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Abstract

We construct portfolios of S&P500 futures and their associated options, which
are Delta (price) and Vega (volatility) neutral. These systematically earn negative
abnormal returns, and suggest that out of the money puts are too expensive, rel-
ative to out of the money calls. We give evidence that these negative returns are
not a payment for insurance against a market crash.

We then do a factor analysis on the Delta hedged option price innovations.
Including a ‘smirk’ factor, there is no evidence of arbitrage opportunities. However,
the smirk seems unable to predict the skew in the underlying return, though is useful
for hedging portfolios of options. We finally conclude that the smirk represents the
risk premium of a dynamic aversion to market falls, which seems unrelated to the
underlying futures index.

Introduction, Aims, and Conclusions

This paper studies the ‘smirk’ in US equity index options, which is the ubiquitous stylized

fact that options with higher strikes have lower implied volatilities, when the implied

volatilities are calculated in the standard Black-Scholes Model. Thus, a graph of these

implied volatilities looks like a smirk (see Figure 1). The options ‘smirk’ is a variant of the

‘smile’, under which options with strikes further away from the money have higher Black-

Scholes implied volatilities1. Bates (1991) noted that the various S&P index options

developed their smirk after the 1987 market crash, and interpreted it in terms of a

premium that the market is willing to pay for insurance against a further crash.

Until recently, attempts to explain the smirk in equity index options have focussed on

refining the model of the underlying index returns and the associated risk premia. This

approach has not been completely successful. For example, stochastic volatility models

have the potential to capture the smirk, via a negative correlation between the return and

the volatility, but many authors, notably Bakshi, Cao and Chen (1997) have noted that

1Bollen and Whaley (2003) document that options on individual stocks, rather than the index, tend
to exhibit smiles rather than smirks.
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an unreasonably high negative correlation seems necessary to do this. These authors,

and later Bates (2000), and Pan (2001) are thus lead to augment the stochastic volatility

model with random jumps. The model can then fit the smirk. However, Bates, concludes

that the high crash probability implicit in the options prices, under this model, seems

inconsistent with the absence of jumps in his data period, which is 1988 - 1993. Pan es-

timates the parameters of the jump diffusion dynamic for the underlying, simultaneously

with the parameters for the corresponding “risk neutral” dynamic, which is appropriate

for the option pricing. To do this she takes the underlying and option prices to be a

joint process, and applies a GMM technique. However, somewhat similar to Bates, she

estimates an extremely high aversion to jumps, even though the jumps themselves might

not be very large, and might be indistinguishable from diffusive returns2.

More recent work has moved beyond the paradigm of perfect, efficient markets. Jones

(2001) fits a very flexible semi-parametric model to S&P500 (spot) index put options,

which explicitly allows for mis-pricing, in the sense of an expected return in some region

of the moneyness-maturity space, which is not a reward for a risk identified in the model.

He fits his model in a number of specifications, and concludes that short dated out-of-the-

money puts are mis-priced and too expensive, thus giving an interpretation of the smirk.

In a similar spirit, Bondarenko (2002) sets up a very general test of rationality, which

is immune from peso problems, biased investor beliefs, and does not require knowledge

of investor preferences, and shows that the S&P500 futures options fail this test3. Also

in a similar spirit, but via a different approach, Bollen and Whaley (2003) show that

equity option prices react to buying pressure, and suggest that the index option smirk is

explained by the fact that there is a particular demand for out-of-the-money index puts,

for the purpose of portfolio insurance.

This present paper falls into two parts: first we study the options smirk, using the

approach of looking at hedged option portfolio returns, similar to Bakshi and Kapadia

(2003), and Coval and Shumway (2001). As Coval and Shumway emphasize, this ap-

2See her Table 3. The mean objectively realized jump size is -0.8% of the index, but risk neutral
jumps size is -19.2% of the index.

3His test does require that the pricing kernel is path independent, and he notes that this puts the
popular stochastic volatility models of Heston (1993) etc., and thus also Bakshi, Cao and Chen (1997),
Bates (2000), and Pan (2001), and the framework of this present paper, beyond his analysis. However,
he he also notes that these models themselves are problematic, in the sense that it seems unclear how
they could arise in a general Equilibrium framework.
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proach can tell us about the risk premia and efficiency of the market, even if we are

unsure whether our model is perfectly specified. As do these authors, we construct our

hedges using simple Black Scholes hedge ratios, but we also include checks to ensure that

our results are not due to the mis-secification of these hedges. These authors’ motivation

is to show that the volatility is a priced factor in the market. We should also mention

Buraschi and Jackwerth (2001), who use a flexible no-arbitrage framework to draw a

similar conclusion, namely that options are not redundant for spanning the pricing ker-

nel. Our motivation is to go a step further, to explore the use of an extra priced factor,

beyond the volatility, for spanning the pricing kernel.

Specifically, we construct portfolios which are long the underlying future, short an

out of the money (OTM) call, and long an OTM put, and which is Delta and Vega

hedged. By regressing the returns of these against the unit constant, we show that they

systematically yield less than the riskless return on the investment required to establish

the portfolio. Thus, the OTM puts seem too expensive, relative to the OTM calls. We

also include the underlying futures return and the at the money (ATM) straddle return in

the regressions, representing the price and volatility factors, to ensure that the abnormal

negative returns are not a consequence of residual exposure to these factors, caused by

the Delta-Vega hedges being imperfect.

This result suggests either that more factors are required to model the data in a no-

arbitrage framework, or that there really are arbitrage opportunities. A candidate for an

extra factor might be an infrequent jump factor, for which the negative return reflects

the risk premium of this factor (i.e. “crash fears”), since our portfolio has a large payoff

under such a scenario. To investigate this, we then adapt an idea in Coval and Shumway,

and include an extra, deep OTM put in the portfolio, making it “crash neutral”, as well

as Delta and Vega neutral. By “crash neutral”, we mean that it does not give a large

positive or negative return, in the event of a large market fall. This extra option does not

greatly affect the amounts of the other options in the portfolio, since the extra option has

a small Delta and Vega, and the result is substantially unchanged: the expected return

of the hedged portfolio is still less than riskless interest rate.

In the second part of this paper, we show that the smirk itself can be taken as a third

diffusive, dynamic factor, and the abnormal returns can be explained in terms of the risk

premia on this factor and the volatility factor. Our technique for this is essentially to

implement a linear priced factor analysis on the option price innovations, having first
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stripped out the nonlinearity in these price innovations as much a possible using the

Black Scholes framework. Our technique includes a test of whether there are arbitrage

opportunities, and we find that there are not, so long as we include the smirk factor.

Thus, the smirk represents a third dynamic factor in the options prices, beyond the

price and (implied) volatility factors, and its magnitude can be explained in terms of the

associated risk premium. Assuming there are no arbitrage opportunities, then options

prices should be given as the risk neutral expectation of their payoff, and so must be

dependent only on the risk neutral dynamic of the underlying price. It is pertinent

therefore to ask whether this factor is connected to the dynamic of the underlying index.

One would conjecture that the smirk factor can predict the underlying return skew, just

as the implied volatility can predict to the underlying return variance. However, we will

see that this is not the case, and the options smirk seems to represent a state variable

which resides only in the risk premium itself.

We finally show that the smirk factor is useful for hedging portfolios of options, and

we discuss our results in relation to previous literature, including the papers mentioned

above, and the very recent papers of Liu and Pan (2003), Eraker, Johannes and Polson

(2003), and Eraker (2004).

