Andrew Gettelman

Andrew Gettelman
National Center for Atmospheric Research · Climate & Global Dynamics Division

PhD

About

316
Publications
64,518
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
19,943
Citations
Introduction
Currently I spend much of my time working on clouds and climate, with an emphasis on developing global models. My particular research is focused on cloud microphysics, especially ice cloud microphysics in the upper troposphere.
Additional affiliations
August 2011 - present
ETH Zurich
Position
  • Sabbatical Leave
July 2011 - July 2012
ETH Zurich
Position
  • Professor
Education
June 1999
University of Washington Seattle
Field of study
  • Atmospheric Sciences

Publications

Publications (316)
Article
Estimates of the anthropogenic effective radiative forcing (ERF) trend have increased by 50% since 2000 (+0.4W/m ² /decade in 2000-2009 to +0.6W/m ² /decade in 2010-2019), the majority of which is driven by changes in the aerosol ERF trend, due to aerosol emissions reductions. Here we study the extent to which observations of the climate system agr...
Article
Full-text available
Maritime boundary‐layer clouds over the Southern Ocean (SO) have a large shortwave radiative effect. Yet, climate models have difficulties in representing these clouds and, especially, their phase in this observationally sparse region. This study aims to increase the knowledge of SO cloud phase by presenting in‐situ cloud microphysical observations...
Article
Full-text available
Predictions of the Earth system, such as weather forecasts and climate projections, require models informed by observations at many levels. Some methods for integrating models and observations are very systematic and comprehensive (e.g., data assimilation), and some are single purpose and customized (e.g., for model validation). We review current m...
Article
Full-text available
Realistic simulation of the Earth's mean-state climate remains a major challenge, and yet it is crucial for predicting the climate system in transition. Deficiencies in models' process representations, propagation of errors from one process to another, and associated compensating errors can often confound the interpretation and improvement of model...
Article
Full-text available
The Community Earth System Model version 2 (CESM2) simulates a high equilibrium climate sensitivity (ECS > 5°C) and a Last Glacial Maximum (LGM) that is substantially colder than proxy temperatures. In this study, we examine the role of cloud parameterizations in simulating the LGM cooling in CESM2. Through substituting different versions of cloud...
Article
For the Community Atmosphere Model version 6 (CAM6), an adjustment is needed to conserve dry air mass. This adjustment exposes an inconsistency in how CAM6’s energy budget incorporates water—in CAM6 water in the vapor phase has energy, but condensed phases of water do not. When water vapor condenses, only its latent energy is retained in the model,...
Article
Full-text available
To avoid the worst impacts of climate change, it’s paramount that we decarbonize the economy and preserve and restore natural ecosystems. Unfortunately, pledges made from countries thus far will not limit warming to below 1.5°C, even after accounting for the more ambitious targets set at the recent COP26 climate summit in Glasgow. Meeting the 1.5°C...
Article
Full-text available
Aerosol–cloud interactions (ACIs) are considered to be the most uncertain driver of present-day radiative forcing due to human activities. The nonlinearity of cloud-state changes to aerosol perturbations make it challenging to attribute causality in observed relationships of aerosol radiative forcing. Using correlations to infer causality can be ch...
Article
Full-text available
Three climate models are evaluated using in situ airborne observations from the Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES) campaign. The evaluation targets cloud phases, microphysical properties, thermodynamic conditions, and aerosol indirect effects from −40°C to 0°C. Compared with 580‐s averaged observations...
Article
Full-text available
Non-technical summary We summarize some of the past year's most important findings within climate change-related research. New research has improved our understanding about the remaining options to achieve the Paris Agreement goals, through overcoming political barriers to carbon pricing, taking into account non-CO 2 factors, a well-designed implem...
Preprint
Full-text available
Realistic simulation of the Earth’s mean state climate remains a major challenge and yet it is crucial for predicting the climate system in transition. Deficiencies in models’ process representations, propagation of errors from one process to another, and associated compensating errors can often confound the interpretation and improvement of model...
Preprint
Full-text available
Aerosol indirect radiative forcing (IRF), which characterizes how aerosols alter cloud formation and properties, is very sensitive to the preindustrial (PI) aerosol burden. Dimethyl sulfide (DMS), emitted from the ocean, is a dominant natural precursor of non-sea-salt sulfate in the PI and pristine present-day (PD) atmospheres. Here we revisit the...
Preprint
Full-text available
Aerosol-cloud interactions (ACI) are considered to be the most uncertain driver of present-day radiative forcing due to human activities. The non-linearity of cloud-state changes to aerosol perturbations make it challenging to attribute causality in observed relationships of aerosol radiative forcing. Using correlations to infer causality can also...
Article
Full-text available
