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The Smirk in the S&P500 Futures Options

Prices: a Linearized Factor Analysis

Abstract

We construct portfolios of S&P500 futures and their associated options, which
are Delta (price) and Vega (volatility) neutral. These systematically earn negative
abnormal returns, and suggest that out of the money puts are too expensive, rel-
ative to out of the money calls. We give evidence that these negative returns are
not a payment for insurance against a market crash.

We then do a factor analysis on the Delta hedged option price innovations.
Including a ‘smirk’ factor, there is no evidence of arbitrage opportunities. However,
the smirk seems unable to predict the skew in the underlying return, though is useful
for hedging portfolios of options. We finally conclude that the smirk represents the
risk premium of a dynamic aversion to market falls, which seems unrelated to the

underlying futures index.

Introduction, Aims, and Conclusions

This paper studies the ‘smirk’” in US equity index options, which is the ubiquitous stylized
fact that options with higher strikes have lower implied volatilities, when the implied
volatilities are calculated in the standard Black-Scholes Model. Thus, a graph of these
implied volatilities looks like a smirk (see Figure 1). The options ‘smirk’ is a variant of the
‘smile’; under which options with strikes further away from the money have higher Black-
Scholes implied volatilities!. Bates (1991) noted that the various S&P index options
developed their smirk after the 1987 market crash, and interpreted it in terms of a
premium that the market is willing to pay for insurance against a further crash.

Until recently, attempts to explain the smirk in equity index options have focussed on
refining the model of the underlying index returns and the associated risk premia. This
approach has not been completely successful. For example, stochastic volatility models
have the potential to capture the smirk, via a negative correlation between the return and
the volatility, but many authors, notably Bakshi, Cao and Chen (1997) have noted that

!Bollen and Whaley (2003) document that options on individual stocks, rather than the index, tend

to exhibit smiles rather than smirks.
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an unreasonably high negative correlation seems necessary to do this. These authors,
and later Bates (2000), and Pan (2001) are thus lead to augment the stochastic volatility
model with random jumps. The model can then fit the smirk. However, Bates, concludes
that the high crash probability implicit in the options prices, under this model, seems
inconsistent with the absence of jumps in his data period, which is 1988 - 1993. Pan es-
timates the parameters of the jump diffusion dynamic for the underlying, simultaneously
with the parameters for the corresponding “risk neutral” dynamic, which is appropriate
for the option pricing. To do this she takes the underlying and option prices to be a
joint process, and applies a GMM technique. However, somewhat similar to Bates, she
estimates an extremely high aversion to jumps, even though the jumps themselves might
not be very large, and might be indistinguishable from diffusive returns?.

More recent work has moved beyond the paradigm of perfect, efficient markets. Jones
(2001) fits a very flexible semi-parametric model to S&P500 (spot) index put options,
which explicitly allows for mis-pricing, in the sense of an expected return in some region
of the moneyness-maturity space, which is not a reward for a risk identified in the model.
He fits his model in a number of specifications, and concludes that short dated out-of-the-
money puts are mis-priced and too expensive, thus giving an interpretation of the smirk.
In a similar spirit, Bondarenko (2002) sets up a very general test of rationality, which
is immune from peso problems, biased investor beliefs, and does not require knowledge
of investor preferences, and shows that the S&P500 futures options fail this test®. Also
in a similar spirit, but via a different approach, Bollen and Whaley (2003) show that
equity option prices react to buying pressure, and suggest that the index option smirk is
explained by the fact that there is a particular demand for out-of-the-money index puts,
for the purpose of portfolio insurance.

This present paper falls into two parts: first we study the options smirk, using the
approach of looking at hedged option portfolio returns, similar to Bakshi and Kapadia
(2003), and Coval and Shumway (2001). As Coval and Shumway emphasize, this ap-

2See her Table 3. The mean objectively realized jump size is -0.8% of the index, but risk neutral
jumps size is -19.2% of the index.
3His test does require that the pricing kernel is path independent, and he notes that this puts the

popular stochastic volatility models of Heston (1993) etc., and thus also Bakshi, Cao and Chen (1997),
Bates (2000), and Pan (2001), and the framework of this present paper, beyond his analysis. However,
he he also notes that these models themselves are problematic, in the sense that it seems unclear how

they could arise in a general Equilibrium framework.



proach can tell us about the risk premia and efficiency of the market, even if we are
unsure whether our model is perfectly specified. As do these authors, we construct our
hedges using simple Black Scholes hedge ratios, but we also include checks to ensure that
our results are not due to the mis-secification of these hedges. These authors’ motivation
is to show that the volatility is a priced factor in the market. We should also mention
Buraschi and Jackwerth (2001), who use a flexible no-arbitrage framework to draw a
similar conclusion, namely that options are not redundant for spanning the pricing ker-
nel. Our motivation is to go a step further, to explore the use of an extra priced factor,
beyond the volatility, for spanning the pricing kernel.