To summarize our salient conclusions: The smirk in the S&P500 futures options does

not represent an arbitrage opportunity or a market imperfection, but can be explained

in terms of the risk premium on a third dynamic factor. This factor does not seem to

reflect an aspect of the underlying dynamic, but to reside only in the options prices, and

it presumably represents a dynamic aversion to market falls.

For our data, we take the CME futures and associated futures options on the S&P500

index. Our data period is the decade of the 1990s, and we concentrate on weekly returns,

which seem to yield stronger results than daily returns. Our choice of data contrasts

with many of the papers mentioned above, which use the S&P100 or S&P500 spot op-

tions. The futures options are American, and this makes the calculations much more

computationally intensive, and precludes an easy construction of the risk neutral under-

lying distribution at maturity time. On the other hand, one expects the futures options

market to be very efficient, because hedging with long or especially short positions in the

underlying, is much easier with futures, rather than the spot index4. Also, with futures

4For the same reason, Jorion (1995) uses futures options on foreign exchange, and Amin and Ng
(1997) look at Eurodollar futures options.
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options, one does not require the dividend yield, to value the option. This seems to be a

significant random factor, in the context of our analysis below.

The following is a plan of this paper. We introduce our data in Section 1. In Sec-

tion 2 we first replicate the results of Coval and Shumway on Delta hedged portfolios,

adapted to our data and testing framework. Then we extend this work to Delta and

Vega hedged portfolios. In Section 3 we first present a Principal Components Analy-

sis of the options Black-Scholes implied volatilities, to show that their evolution, as a

function of moneyness, is overwhelmingly dominated by parallel shifts, and changes in

slope, which corresponds to changes in the implied volatility smirk itself. We then adapt

this to a formal test on the innovations in the option prices, which does not reject the

no-arbitrage hypothesis, when the smirk dynamic is incorporated. We then present some

diagnostic tests on the smirk factor, show that it is useful for hedging, and then discuss

our results in the context of other recent work on the smirk, and the question of the

rationality of equity index option markets. Finally, in section 4 we summarize our results

and conclusions.

1 Our Data and its Summary Features

As we have mentioned already, we use the CME futures and associated options on the

S&P500 index. These futures contracts trade on a cycle with maturities in March, June,

September and December, and each contract matures on the 3rd Friday of the month.

Each futures contract is associated with an option, which matures on the same day as

the future, and 2 “serial” options, which mature 1 and 2 months earlier than the futures

contract. We will restrict our attention to the non-serial options, for simplicity, and

because these options are much more heavily traded, and at longer maturities, than the

serial options. The options are paid for when they are purchased, i.e. they are not LIFFE

style. To value these options, one should replace the dividend yield by the interest rate;

also both puts and calls are sometimes optimally exercised early5.

Our data is purchased from the Futures Industry Institute, of Washington DC. We

will work with data at weekly intervals, from Wednesday 01/03/1990 to Wednesday

01/05/2000 (format MM/DD/YYYY), which covers 522 weeks. We will work with set-

5This arrangement applies for retail investors. For market makers, there are more complicated margin-
ing rules, which are closer to the LIFFE procedures, and are described in Duffie (1989).
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tlement prices, which are based on the option prices during the closing period of the day’s

trading. Also, we will only use option prices for which some trading has been recorded

on the appropriate day. These prices are likely to be very reliable, because the daily

margining is based on them, and so they are scrutinized closely by the market partici-

pants. On the other hand, we do no know whether the prices of the various portfolios that

we study are synchronized; however synchroneity problems will tend to erode strength

of the results that we will present, and so they will still be valid, to the extent that they

are positive.

We also need US$ interest rates. We calculate these from the settlement prices of

the Eurodollar futures, which also trade on the CME (and for which the data was also

purchased from the FII). In detail, we aggregate and interpolate from the forward rates

associated with these futures prices, to get the corresponding interest rates up to the

maturity time of the option being valued, and we ignore any convexity correction.

In our tests, we will restrict attention to the non-serial options nearest to maturity,

but with maturity beyond a roll-over period of 30 days. Thus, all options considered will

have maturity between 30 and 30 days + 3 months ≈ 120 days. Figure 1 gives the Black

Scholes implied volatilities for all traded puts and calls on the date 06/25/97. The smirk

is striking in this figure. Also striking is the number of puts and calls available in this

market.

Figure 2 gives the moneyness levels (strike/futures price) available for these call op-

tions, over our 522 weeks. At each date, this figure includes a point at the appropriate

moneyness level, for each call option for which there has been some trading on that date.

We see from this that traded calls are consistently available at moneyness levels between

about 96% (4% in the money - ‘ITM’) and 106% (6% out of the money - ‘OTM’), but

sometimes not beyond these levels. In our tests, we will restrict attention to this mon-

eyness interval for calls. The figure also includes the total open interest on each date,

for moneyness levels below 100% (i.e. ITM), between 100% and 110%, and above 110%.

We see from this that there is more open interest in the OTM call options, but there is

little open interest beyond 10% OTM. Also, the open interest increases as each maturity

approaches, up until the roll-over.

Figure 3 is the same as Figure 2, but for puts. Traded puts are consistently available

at moneyness levels below 102% (2% ITM), and availability extends much further OTM

than for the calls; up till 1995, traded puts are available to moneyness 88% (12% OTM),
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and after 1995, to moneyness 80% (20% OTM), and sometimes much further. Our test

will also concentrate on these moneyness levels, for the puts. From the open interest

graphs, we see that there is more open interest for puts than for calls, and particularly

for puts more than 10% OTM.

Many of our tests will involve options with many strikes taken together, interpolated

at moneyness intervals at 2% of the underlying price. From Figures 1, 2 and 3, it is

clear that this spacing is amply wide enough to ensure that adjacent moneyness values

correspond to distinct option prices.

2 Returns to Delta and Vega Hedged Options Port-

folios

2.1 An Analytic Framework:

In Subsection 2.3 below, we will give our results on Delta and Vega hedged portfolios.

These results can be viewed as an extension of the results of Coval and Shumway (2001),

who show that option straddles have negative returns on average, thus providing evidence

that volatility risk has a negative price. In Subsection 2.2 we will adapt the Coval and

Shumway results themselves to our data and testing framework, and these results will

serve to support and strengthen our results of Subsection 2.3.

Specifically, Coval and Shumway construct straddle portfolios, with strikes at various

fixed moneyness values, rebalanced on a daily or weekly basis, and constructed to be Delta

neutral in the Black-Scholes framework. They show that these straddles have significantly

negative return, in an OLS framework, and then argue that this return represents a

(negative) payment for the exposure to the volatility risk, that the straddle represents.

However, this argument is rather informal, and the conclusion may be spurious, and

due to the imperfection of the Black-Scholes hedge. Thus, they then put it on a firmer

foundation, by implementing a GMM test of the null hypothesis that their returns obey

a specific equilibrium model, which is consistent with Black-Scholes pricing. They show

that the null hypothesis is rejected, but then reinstated, when the averages are stripped

out of the straddle returns.

