1990). The properties
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log y; = h, + log e; = h, + e;

h, = llo + alh'-l +TI" (6.39)



of this particular autoregressive stochastic variance model can be worked out if
lall < 1, for then ht must be strictly stationary, with

'Yh=Eh= ao
t 1-a.

1
"

The fact that Y t is white noise follows
ence of Et and 11,. The mean is clearly zero, while

( (ht + hI-,,))EYtYt-" = EEtEt-"E exp 2 = 0

as E£'£'-T = O. The odd moments of y, are all zero because £, is symmetric. The
even moments can be obtained by making use of a standard result for the
lognormal distribution, which in the present context tells us that since exp(h,)
is lognormal, its j-th moment about the origin is exp(iYh + ju~/2). Therefore

VaT Yt = Ee;E exp(ht) = exp( 'Yh + u~/2) .

The fourth moment is

Ey: = EE:E exp(hti = 3 exp(2Yh + 2u~) (6.43)

and so the kurtosis is 3 exp(u~), which is greater than 3 when u~ is positive.
nus the model exhibits excess kurtosis compared with the normal distribution.
The dynamic properties of the model appear in log y; rather than y;. In (6.39)
h, is an AR(1) process and e: is white noise so log y; is an ARMA(1,1)
process and its autocorrelation function is easy to derive.

The parameter estimation of stochastic variance models is also reasonably
simple. Although the linear state space representation of log y; allows the
computation of the innovations and their associated variances, the innovations
are not actually Gaussian. If this fact is ignored for a moment and the
'Gaussian' likelihood is constructed, then this objective function is called a
quasi-likelihood. A valid asymptotic theory is available for the estimator which
results from maximising this function; see Dunsmuir (1979, p. 502).

The model can be generalised so that h, follows any stationary ARMA
process, in which case y, is also stationary and its properties can be deduced
from the properties of h,. Other components could also be brought into the
model. For example, the variance could be related to a changing daily or intra

daily pattern.
Multivariate generalisations of the stochastic volatility models have been

suggested by Harvey, Ruiz and Shephard (1991). These models overcome
many of the difficulties associated with multivariate ARCH based models; see
Bollerslev, Chou and Kroner (1992) for a survey of these models. The basic
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idea is to let the ith element of the N-dimensional vector Yt be

Yit = Eit exp(hit) , (6.44)
hit = Uoi + O!lihit-l +T1it'

where c, and TJ, are N-dimensional multivariate Gaussian white noise processes
with covariances !. and !Tj' The matrix !. will be constrained to have ones
down its leading diagonal and so can be thought of as being a correlation
matrix,

The model can be put into state space form, as in (6.39), by writing

log Y~I = hit + e~, i = 1, . . . , N . (6.45)

The covariance of 6; = (6;1' . . . , 6~t)' can be analytically related to 4£, so

allowing straightforward estimation of 4£ and 4T/ by using a quasi-likelihood,
although the signs of the elements of 4£ cannot be identified using this
procedure. However, these signs can be estimated directly from the data, for
YitYjt > 0 if and only if 6it6jt > 0 implying the sign of the i,j-th element of 4£
should be estimated to be positive if the number of occurrences of YitYjt > 0 is
greater than T/2.

Harvey, Ruiz and Shephard (1991) analyse four daily exchange rates for the
US dollar using (6.38) and find that Uj is approximately equal to unity for all
the rates, suggesting that a random walk is appropriate for h,. This model has
very similar properties to IGARCH in which Uj + Uz = 1 in (6.37). The
multivariate generalisation is straightforward and the transformed observa-
tions, as in (6.45), are a SUTSE model of the form (4.1). Further investigation
of the model indicates that it can be made even more parsimonious by
specifying just two common trends, thereby implying co-integration in volatili-
ty; compare (4.14). The first common trend affects all four exchange rates,
while the second is associated primarily with the Yen.

Although stochastic variance models can be made to fit within the linear
space framework and so can be handled by using the Kalman filter, this filter
does not deliver the optimal (minimum mean square error) estimate. It is not
possible to derive the optimal filter analytically and so it is tempting to change
the transition equation in an attempt to allow the derivation of exact results for
this problem. This approach has been followed by Shephard (1993b) using the
techniques discussed in the previous subsection. He proposed a local scale
model

Ytlat-N(O,a;I), (6.46)

where at, the precision of the series at time t, satisfies the
transition equation of (6.30). Although at is unknown, it can
because

a,IY,-G(a"b,), a,=a'I'-l+!' b,=btl'-l+!Y;
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(6.47)



and also

this being the inverse of the EWMA of the squares of the observations.
When the focus shifts to the one-step ahead forecast density, then

Ytl Yt-

that is Yt I Yt-l is a scaled Student's t variable, with scale which is an exact
EWMA of the squares of the past observations. If t is large then the degrees of
freedom in the predictive density will approximately equal w/(1- w). As
w ~ 1, the degrees of freedom increase and so the one-step ahead density
becomes like a normal. The parameter W has to be larger than 0.8 for the
fourth moment to exist. Setting W to 0.5 means that the density is a Cauchy
random variable.

Many extensions of this model are possible, allowing, amongst other things,
an exponential power measurement density instead of normal, irregularly
spaced observations and multistep ahead forecasts. The difficulty with the
model is that it is hard to significantly depart from the gamma-beta transition
equation. As this is constrained to be a nonstationary process and is technically
awkward to generalise to the multivariate case, it is of less practical use than
the stochastic variance models. However, for dealing with this very special case
it does provide a rather interesting alternative.
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