A comparative analysis between observational data from McMurdo Station, Antarctica and the Community Atmosphere Model version 6 (CAM6) simulation is performed focusing on cloud characteristics and their thermodynamic conditions. Ka-band Zenith Radar (KAZR) and High Spectral Resolution Lidar (HSRL) retrievals are used as the basis of cloud fraction...
Article
Full-text available
The COVID-19 pandemic caused significant economic disruption in 2020 and severely impacted air traffic. We use a state-of-the-art Earth system model and ensembles of tightly constrained simulations to evaluate the effect of the reductions in aviation traffic on contrail radiative forcing and climate in 2020. In the absence of any COVID-19-pandemic-...
Article
Full-text available
Controls on pristine aerosol over the Southern Ocean (SO) are critical for constraining the strength of global aerosol indirect forcing. Observations of summertime SO clouds and aerosols in synoptically varied conditions during the 2018 SOCRATES aircraft campaign reveal novel mechanisms influencing pristine aerosol-cloud interactions. The SO free t...
Preprint
Full-text available
The COVID19 pandemic caused significant economic disruption in 2020 and severely impacted air traffic. We use a state of the art Earth System Model and ensembles of tightly constrained simulations to evaluate the effect of the reductions in aviation traffic on contrail radiative forcing and climate in 2020. In the absence of any COVID19 pandemic ca...
Article
Full-text available
Abstract This study uses cloud and radiative properties collected from in situ and remote sensing instruments during two coordinated campaigns over the Southern Ocean between Tasmania and Antarctica in January–February 2018 to evaluate the simulations of clouds and precipitation in nudged‐meteorology simulations with the CAM6 and AM4 global climate...
Article
Full-text available
Abstract Simulations of 21st century climate with Community Earth System Model version 2 (CESM2) using the standard atmosphere (CAM6), denoted CESM2(CAM6), and the latest generation of the Whole Atmosphere Community Climate Model (WACCM6), denoted CESM2(WACCM6), are presented, and a survey of general results is described. The equilibrium climate se...
Article
Full-text available
We compare equilibrium climate sensitivity (ECS) estimates from pairs of long (≥800‐year) control and abruptly quadrupled CO2 simulations with shorter (150‐ and 300‐year) coupled atmosphere‐ocean simulations and slab ocean models (SOMs). Consistent with previous work, ECS estimates from shorter coupled simulations based on annual averages for years...
Article
This study is the first to reach a global view of the precipitation process partitioning, using a combination of satellite and global climate modeling data. The pathways investigated are 1) precipitating ice (ice/snow/graupel) that forms above the freezing level and melts to produce rain (S) followed by additional condensation and collection as the...
Article
Full-text available
Arctic and Antarctic sea ice has undergone significant and rapid change with the changing climate. Here, we present preindustrial and historical results from the newly released Community Earth System Model Version 2 (CESM2) to assess the Arctic and Antarctic sea ice. Two configurations of the CESM2 are available that differ only in their atmospheri...
Article
Using information from the A-Train satellites, the properties and radiative effects of East Pacific boundary layer clouds are evaluated in the Community Atmosphere Model version 5 (CAM5) from the summer of 2007 and 2008. The cloud microphysical properties are inferred using measurements from CloudSat and CALIPSO (CC) that are then used to calculate...
Article
Full-text available
The Greenland Ice Sheet (GrIS) is losing mass in an accelerated fashion, which is for ~60% dominated by an increase in surface melting. Clouds exhibit an important control on the GrIS surface energy balance and surface melt. Therefore, to better simulate present and future GrIS climate, it is essential to represent clouds correctly in climate model...
Article
Full-text available
The Community Earth System Model version 2 (CESM2) includes a detailed representation of chemistry throughout the atmosphere in the Community Atmosphere Model with chemistry and Whole Atmosphere Community Climate Model configurations. These model configurations use the Model for Ozone and Related chemical Tracers (MOZART) family of chemical mechani...
Article
Full-text available
Plain Language Summary Earth's radiation budget describes the balance between radiation from the sun intercepted by Earth and radiation returned back to space through reflection of solar radiation and emission of terrestrial thermal infrared radiation. This balance is a fundamental property of Earth's climate system as it describes how Earth gains...
Article
Full-text available
Aerosols interact with radiation and clouds. Substantial progress made over the past 40 years in observing, understanding, and modeling these processes helped quantify the imbalance in the Earth's radiation budget caused by anthropogenic aerosols, called aerosol radiative forcing, but uncertainties remain large. This review provides a new range of...
Article
Full-text available
While most observations indicate well‐buffered clouds to aerosol perturbations, global models do not. Among the suggested mechanisms for this discrepancy is the models' lack of connections between cloud droplet size and two processes that can contribute to reduced cloudiness when droplets become more numerous and smaller: evaporation and entrainmen...