We will adopt a different approach to dealing with the imperfection of the Black

Scholes hedge, which will involve including extra returns in the regression, to control for
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residual exposure to the known priced factors. For this, we will work with the following

very general assumptions and associated propositions:

Assumption 1: All prices under consideration form a complete market, in which

there are no frictions and no arbitrage opportunities. Also, these prices can be determined

in terms of state variables (or “factors”) (X1
t , ..., Xn

t ) ≡ Xt, which satisfy a joint Ito

equation dXt = σ(Xt)(dWt + µ(Xt)dt), in which dWt is the differential increment of

Brownian motion in n dimensions. Under these assumptions, and some general technical

conditions see eg. Duffie (2001), there exist associated risk premia denoted say λ1, ..., λn,

which can be functions of Xt, and and are defined as the expected return that the market

requires per unit of volatility, for exposure to the risk represented by the state variable

X i
t . The expected rate of return associated with taking the risk represented by dX i

t

is thus σi(Xt)λ
idt, and the equation for this state variable with respect to risk neutral

probabilities is dX i
t = σi [dWt + (µi − λi)dt] .

Proposition 1: Suppose there is a non-dividend paying asset in this market with

price Qt. Then under Assumption 1, we must have

dQt − rtQtdt =
n∑

j=1

βj
[
dX̃j

t + λiσdt
]
, (1)

for some β1, ..., βn, which can also be functions of Xt, and in which6 dX̃j
t := dXj

t−σjµdt ≡
σdWt, so that this is a martingale difference.

Proof: First, Qt must be a function of X1
t , ..., Xn

t , since these are a complete set

of state variables. Thus, applying the Ito Formula, we can write dQt in terms of

dX1
t , ..., dXn

t , together with a drift. Taking β1, ..., βn to be the resulting noise coeffi-

cients, the drift must be as in Equation (1): to see this, note that this LHS must be

a martingale difference with respect to risk neutral probabilities, since it is a cash flow

which can be obtained net of investment (See Duffie (2001)); also, to transform the RHS

to RNPs corresponds to subtracting
∑n

j=1 βjλjσjdt, to leave terms involving dX̃j
t , making

it a martingale difference. QED

Assumption 2: The index level St and its volatility σt are sufficient state variables

for the prices under consideration, and the dynamics are homogeneous of degree 1 with

respect to the index level. The dividend yield rate dt and instantaneous interest rate rt

6Here and throughout, the notation “:=” in an equation means that the equation serves to define the
term on the left of the notation.
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are known up to the maturities of the futures and options prices being considered. Thus

we can write the state equations as dSt/St = µSdt + σtdW S
t and dσt = µσdt + σσdW σ

t ,

and these coefficients, and the risk premia λS and λσ, can depend on σt but not St.

Proposition 2: Take a non-dividend paying asset as in Proposition 1, with price Qt.

Also, take a fixed futures maturity T , later than t, and denote the corresponding futures

price by fT
t . Then under Assumptions 1 and 2, we must have

dQt − rtQtdt = βfdfT
t + βσ(dσ̃t + λσσσdt), (2)

for some coefficients βf , βσ, which can depend on σt, and in which dσ̃t := dσt − µσdt ≡
σσdW σ

t .

Proof: This follows from Proposition 1, noting that the futures price must be a

martingale, with respect to RNPs, since it is a cash flow which can be obtained zero

investment. QED

In Subsection 2.2, we will adapt the tests of Coval and Shumway, arguing that λσ < 0,

under Assumptions 1 and 2. In Subsection 2.3 we will argue that we cannot account for

the Delta-Vega hedged returns under these assumptions, and in Section 3 we will extend

our set of state variables under Assumption 1, to including the smirk factor.

2.2 Analysing Straddle Returns:

The work of this section is closely related to that of Coval and Shumway (2001) (see also

Bakshi and Kapadia (2003)), in that we isolate the volatility risk premium by looking

at the returns of straddles, in which the price factor should be hedged away. Coval and

Shumway show that these consistently tend to have negative returns, after subtracting

their financing costs, and they conclude from this that the volatility factor has a negative

risk premium.

Coval and Shumway construct straddles, comprising put and call with the same strike.

In order to avoid options for which there are no trades, we form our straddles from ATM

calls and OTM puts, or ATM puts and OTM calls, as detailed in Tables 1 and 2, which

contain the empirical results of this subsection. Given a choice of moneyness levels for

the call and put, then we form our straddle portfolios comprising amounts hc
t of the call

and hp
t of the put with strikes nearest to these levels, and such that

hc
t∆

c
t + hp

t ∆
p
t = 0, (3)
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hc
tV

c
t + hp

t V
p
t = ft, (4)

where ft is the futures price on which the options are written, and the ∆ and V values are

the appropriate Delta and Vegas, calculated in the Black-Scholes Model for the underlying

returns7. The first equation here corresponds to the straddle being Delta neutral, and

the other equation is strictly speaking unnecessary, but is included so that the volatility

exposure for the straddle is constant unity, in the Black-Scholes Model, when normalized8

by the futures price.

Table 1 gives the results of 2 regressions, with dependent variable the weekly price

innovations in the straddle, for a number of put and call moneyness levels as indicated,

minus the financing costs9, and normalized by the underlying futures price. In the first

regression, the independent variable is just the unit constant. The coefficient is negative

for every x, usually significant at a level of 0.1%, agreeing with the Coval and Shumway

result. The t-statistics in this table are all calculated using the Newey-West information

matrix taking 4 lags, and are thus robust to non-normality and heteroskedasticity of the

residuals.

However, we cannot rule out the possibility that the straddle is not perfectly Delta

hedged, and that the consistently negative returns reflect the risk premium on the residual

exposure to the underlying. To address this possibility, we appeal to the above Propo-

sition 2, and include the futures return10 into the regression. The second regression

equation for Table 1 is thus

((Strt+1 − Strt)− rtStrtδt)/ft = α + β(ft+1 − ft)/ft + (mean zero residual), (5)

7By “Black Scholes Model for the underlying returns”, we mean that the interest rate is consant,
and the underlying index with dividends reinvested, whose rate of return will be the same as that of the
futures conract, plus the riskless rate, follows a Geometric Brownian Motion. To calculate the options
prices, etc, we use the Binomial method, taking account of early exercise, opportunities.

8This normalization is appropriate, and prevents hc
t , h

p
t from being homogeneous with respect to the

futures price, because Vega is homogeneous, of degree 1, with respect to the underlying futures price.
9In all our tests, we will take the interest rate to be that derived from the Eurodollar futures prices,

and appropriate for the option maturity under consideration. This is rather crude. However, all our
empirical results will be essentially unchanged if we double this interest rate, or take it to be zero.

10By “futures return” we mean the futures price innovation, divided by the initial futures price. This
is a misnomer, because taking a futures position does not entail investment; but it is useful, because the
futures return only trivially differs, by the riskless return minus the dividend yield, from the return on
the index.
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where Strt is the time t price of the straddle. Comparing this equation with Equation

(2), then βσdσ̃t in Equation (2) (which is a Martingale difference) corresponds to the

(mean zero residual) term in (5), and βσλσσσdt in (2) corresponds to α in (5). Since the

straddles are positively exposed to the volatility (βσ > 0), then α < 0 corresponds to

λσ < 0.

As we have said, in the first regression of Table 1, for all call and put moneyness

combinations, the coefficient on the unit constant is negative, and usually at a significance

level of 0.1%. However, in the second regression, the coefficient on the futures return

is also always negative. This indicates that the hedge might be mis-specified; and the

negative straddle return might be attributed at least partially to the risk premium on

the price factor, which is well established to be positive. But as argued above, under

Assumptions 1 and 2, the coefficient on the constant in the second regression corresponds

to the volatility risk premium having stripped out the price factor, and this coefficient is

also negative for each strike combination, and usually significant at 0.1%. The conclusion

that λσ < 0 thus still stands.