Specifically, we construct portfolios which are long the underlying future, short an
out of the money (OTM) call, and long an OTM put, and which is Delta and Vega
hedged. By regressing the returns of these against the unit constant, we show that they
systematically yield less than the riskless return on the investment required to establish
the portfolio. Thus, the OTM puts seem too expensive, relative to the OTM calls. We
also include the underlying futures return and the at the money (ATM) straddle return in
the regressions, representing the price and volatility factors, to ensure that the abnormal
negative returns are not a consequence of residual exposure to these factors, caused by
the Delta-Vega hedges being imperfect.

This result suggests either that more factors are required to model the data in a no-
arbitrage framework, or that there really are arbitrage opportunities. A candidate for an
extra factor might be an infrequent jump factor, for which the negative return reflects
the risk premium of this factor (i.e. “crash fears”), since our portfolio has a large payoff
under such a scenario. To investigate this, we then adapt an idea in Coval and Shumway,
and include an extra, deep OTM put in the portfolio, making it “crash neutral”, as well
as Delta and Vega neutral. By “crash neutral”, we mean that it does not give a large
positive or negative return, in the event of a large market fall. This extra option does not
greatly affect the amounts of the other options in the portfolio, since the extra option has
a small Delta and Vega, and the result is substantially unchanged: the expected return
of the hedged portfolio is still less than riskless interest rate.

In the second part of this paper, we show that the smirk itself can be taken as a third
diffusive, dynamic factor, and the abnormal returns can be explained in terms of the risk
premia on this factor and the volatility factor. Our technique for this is essentially to

implement a linear priced factor analysis on the option price innovations, having first



stripped out the nonlinearity in these price innovations as much a possible using the
Black Scholes framework. Our technique includes a test of whether there are arbitrage
opportunities, and we find that there are not, so long as we include the smirk factor.

Thus, the smirk represents a third dynamic factor in the options prices, beyond the
price and (implied) volatility factors, and its magnitude can be explained in terms of the
associated risk premium. Assuming there are no arbitrage opportunities, then options
prices should be given as the risk neutral expectation of their payoff, and so must be
dependent only on the risk neutral dynamic of the underlying price. It is pertinent
therefore to ask whether this factor is connected to the dynamic of the underlying index.
One would conjecture that the smirk factor can predict the underlying return skew, just
as the implied volatility can predict to the underlying return variance. However, we will
see that this is not the case, and the options smirk seems to represent a state variable
which resides only in the risk premium itself.

We finally show that the smirk factor is useful for hedging portfolios of options, and
we discuss our results in relation to previous literature, including the papers mentioned
above, and the very recent papers of Liu and Pan (2003), Eraker, Johannes and Polson
(2003), and Eraker (2004).

To summarize our salient conclusions: The smirk in the S&P500 futures options does
not represent an arbitrage opportunity or a market imperfection, but can be explained
in terms of the risk premium on a third dynamic factor. This factor does not seem to
reflect an aspect of the underlying dynamic, but to reside only in the options prices, and
it presumably represents a dynamic aversion to market falls.

For our data, we take the CME futures and associated futures options on the S&P500
index. Our data period is the decade of the 1990s, and we concentrate on weekly returns,
which seem to yield stronger results than daily returns. Our choice of data contrasts
with many of the papers mentioned above, which use the S&P100 or S&P500 spot op-
tions. The futures options are American, and this makes the calculations much more
computationally intensive, and precludes an easy construction of the risk neutral under-
lying distribution at maturity time. On the other hand, one expects the futures options
market to be very efficient, because hedging with long or especially short positions in the

underlying, is much easier with futures, rather than the spot index*. Also, with futures

4For the same reason, Jorion (1995) uses futures options on foreign exchange, and Amin and Ng
(1997) look at Eurodollar futures options.



options, one does not require the dividend yield, to value the option. This seems to be a
significant random factor, in the context of our analysis below.