Article
Full-text available
The radiative forcing from aerosols (particularly through their interaction with clouds) remains one of the most uncertain components of the human forcing of the climate. Observation-based studies have typically found a smaller aerosol effective radiative forcing than in model simulations and were given preferential weighting in the Intergovernment...
Article
To assess deep convective parameterizations in a variety of GCMs and examine the fast-time-scale convective transition, a set of statistics characterizing the pickup of precipitation as a function of column water vapor (CWV), PDFs and joint PDFs of CWV and precipitation, and the dependence of the moisture–precipitation relation on tropospheric temp...
Article
Full-text available
The Community Atmosphere Model version 6 (CAM6), released in 2018 as part of the Community Earth System Model version 2 (CESM2), is a major upgrade over the previous CAM5 that has been used in numerous global and regional climate studies. Since CESM2–CAM6 will participate in the upcoming Coupled Model Intercomparison Project phase 6 (CMIP6) and is...
Article
Full-text available
The radiative forcing from aerosols (particularly through their interaction with clouds) remains one of the most uncertain components of the human forcing of the climate. Observation-based studies have typically found a smaller aerosol effective radiative forcing than in model simulations and were given preferential weighting in the IPCC AR5 report...
Article
Full-text available
Microphysics parameterizations in large-scale models often account for subgrid variability in the calculation of process rates by integrating over assumed subgrid distributions of the input variables. The variances and covariances that define distribution width may be specified or diagnosed. The correlation ρ of cloud and rain mass mixing ratio/liq...
Article
Full-text available
The impact of aerosols on cloud properties is one of the largest uncertainties in the anthropogenic radiative forcing of the climate. Significant progress has been made in constraining this forcing using observations, but uncertainty remains, particularly in the magnitude of cloud rapid adjustments to aerosol perturbations. Cloud liquid water path...
Article
Full-text available
During the Cloud System Evolution in the Trades (CSET) field study, 14 research flights of the National Science Foundation G-V sampled the stratocumulus–cumulus transition between Northern California and Hawaii and its synoptic variability. The G-V made vertically resolved measurements of turbulence, cloud microphysics, aerosol characteristics, and...
Article
Full-text available
Today’s global Earth system models began as simple regional models of tropospheric weather systems. Over the past century, the physical realism of the models has steadily increased, while the scope of the models has broadened to include the global troposphere and stratosphere, the ocean, the vegetated land surface, and terrestrial ice sheets. This...
Article
Full-text available
The Community Atmosphere Model version 6 (CAM6) released in 2018, as part of the Community Earth System Model version 2 (CESM2) modeling framework, is a major upgrade over the previous CAM5 that has been used in numerous global and regional climate studies in the past six years. Since CESM2/CAM6 will participate in the upcoming Coupled Model Interc...
Chapter
Cloud microphysics describes the evolution of condensed water in the atmosphere and is critical for weather and climate. This chapter describes the methods used for representing microphysical processes in weather and climate models, from explicit bin schemes used for small-scale simulation up to bulk treatments often used in global models. Of parti...
Article
Using volcanic sulfur dioxide emissions in an aerosol-climate model, we derive a time series of global-mean volcanic effective radiative forcing (ERF) from 1979 to 2015. For 2005–2015, we calculate a global multiannual mean volcanic ERF of −0.08 W/m² relative to the volcanically quiescent 1999–2002 period, due to a high frequency of small-to-modera...
Article
Full-text available
The physical mechanism of low-cloud feedbacks is examined by using perturbed-parameter ensemble experiments in a unified scheme of boundary layer turbulence and shallow convection, named Cloud Layers Unified by Binormals (CLUBB) coupled to Community Atmosphere Model version 5 (CAM5). The shortwave cloud feedbacks in CAM5-CLUBB are positive in the m...
Article
Full-text available
The impact of aerosols on cloud properties is one of the largest uncertainties in the anthropogenic radiative forcing of the climate. In recent years, significant progress has been made in constraining this forcing using observations, but uncertainty still remains, particularly in the adjustments of cloud properties to aerosol perturbations. Cloud...
Article
Full-text available
Aridity, defined as the ratio of precipitation (P) to potential evapotranspiration (PET) over land, is critical to natural ecosystems and agricultural production. Global climate models project global decreases of P/PET (drying) in the 21st century. We examine the uncertainty of aridity projections due to scenarios of greenhouse gases (GHGs) and aer...
Article
Full-text available
Understanding how impacts may differ across alternative levels of future climate change is necessary to inform mitigation and adaptation measures. The Benefits of Reduced Anthropogenic Climate changE (BRACE) project assesses the differences in impacts between two specific climate futures: a higher emissions future with global average temperature in...