Table 1 also gives the residual Sharpe ratio for the second regression for each strike

combination, i.e. the mean of the residual returns, divided by its standard deviation.

Identifying Equations (2) and (5), then this mean is α ≡ βσλσσσdt, and this residual

standard deviation is βσσσ
√

dt. Thus, under Assumptions 1 and 2, this Sharpe ratio is

an estimate of λ
√

dt, i.e. the volatility risk premium itself.

Looking more closely at Table 1, the evidence for λσ < 0 tends to be weaker for higher

strikes (calls further OTM and puts less OTM). Correspondingly, the Sharpe ratios de-

cline for higher strikes. Since a higher option price corresponds to a lower return, the

maturity price being fixed in terms of the underlying, this is consistent with our inter-

pretation of the smirk, that prices are “too high” for lower strikes, under Assumptions 1

and 2 above.

Coval and Shumway also show how to make their straddles “crash neutral”, by includ-

ing an extra, deep out of the money put in the Delta hedged portfolio, in an amount such

that if the market falls so that both puts are exercised, then the value of the portfolio is

constant. The motivation for this is to see whether the negative return that they isolate,

is really a jump risk premium, and the point about these crash neutral straddles is that

they are not vulnerable, and neither do they provide insurance, against a market crash.

Following this idea, we add to our portfolio an amount hp,Crash
t of the traded put, which
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is nearest to being of the money by 15%, and taking the amounts hc
t , h

p
t , h

p,Crash
t to solve

hc
t∆

c
t + hp

t ∆
p
t + hCrash

t ∆p,Crash
t = 0, (6)

hc
tV

c
t + hp

t V
p
t + hp,Crash

t V p,Crash
t = ft, (7)

hp
t + hp,Crash

t = 0. (8)

The regression results, replacing the straddles of Table 1 by such “crash neutral” strad-

dles, are given in Table 2. Making the straddles crash neutral further erodes the t-statistic

on the unit constant coefficient, in each regression, but it is usually still highly significant.

2.3 Delta-Vega Hedged Returns:

Our Delta-Vega hedged portfolios comprise 1 long futures contract, and an amount hc
t of

the call with strike nearest to being out of the money by a proportion x of the underlying

futures price, and an amount hp
t of the put, also with strike nearest to being out of the

money by a proportion x of the underlying futures price. We use only options which are

traded on each date, and so we take x = −2%, 0, +2%, +4% and +6%. These amounts

hc
t and hp

t are chosen such that

1 + hc
t∆

c
t + hp

t ∆
p
t = 0, (9)

hc
tV

c
t + hp

t V
p
t = 0, (10)

where ∆c
t and ∆p

t are the Deltas, and V c
t and V p

t are the Vegas of these options, calculated

in the Black-Scholes Model. (Note that the underlying future itself has Delta = 1, and

Vega = 0.)

Now, since the out of the money amounts x are always approximately the same for

the call and the put in the portfolio, then we have ∆c
t ≈ −∆p

t > 0 and V c
t ≈ V p

t > 0.

From these, and Equations (9) and (10), it follows that hc
t ≈ −hp

t < 0. Thus, for x > 0

(x < 0) we expect this Delta Vega hedged portfolio to lose (gain) money. For x = 0, we

expect hc
t ≈ −1, hp

t ≈ +1, and we expect the portfolio to be close to zero, on the basis of

put-call parity, ignoring the effects of early-exercise on the option prices.

In Table 3 gives the results of 3 regressions, for each x above. The first regression

includes only the unit constant as independent variable, and it confirms our conjecture,

in that the coefficient is positive for x < 0, negative for x > 0, and indistinguishable
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from zero for11 x = 0. Motivated as in the previous subsection, we also give a second

regression, which includes the futures return as an extra independent variable. This is

sometimes highly significant, but does not substantially alter the pattern of significance

of the constant coefficient.

The third regression of Table 3 includes the return of the at the money straddle12

minus financing costs, as another independent variable. Under Assumptions 1 and 2,

then this return, taken together with the futures return, will account for the price and

volatility risk factors, and will also account for the corresponding risk premia, since

these returns are available in the market, with zero investment. This extra independent

variable is never significant, and does not alter the pattern of significance of the constant

coefficient.

Following Coval and Shumway’s idea as in the previous subsection, Table 4 gives the

same results as Table 3, but for the Crash neutral Delta-Vega hedged portfolio returns,

which include an amount hp,Crash
t of the traded put, which is nearest to being OTM by

15%, and with amounts satisfying

1 + hc
t∆

c
t + hp

t ∆
p
t + hp,Crash

t ∆p,Crash
t = 0, (11)

hc
tV

c
t + hp

t V
p
t + hCrash

t V p,Crash
t = 0, (12)

1 + hp
t + hp,Crash

t = 0. (13)

As in the previous subsection, this extra ingredient slightly erodes the coefficient on the

11Bollen and Whaley present a similar regression to this one, but with a different result. See Strategy
5, in their Table 9. This strategy is to sell puts in each of their moneyness categories, and to Delta-Vega
hedge by buying an ATM call, and selling the underlying index. This is essentially the reverse of our
strategy, and to be consistent with our results, it should make a profit when the put is OTM, and be
riskless when the put is ATM. In fact they lose money both for OTM and ATM puts. As an explanation,
they suggest that “the market maker is not charging a high enough volatility risk premium”. We suggest
that this discrepancy between their results and ours is driven by a fundamental difference between our
futures options and their spot options, namely that for futures options we do not have to deal explicitly
with the dividend yield factor. In fact an ‘implied dividend yield’ dct can be extracted from futures prices
via dct = dft/ft − dst/st + rdt, where st is the spot index price. In unreported work, we have compared
this with the actual, realized dividend yield, which is available from Datastream. The difference is small,
but might be enough to swamp the very small abnormal residual returns in our Table 3.

12By “return to the straddle”, and any other “return”, we mean the price innovation, divided by the
initial associated futures price. This again is a misnomer, since the ivestment required to establish the
straddle might not be equal to the futures price; but it is useful from the point of view of homogeneity
in the regressions.
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constant in the regressions, but they are still significant, and we can conclude that the

returns on the Delta-Vega hedged portfolios cannot entirely be explained in terms of the

risk premium on the price or the volatility, or in terms of a jump risk (“crash”) premium.

3 The Smirk Factor

In this section we analyze the abnormal returns of the Delta-Vega hedged portfolios, in

terms of what we call the smirk factor, and its risk premium. In Subsection 3.1 we use

a Principal Components Analysis to identify 2 factors in the dynamic of the implied

volatility structure, which account for the overwhelming part of this dynamic. These

factors can be interpreted as a parallel shift and a twist of the implied volatility, thus

corresponding to changes in the implied volatility, and in the smirk itself.

In Subsection 3.2 we test a linear priced factor (no-arbitrage) structure, with 1 and 2

factors corresponding to these components, against an alternative, which allows returns

which are not accounted for in terms of exposure to these factors. The input data to this

test is a vector of option price innovations, in which the futures price factor has already

been hedged out. The result is that with 1 factor, the priced factor structure is rejected,

consistent with the results of Section 2, but with 2 factors, the priced factor structure is

not rejected. Thus, the smirk factor accounts for the apparent arbitrage opportunities in

the Delta-Vega hedged portfolios.