The following is a plan of this paper. We introduce our data in Section 1. In Sec-
tion 2 we first replicate the results of Coval and Shumway on Delta hedged portfolios,
adapted to our data and testing framework. Then we extend this work to Delta and
Vega hedged portfolios. In Section 3 we first present a Principal Components Analy-
sis of the options Black-Scholes implied volatilities, to show that their evolution, as a
function of moneyness, is overwhelmingly dominated by parallel shifts, and changes in
slope, which corresponds to changes in the implied volatility smirk itself. We then adapt
this to a formal test on the innovations in the option prices, which does not reject the
no-arbitrage hypothesis, when the smirk dynamic is incorporated. We then present some
diagnostic tests on the smirk factor, show that it is useful for hedging, and then discuss
our results in the context of other recent work on the smirk, and the question of the
rationality of equity index option markets. Finally, in section 4 we summarize our results

and conclusions.

1 Our Data and its Summary Features

As we have mentioned already, we use the CME futures and associated options on the
S&P500 index. These futures contracts trade on a cycle with maturities in March, June,
September and December, and each contract matures on the 3rd Friday of the month.
Each futures contract is associated with an option, which matures on the same day as
the future, and 2 “serial” options, which mature 1 and 2 months earlier than the futures
contract. We will restrict our attention to the non-serial options, for simplicity, and
because these options are much more heavily traded, and at longer maturities, than the
serial options. The options are paid for when they are purchased, i.e. they are not LIFFE
style. To value these options, one should replace the dividend yield by the interest rate;
also both puts and calls are sometimes optimally exercised early®.

Our data is purchased from the Futures Industry Institute, of Washington DC. We
will work with data at weekly intervals, from Wednesday 01/03/1990 to Wednesday
01/05/2000 (format MM/DD/YYYY), which covers 522 weeks. We will work with set-

5This arrangement applies for retail investors. For market makers, there are more complicated margin-
ing rules, which are closer to the LIFFE procedures, and are described in Duffie (1989).



tlement prices, which are based on the option prices during the closing period of the day’s
trading. Also, we will only use option prices for which some trading has been recorded
on the appropriate day. These prices are likely to be very reliable, because the daily
margining is based on them, and so they are scrutinized closely by the market partici-
pants. On the other hand, we do no know whether the prices of the various portfolios that
we study are synchronized; however synchroneity problems will tend to erode strength
of the results that we will present, and so they will still be valid, to the extent that they
are positive.

We also need US$ interest rates. We calculate these from the settlement prices of
the Eurodollar futures, which also trade on the CME (and for which the data was also
purchased from the FII). In detail, we aggregate and interpolate from the forward rates
associated with these futures prices, to get the corresponding interest rates up to the
maturity time of the option being valued, and we ignore any convexity correction.

In our tests, we will restrict attention to the non-serial options nearest to maturity,
but with maturity beyond a roll-over period of 30 days. Thus, all options considered will
have maturity between 30 and 30 days + 3 months ~ 120 days. Figure 1 gives the Black
Scholes implied volatilities for all traded puts and calls on the date 06/25/97. The smirk
is striking in this figure. Also striking is the number of puts and calls available in this
market.

Figure 2 gives the moneyness levels (strike/futures price) available for these call op-
tions, over our 522 weeks. At each date, this figure includes a point at the appropriate
moneyness level, for each call option for which there has been some trading on that date.
We see from this that traded calls are consistently available at moneyness levels between
about 96% (4% in the money - ‘ITM’) and 106% (6% out of the money - ‘OTM’), but
sometimes not beyond these levels. In our tests, we will restrict attention to this mon-
eyness interval for calls. The figure also includes the total open interest on each date,
for moneyness levels below 100% (i.e. ITM), between 100% and 110%, and above 110%.
We see from this that there is more open interest in the OTM call options, but there is
little open interest beyond 10% OTM. Also, the open interest increases as each maturity
approaches, up until the roll-over.

Figure 3 is the same as Figure 2, but for puts. Traded puts are consistently available
at moneyness levels below 102% (2% ITM), and availability extends much further OTM
than for the calls; up till 1995, traded puts are available to moneyness 88% (12% OTM),



and after 1995, to moneyness 80% (20% OTM), and sometimes much further. Our test
will also concentrate on these moneyness levels, for the puts. From the open interest
graphs, we see that there is more open interest for puts than for calls, and particularly
for puts more than 10% OTM.

Many of our tests will involve options with many strikes taken together, interpolated
at moneyness intervals at 2% of the underlying price. From Figures 1, 2 and 3, it is
clear that this spacing is amply wide enough to ensure that adjacent moneyness values

correspond to distinct option prices.