In Subsection 3.3 we present some diagnostic tests on the smirk factor, and finally

in Subsection 3.4 we present a hedging exercise, in which a single option is hedged

with other options. Hedging the smirk factor does lead to a significant reduction of the

hedged volatility. In this hedging exercise, we use the Principal Components approach

to construct the hedges, and we are careful to do this out of sample, i.e. the hedge on

each date is constructed using only data available before that date.

3.1 A Principal Components Analysis (PCA) of the Implied

Volatility Innovation Structure:

Denote by Φx,T
t , the time t price of the OTM option with moneyness x := X/fT

t and

maturity T . (Thus, the option is a put if x < 1 and a call if x ≥ 1.) Also define the
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corresponding implied volatility σx,T
t to be such that

Φx,T
t = BS(fT

t , x, rt, σ
x,T
t , T − t), (14)

in which BS is the Black Scholes valuation function of the option, taking account of the

fact that it is American, and that the dividend yield should be taken to be equal to the

interest rate, since the underlying is the futures contract.

In this subsection, we will present a PCA of the weekly implied volatility innovations

{δσx,Tt
t ){x=x1,x2,...,xn}}t, linearly interpolated at moneyness points xi, and for each t, tak-

ing Tt to be the nearest maturity beyond the roll-over time13. A similar exercise has been

carried out by Skiadopoulos, Hodges and Clewlow (2000). Principal Components Analy-

sis simply takes an orthogonal basis of eigenvectors e1, e2, ..., en of the covariance matrix

of these volatility innovations, with corresponding eigenvalues ρ1 ≥ ρ2 ≥ ... ≥ ρn ≥ 0.

The innovations vector can then be expressed as

δσt = g1δs1
t + g2δs2

t + ... + g1δsn
t , (15)

in which gj =
√

ρjej, and we refer to this as the jth principal component, and δsj
t :=

1√
ρj

∑n
i=1 ej

iδσ
xi
t are uncorrelated dynamic factors with unit variance. The most efficient

way to summarize the innovations in terms of k independent factors, is then to take only

the first k components on the RHS of Equation (15).

In Figure 4 we graph the first 2 principal components, taking moneyness points 0.90,

0.92, 0.94, 0.96, 0.98, 1.00, 1.02, 1.04, 1.06. We see from this graph, as one might

expect, that the most important aspect of movement in the implied volatility vector is

(roughly) parallel shift, and the second is a twist. The corresponding eigenvalues make

up respectively 91.3% and 6.8% of the sum of all the eigenvalues, which tells us that

these 2 components account for 98.1% of the part of the implied volatility dynamic, that

has been accounted for in the linear structure we have imposed by using the covariance

structure.

13Thus, our implied volatilities are not time homogeneous with respect to maturity. We agree, in
unreported work, with the conclusions of Skiadopoulos, Hodges and Clewlow (2000), that the implied
volatility structure is not sensitive to the time to maturity.
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3.2 Fitting a Linear Priced Factor Structure to the Option

Price Innovations:

Applying the Ito formula to Equation (14), we have

δΦx,T
t = ∆x,T

t (fT
t , σx,T

t )δfT
t + V x,T

t (fT
t , σx,T

t )δσx,T
t + O(δt), (16)

where ∆ and V are the corresponding derivatives of the Black Scholes function, i.e. the

Delta and Vega, and we have subsumed the Ito correction terms, and terms involving

derivatives with respect to x, into the term14 O(δt).

Rearranging this equation, we can then deduce

δΨx
t :=

[
(δΦx,Tt

t − rΦx,Tt
t δt)−∆x,Tt

t δfx,Tt
t

]
/V x,Tt

t = δσx,Tt
t + O(δt). (17)

Note that δΨx,Tt
t here is the price innovation, net of financing costs, of a portfolio of an

option and the futures contract. In fact replacing (δσxi,Tt
t )i by (δΨxi,Tt

t )i in the PCA of

the previous subsection does not significantly alter the result there. (This is not shown.)

Moreover, the corresponding dynamic factors δsj
t := 1√

ρj

∑n
i=1 ej

iδΨ
xi
t can also be realized

in terms of actual portfolios of options and the future.

In this subsection, we will apply a linear factor analysis to the vector of innovations

δΨt := (δΨx1
t , δΨx2

t , ..., δΨxn
t ). Our aim is to test for arbitrage opportunities. Our ap-

proach is conceptually parallel to that of Jones (2001), except that he attempts to model

explicitly the non-linear nature of options returns, whereas we are relying on the Black

Scholes Model to account sufficiently for the nonlinearity, so that we can apply linear

techniques to the pricing dynamics of δΨt.

In detail, we fit the linear model

δΨt =
k∑

j=1

gj(δsj
t + λjδt) + εt, (18)

in which each gj is an n vector of parameters, constrained such that each is orthogonal

to its predecessors for lower j; the δsj
t ’s are jointly normal, with mean zero, standard

deviation
√

δt, and independent with respect to t and j; and the εi
t’s making up εt are

normally distributed, with mean zero and variance wi, and independent with respect to

14Our numerical results will be presented on a weekly basis, i.e. taking δt = 1. Thus, we could delete
the factor δt from our equations, but we keep it for the sake of clarity.
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t and i. Under our linearity assumptions, and applying Proposition 1 of Section 2, this

equation will hold if there are no arbitrage opportunities, and then λj represents the

price of risk associated with the factor sj
t . This equation represents our null hypothesis,

and the alternative hypothesis is that the drifts are not so constrained, so that we can

write

δΨt =
k∑

j=1

gjδsj
t + µδt + εt, (19)

in which the n parameters µ := (µ1, ..., µn) replace the k parameters λ1, ..., λk. If Equation

(19) is favored over Equation (18), then this is evidence either that there are arbitrage

opportunities, or that the model is not adequate to represent the dynamic of the options

prices.

Our technique for fitting the null and its alternative, is simply MLE, using the fact

that under the null, then dΨt ∼ N(
∑k

j=1 λjgjδt, BBT + W ), where B = [g1, ...gn] and

W = diag(w1, ..., wn), and under the alternative, then the mean
∑k

j=1 λjgj should be

replaced by µ.

We have implemented this test taking 9 moneyness values xi, ranging over 0.90, 0.92,

0.94, 0.96, 0.98, 1.00, 1.02, 1.04, 1.06, and taking k = 1 and k = 2. The results are given

in Table 5. With k = 1, i.e. the 1 factor model, the null hypothesis is rejected strongly in

favor of the alternative: the difference in the log-likelihoods is 65.12, and under the null

hypothesis, this should be distributed as 1
2

times χ2, with n− k = 8 degrees of freedom,

and so the probability of the null is virtually zero. This result is in tune with those

of Section 3 relating to the Delta-Vega hedged portfolios: First, note that our portfolio

innovations δΨxi
t represent the price innovations of Delta hedged options, and the factor

δs1
t can be identified with the innovation of implied volatility. If price and volatility

(corresponding to Delta and Vega) are the only random factors, and Equation (18) holds,

then hedging the volatility between any pair of innovations will yield a portfolio whose

return is essentially just the riskless return. The portfolios of Section 3 are Delta and

Vega hedged, but their returns are not just the riskless return.

Turning to k = 2, i.e. the 2 factor model, the difference in the log-likelihoods tells us

that this is overwhelmingly favored over the 1 factor model, both in null and alternative

forms. But more striking, the alternative is now not favored over the null: the difference

in the log-likelihoods is only 3.96, which under the null is distributed as 1
2

times χ2,

with n − k = 7 degrees of freedom. This has a p-value of about 20%. Moreover, the

18



factor loadings g1 and g2 are virtually the same as the principal components of the

previous subsection, and so we can identify the factors as the “(implied) volatility”, and

the “smirk”. The associated risk premia should be compared with the Sharpe ratio for

investing in the underlying futures themselves, which we estimate at 0.11 (t-stat. 3.17)

for our data. We see that the volatility premium is comparable in magnitude to this

ratio, but negative, and the smirk premium is about twice the magnitude of this ratio,

and positive. These signs are consistent with option prices being generally “high”, and

to the prices of options with low strikes, i.e out of the money puts, being “high” relative

to the rest15. Thus, consistent with Backshi and Kapadia, etc, the market is prepared to

pay a premium for options, since they provide insurance against volatility. The market is

also prepared to pay a premium for OTM puts, causing the smirk, presumably to insure

against market declines, but this does not represent an arbitrage opportunity, and can be

explained in terms of the risk premium of the dynamic smirk factor. The risk premium

on the smirk factor is rather high, relative to that on the index itself. Writing OTM puts

is thus good business; but we suggest that this premium represents a reasonable rent for

the put writers’ expertise in hedging, and so it does not represent a market anomaly or

disequilibrium.

3.3 Some Diagnostics on the Smirk Factor:

The factor innovations δs1
t , δs

2
t can be extracted from the data in the MLE framework,

by minimizing the residual ||δΨt − ∑k
j=1 ej

tδx
j
t ||2 for each t. Graphs of our 3 factor

innovations δfTt
t /fTt

t , δs1
t , δs

2
t are given in Figure 5.

Table 6 presents some diagnostic statistics relating to these innovations. For clarity,

in this table we write the implied volatility factor innovation ds1
t as dimplt, and the smirk

factor innovation ds2
t as dsmirkt. From Panel A, we see that at each moneyness level,

the residuals from the 2 factor fit have standards deviation of about 12% of the standard

deviation of the innovations δΨt themselves. This is consistent with an R2 for the model

of about 1−(12%)2 = 98.5%, i.e. the 2 factors account for 98.5% of the innovations. Also,

these innovations are not much correlated with each other, as one should expect from

their construction, but they are significantly correlated with the futures return dfTt
t /fTt

t .

15Note that the smirk factor, as given in Table 5 is negative for low strikes. This is arbitrary: If the
signs on this factor were reversed, and the risk premium were reversed, the model would not be altered.
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This is consistent with the results of Section 2, that the Black Scholes Delta hedge, which

has been used to construct the innovation δΨt, is not perfect.

We see in Panel B, that the factor innovations are not autocorrelated. This indicates

that they are distinct from the “buying pressure” factor identified by Bollen and Whaley

(2003), which corresponds to option price increases, when there is more demand to buy

them. Bollen and Whaley show that this price distortion is temporary, and in fact its

innovation will be highly negatively autocorrelated, and self correcting within a few days,

as more options are written to satisfy the demand.

Panel C presents a regression of the underlying return cubed, and normalized by

the implied volatility at the beginning of the time step, against the contemporaneous

innovation in the smirk factor, and its lags. The significant result shows that the smirk

factor can be used to hedge the skew in the underlying return. This is not surprising, since

the smirk innovation itself is skewed, since it corresponds to short puts and long calls.

This panel also presents a regression of the underlying returns squared and normalized

by the implied volatility at the beginning of the time step, against the implied volatility

factor innovation. The result is again significant, but not surprising, since this return

squared is a proxy for the innovation in the underlying volatility.

In Panel D we investigate whether the implied volatility and smirk factors themselves

(not their innovations) can predict respectively the underlying volatility and skew, prox-

ied respectively by the underlying return squared, and the underlying return cubed and

normalized by the implied volatility. We characterize the implied volatility and smirk fac-

tors by projecting the implied volatility vector onto the corresponding eigenvector. Also,

we include in the regression the time to maturity of the option at each date, to obviate

any maturity effects. The implied volatility factor can, as expected, predict the underly-

ing volatility. This result would seem necessary, under the assumption that volatility is

a dynamic factor, which is reflected in option prices. However, it seems that the smirk

factor cannot predict the underlying skew. It seems that the options smirk, unlike the

implied volatility, is not determined in relation to the underlying dynamic. This negative

result has consequences for constructing a no-arbitrage option pricing model incorporat-

ing our dynamic smirk factor. Any such model could be characterized as an Equivalent

Martingale measure on the underlying dynamic, which differs from the objectively real-

ized measure by a Radon Nykodym derivative representing a risk premium. Our result

suggests that in a no-arbitrage model, the smirk dynamic must reside purely in this risk
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premium, and not in the objectively realized dynamic. It seems that the options smirk

represents a dynamic “crash fear”, that cannot be detected in the underlying returns.

3.4 Hedging with the Smirk Factor:

We now present a Delta-Vega-Smirk hedging exercise, based on the factors isolated above.

We will hedge the option at each moneyness level 0.90, 092, ...1.06, with all the options

together, at the other moneyness levels. Taking the the first k components, using Equa-

tion (18) above, and recalling that δsj
t := 1√

ρj

∑n
`=1 ej

`δΨ
x`
t and gj =

√
ρjej, then for

each i, the portfolio δΨxi
t −

∑k
j=1

∑n
l=1 ej

ie
j
`δΨ

x`
t is hedged against the first k factors. This

portfolio has weight 1 − ∑k
j=1(e

j
i )

2 in δΨxi
t , and so the portfolio in which 1 unit of the

option with moneyness i is hedged with the other options, has price innovation
(
δΨxi

t −
∑k

j=1

∑n
l=1 ej

ie
j
`δΨ

x`
t

)

(1−∑k
j=1(e

j
i )

2
) . (20)

Table 7 shows that standard deviations of these price innovations, for values k = 0, 1, 2,

which correspond to the Delta hedge, the Delta-Vega hedge, and the Delta-Vega-Smirk

hedge, respectively. The ej
i ’s used to construct these portfolios are calculated separately

for each date, via the Principal Components Analysis of Section 3.1, and using only data

for previous dates, i.e. out of sample. This ensures that the hedging could have been

done in real-time. In detail, for each date we use the covariance matrix, calculated with

previous data, but with exponentially decaying weight factor, such that the data 0.25

years before the date being considered, is weighted half as much as the most recent data.

For this reason, we have started the hedging from 1991, instead of 1990.

We see from table 7, that the Delta-Vega hedge is always much better than the Delta

hedge, and the Delta-Vega-Smirk is significantly better that the Delta-Vega hedge, except

for middle moneyness levels, where the influence of the smirk factor is relatively small.

For k = 0 and 1, the Sharpe ratios of the corresponding returns reflect the risk premia

of the unhedged exposures.

3.5 Discussion of our results:

We now discuss our analysis of the smirk, and how it relates to some of the previous

literature. First, like us, many authors, notably Bakshi, Cao and Chen (1997), Bates
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(2000) and Pan (2001), and very recently Liu and Pan (2003), Eraker, Johannes and

Polson (2003) and Eraker (2004) have studied index options pricing and hedging, taking

the price and the volatility to be state variables, as we have done, but with Poisson

jumps as a third source of risk, in place of our dynamic smirk factor. It is pertinent

therefore to ask whether our smirk factor can be interpreted in the context of these

models. We note that in these models, the Poisson jump is not a sate variable, since

the propensity for the market to jump is dependent only on the volatility. Therefore

the jump component cannot make the smirk dynamic, which seems at odds with the

behavior that we have documented. On the other hand, Liu and Pan show that the jump

component in their model can be hedged in a portfolio containing at least 2 options16.

From our Table 7, we see that the option portfolios of our Section 3.4 are very effective

in hedging our price, volatility and smirk factors, and so it is natural to ask whether

our smirk factor is the same as the Poisson jump component in these papers, which is

isolated by Eraker, Johannes and Polson, in their Figure 3. Comparing this Figure with

Figure 5C of the present paper, there seems to be no resemblance between our smirk

innovations and their jumps: our smirk innovations seem to be white noise, whereas the

jumps are quite infrequent impulses, occurring about once per year. In fact Bakshi, Cao

and Chen find that their third jump factor can improve the pricing of their model, by

better representing the smirk, but not the hedging ability. We conclude that our smirk

factor is not accounted for by the jump component of these papers.

In fact our approach is different from that of the papers mentioned above, in that these

concentrate on modelling the underlying dynamic and associated risk premia, such that

options can be accurately priced in terms of the Equivalent Martingale Measure (EMM).

By contrast, and consistent with Coval and Shumway (2001) and Bakshi and Kapadia

(2003), we have taken the option prices as given by the market, and concentrated on

directly modelling their returns. Thus, we cannot speak directly of the “pricing ability” of

our approach, but only whether the market option prices are arbitrage free and consistent

with reasonable levels of risk premia, and we find that they are.

In contrast to our smirk risk premium estimation, we have mentioned above that in her

GMM fit of the jump diffusion model to index option prices, Pan (2001) estimates a mean

jump size of about -0.9% but a risk neutral mean jump size of -19.2%. This represents an

16This paper works with the relatively simple model, in which the jump size is constant, but intuitively,
their procedure will hedge most of the risk, if the jump size is random.
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unreasonably large premium of 18.3%. Using more recent MCMC econometric methods,

Eraker gets a lower premium of µQ
y = 7.9% (see his Table III), but this still seems very

high17.

Our diagnostic tests failed to show that the smirk can predict the underlying returns

skew, and so we suspect that it might be problematic to identify our dynamic smirk with

some aspect of the underlying return. The EMM must exist, if there are no arbitrage

opportunities, but we suspect that the smirk corresponds to a dynamic risk premium,

which is not tied to the underlying returns.

We have mentioned the conceptual parallels and contrasts between our approach and

that of Jones (2001). The basic difference is that he uses a semi-parametric framework to

accommodate the nonlinearity of the problem, whereas we work with the residuals from

a Black Scholes approximation, and rely on a linear analysis of these. We agree with

Jones, in favoring a 3 factor diffusive model, but it seems unclear whether Jones’ factors

can encompass our smirk factor. With his factors, Jones is not able to account for all

option returns in terms of risk premia associated with his factors.

Finally, our results are distinct from, but not in disagreement with, those of Bollen

and Whaley (2003), who identify a “price pressure” factor for options, which is essentially

the excess of demand interest over supply interest. They show that this factor influences

the price. This is perhaps not surprising, but is problematic for no-arbitrage models,

under which options prices should be completely determined by the underlying factors,

with supply/demand imbalances being immediately obviated. However, they show that

the effect on the option price is temporary, lasting only a few days, and this means that

the effect will not be very strong in our data, because we are working with a weekly time

step. Also, our smirk factor is not temporary, since its increments are not negatively

autocorrelated.

4 Summary and Conclusions

Our aim in this paper has been to analyze the “smirk” in S&P500 futures options prices,

which is the stylized fact that options with lower strikes have a higher Black-Scholes

17Eraker, Johannes and Polson (2003) note, on page 1291, that a more modest risk premium of 2%
seems to account for the smirk in the jump diffusion model. However, this result is informal and predates
the estimate µQ

y = 7.9% of Eraker.
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implied volatility, so that the option pricing “smile” is lop-sided.

Our approach has been first to construct portfolios of options and the underlying

future, which are Delta hedged, i.e. hedged against movements in the underlying price,

and Vega hedged, i.e. hedged against movements in the options implied volatility. These

earn excess returns, consistent with a “market imperfection” interpretation of the smirk,

i.e. that the out of the money puts are “too expensive”, relative to the out of the money

calls. Our hedges have been constructed using the Black Scholes Model, but we have

also included checks to account for mis-specification of this model. We conclude from

this exercise that either there really are market imperfections, of that we must search for

factors beyond price and volatility, to explain the smirk. By including an extra, deep out

of the money put in the Delta-Vega hedged portfolio, to make it “crash neutral”, we can

conclude that the smirk does not represent an insurance premium against a large market

crash. These tests are extensions of the tests of Coval and Shumway (2001) and Bakshi

and Kapandia (2003), who deal with Delta (but not Vega) hedged portfolios.

Second, we have isolated the smirk as a third, diffusive factor, and shown that the

returns to the Delta-Vega hedged portfolios do not represent arbitrage opportunities,

but can be explained in terms of the risk premium of this factor. Our technique for

this has been Principal Components Analysis, applied to the Delta hedged option price

innovations, and an estimation of a linear priced factor model for these innovations. This

risk premium is about twice the risk premium for investing in the underlying S&P500

index itself, and we suggest that this is not excessive, but represents a reasonable rent

for the expertise of writing and hedging these options. We show that this dynamic smirk

factor is useful for hedging options portfolios, but in contrast to the volatility factor, it

does not seem able to predict any aspect of the underlying return. The smirk factor seems

to represent a dynamic aversion to market falls, which is not reflected in the underlying

index futures prices.

Finally, we have discussed our results in connection with other recent work on the

smirk. Most authors have modelled the smirk in terms of Poisson jumps in the under-

lying price. However, this is not able to make the smirk dynamic, and fails to account

adequately for its magnitude. Also, including the Poisson jump component is not able

to improve the hedging performance of the resulting models.
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TABLE 1

Regressions of the Weekly Returns to Delta Neutral Straddles
(t-statistics in brackets)

Call Put Av. call Av. put Regressor 1st regr. 2nd regr. Residual
mon. mon. position position Sharpe ratio
1.00 0.92 2.015 7.792 Unit const. -0.00322 ( -5.07)∗∗∗ -0.00302 ( -4.29)∗∗∗

Futures ret. -0.08879 ( -1.17) -0.203
1.00 0.94 2.165 5.914 Unit const. -0.00321 ( -5.08)∗∗∗ -0.00299 ( -4.31)∗∗∗

Futures ret. -0.09627 ( -1.29) -0.201
1.00 0.96 2.351 4.589 Unit const. -0.00301 ( -4.67)∗∗∗ -0.00276 ( -3.89)∗∗∗

Futures ret. -0.11614 ( -1.50) -0.182
1.00 0.98 2.602 3.682 Unit const. -0.00280 ( -4.31)∗∗∗ -0.00251 ( -3.55)∗∗∗

Futures ret. -0.12843 ( -1.63) -0.163
1.00 1.00 2.964 3.089 Unit const. -0.00292 ( -3.89)∗∗∗ -0.00267 ( -3.22)∗∗∗

Futures ret. -0.11204 ( -1.35) -0.159
1.02 1.00 3.595 2.696 Unit const. -0.00255 ( -3.62)∗∗∗ -0.00225 ( -2.95)∗∗

Futures ret. -0.13518 ( -1.66)∗ -0.138
1.04 1.00 5.245 2.355 Unit const. -0.00223 ( -3.25)∗∗∗ -0.00189 ( -2.62)∗∗

Futures ret. -0.15513 ( -1.93)∗ -0.118
1.06 1.00 9.129 2.100 Unit const. -0.00197 ( -2.86)∗∗ -0.00160 ( -2.33)∗∗

Futures ret. -0.16661 ( -2.12)∗ -0.100
Notes:

• This table gives the results of regressions, in which the dependent variable is the weekly return
to the straddle, comprising puts and calls at the moneyness levels indicated, and with amounts,
so that the straddle is Delta neutral, in the Black Scholes framework.

• In the first regression, the regressor is the unit constant only, and the salient point is that the
coefficient is always negative.

• In the second regression, then futures return is also included as a regressor, to compensate for
any mis-specification in the hedge. The corresponding coefficient are sometimes significantly
negative, indicating that there is some mis-specification, but the unit constant is usually still
highly significant.

• The t-statistics are obtained using the Newey-West procedure, with 4 lags. Single, double and
triple asterisk indicates significance at 5%, 1%, 0.1%, in a 2 tailed test.
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TABLE 2

Regressions of the Weekly Returns to Delta and Crash Neutral Straddles
(t-statistics in brackets)

Call Put Av. call Av. put Regressor 1st regr. 2nd regr. Residual
mon. mon. position position Sharpe ratio
1.00 0.92 2.315 14.307 Unit const. -0.00289 ( -4.53)∗∗∗ -0.00268 ( -3.91)∗∗∗

Futures ret. -0.09319 ( -1.23) -0.170
1.00 0.94 2.467 9.216 Unit const. -0.00289 ( -4.53)∗∗∗ -0.00268 ( -3.91)∗∗∗

Futures ret. -0.09580 ( -1.31) -0.173
1.00 0.96 2.659 6.572 Unit const. -0.00271 ( -4.11)∗∗∗ -0.00243 ( -3.41)∗∗∗

Futures ret. -0.12280 ( -1.59) -0.155
1.00 0.98 2.926 5.007 Unit const. -0.00249 ( -3.78)∗∗ -0.00219 ( -3.10)∗∗

Futures ret. -0.13752 ( -1.72)∗ -0.136
1.00 1.00 3.315 4.056 Unit const. -0.00262 ( -3.43)∗∗ -0.00235 ( -2.82)∗∗

Futures ret. -0.12388 ( -1.49) -0.136
1.02 1.00 3.951 3.524 Unit const. -0.00226 ( -3.15)∗∗ -0.00193 ( -2.53)∗∗

Futures ret. -0.14689 ( -1.79)∗ -0.115
1.04 1.00 5.654 3.063 Unit const. -0.00196 ( -2.79)∗∗ -0.00158 ( -2.19)∗∗

Futures ret. -0.16747 ( -2.08)∗ -0.096
1.06 1.00 9.667 2.721 Unit const. -0.00169 ( -2.39)∗∗ -0.00129 ( -1.86)∗

Futures ret. -0.17936 ( -2.27)∗∗ -0.078
Notes:

• This table gives the results of regressions, in which the dependent variable is the weekly return to
the straddle, as in Table 1, comprising puts and calls at the moneyness levels indicated, together
with a deep out of the money put, in an amount to make the portfolio crash neutral.

• In the first regression, the regressor is the unit constant only, and the salient point is that the
coefficient is always negative.

• In the second regression, then futures return is also included as a regressor, to compensate for
any mis-specification in the hedge. The corresponding coefficients are usually not significant, and
do not greatly effect on the coefficient of the constant.

• The t-statistics are obtained using the Newey-West procedure, with 4 lags. Single, double and
triple asterisk indicates significance at 5%, 1%, 0.1%, in a 2 tailed test.
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TABLE 7

Residual Standard Deviations of Hedged Returns
Moneyness 0.90 Residual SD Sharpe Ratio (t-statistic)

k = 0 (Delta hedge) 0.01413 -0.249 (−5.49)∗∗∗

k = 1 (Delta-vega hedge) 0.00682 -0.177 (−3.76)∗∗∗

k = 2 (Delta-vega-Smirk hedge) 0.00387 -0.051 (−1.17)
Moneyness 0.92 Residual SD Sharpe Ratio (t-statistic)

k = 0 (Delta hedge) 0.01420 -0.231 (−5.18)∗∗∗

k = 1 (Delta-vega hedge) 0.00559 -0.162 (−3.29)∗∗∗

k = 2 (Delta-vega-Smirk hedge) 0.00237 0.034 (0.84)
Moneyness 0.94 Residual SD Sharpe Ratio (t-statistic)

k = 0 (Delta hedge) 0.01397 -0.236 (−5.30)∗∗∗

k = 1 (Delta-vega hedge) 0.00424 -0.227 (−4.25)∗∗∗

k = 2 (Delta-vega-Smirk hedge) 0.00176 -0.067 (−1.53)
Moneyness 0.96 Residual SD Sharpe Ratio (t-statistic)

k = 0 (Delta hedge) 0.0141 -0.215 (−4.89)∗∗∗

k = 1 (Delta-vega hedge) 0.0034 -0.195 (−3.98)∗∗∗

k = 2 (Delta-vega-Smirk hedge) 0.0019 0.002 (0.06)
Moneyness 0.98 Residual SD Sharpe Ratio (t-statistic)

k = 0 (Delta hedge) 0.0144 -0.192 (−4.42)∗∗∗

k = 1 (Delta-vega hedge) 0.0028 -0.098 (−2.07)∗

k = 2 (Delta-vega-Smirk hedge) 0.0026 0.023 (0.56)
Moneyness 1.00 Residual SD Sharpe Ratio (t-statistic)

k = 0 (Delta hedge) 0.0145 -0.175 (−4.00)∗∗∗

k = 1 (Delta-vega hedge) 0.0027 0.013 (0.31)
k = 2 (Delta-vega-Smirk hedge) 0.0025 0.024 (0.53)

Moneyness 1.02 Residual SD Sharpe Ratio (t-statistic)
k = 0 (Delta hedge) 0.01501 -0.140 (−3.30)∗∗∗

k = 1 (Delta-vega hedge) 0.00383 0.143 (3.04)∗∗

k = 2 (Delta-vega-Smirk hedge) 0.00245 0.042 (0.93)
Moneyness 1.04 Residual SD Sharpe Ratio (t-statistic)

k = 0 (Delta hedge) 0.01587 -0.105 (−2.45)∗∗

k = 1 (Delta-vega hedge) 0.00592 0.186 (3.91)∗∗∗

k = 2 (Delta-vega-Smirk hedge) 0.00221 0.032 (0.71)
Moneyness 1.06 Residual SD Sharpe Ratio (t-statistic)

k = 0 (Delta hedge) 0.01669 -0.076 (−1.73)∗

k = 1 (Delta-vega hedge) 0.00902 0.173 (3.40)∗∗∗

k = 2 (Delta-vega-Smirk hedge) 0.00529 -0.038 (−0.86)
Notes:

• This table gives the residual standard deviations for each option price innovation, hedged with
the other options, and with financing costs included.

• The t-statistics correspond to the hypothesis that the corresponding Sharpe Ratio is zero.
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Figure 1: The smirk for put and calls, on the date 06/25/97:
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Figure 2: Traded Strikes and Open Interest for our Call Data,
in terms of Moneyness:
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Figure 3: Traded Strikes and Open Interest for our Put Data, in
terms of Moneyness:
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Figure 4: First and Second Principal Components of the Implied
Volatility Innovations:
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Figure 5: Time Series of our 3 Factor Innovations:
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