2 Returns to Delta and Vega Hedged Options Port-

folios

2.1 An Analytic Framework:

In Subsection 2.3 below, we will give our results on Delta and Vega hedged portfolios.
These results can be viewed as an extension of the results of Coval and Shumway (2001),
who show that option straddles have negative returns on average, thus providing evidence
that volatility risk has a negative price. In Subsection 2.2 we will adapt the Coval and
Shumway results themselves to our data and testing framework, and these results will
serve to support and strengthen our results of Subsection 2.3.

Specifically, Coval and Shumway construct straddle portfolios, with strikes at various
fixed moneyness values, rebalanced on a daily or weekly basis, and constructed to be Delta
neutral in the Black-Scholes framework. They show that these straddles have significantly
negative return, in an OLS framework, and then argue that this return represents a
(negative) payment for the exposure to the volatility risk, that the straddle represents.
However, this argument is rather informal, and the conclusion may be spurious, and
due to the imperfection of the Black-Scholes hedge. Thus, they then put it on a firmer
foundation, by implementing a GMM test of the null hypothesis that their returns obey
a specific equilibrium model, which is consistent with Black-Scholes pricing. They show
that the null hypothesis is rejected, but then reinstated, when the averages are stripped
out of the straddle returns.

We will adopt a different approach to dealing with the imperfection of the Black

Scholes hedge, which will involve including extra returns in the regression, to control for



residual exposure to the known priced factors. For this, we will work with the following
very general assumptions and associated propositions:

Assumption 1: All prices under consideration form a complete market, in which
there are no frictions and no arbitrage opportunities. Also, these prices can be determined
in terms of state variables (or “factors”) (X}/,..., X]") = X;, which satisfy a joint Ito
equation dX; = o(X;)(dW; + u(X;)dt), in which dW, is the differential increment of
Brownian motion in n dimensions. Under these assumptions, and some general technical
conditions see eg. Duffie (2001), there exist associated risk premia denoted say A!, ..., A",
which can be functions of X;, and and are defined as the expected return that the market
requires per unit of volatility, for exposure to the risk represented by the state variable
X}. The expected rate of return associated with taking the risk represented by dX}
is thus o?(X;)Adt, and the equation for this state variable with respect to risk neutral
probabilities is dX} = o' [dW; + (u* — \")dt] .

Proposition 1: Suppose there is a non-dividend paying asset in this market with

price (J;. Then under Assumption 1, we must have

dQ, — r,Q.dt = f: 3 [df(g' + Nodt| (1)
j=1

for some ', ..., 4", which can also be functions of X, and in which® dX? := dX] —o7 udt =
ocdW,, so that this is a martingale difference.

Proof: First, ; must be a function of X}, ..., X!, since these are a complete set
of state variables. Thus, applying the Ito Formula, we can write d@); in terms of
dX},...,dX", together with a drift. Taking 3',...,3" to be the resulting noise coeffi-
cients, the drift must be as in Equation (1): to see this, note that this LHS must be
a martingale difference with respect to risk neutral probabilities, since it is a cash flow
which can be obtained net of investment (See Duffie (2001)); also, to transform the RHS
to RNPs corresponds to subtracting >-7_; 5/ Mo?dt, to leave terms involving dX/, making
it a martingale difference. QF D

Assumption 2: The index level S; and its volatility o, are sufficient state variables
for the prices under consideration, and the dynamics are homogeneous of degree 1 with

respect to the index level. The dividend yield rate d; and instantaneous interest rate r;

4

SHere and throughout, the notation “:=” in an equation means that the equation serves to define the

term on the left of the notation.



are known up to the maturities of the futures and options prices being considered. Thus
we can write the state equations as dS;/S; = podt + atthS and do; = podt + o?dW7,
and these coefficients, and the risk premia A° and A\?, can depend on o; but not ;.
Proposition 2: Take a non-dividend paying asset as in Proposition 1, with price Q).
Also, take a fixed futures maturity 7', later than ¢, and denote the corresponding futures

price by fI. Then under Assumptions 1 and 2, we must have
dQ, —mQudt = prdff + 57(de, + N7 o7 dt), (2)

for some coefficients 3/, 37, which can depend on oy, and in which do, := do, — p°dt =
o%dWy.

Proof: This follows from Proposition 1, noting that the futures price must be a
martingale, with respect to RNPs, since it is a cash flow which can be obtained zero
investment. QFED

In Subsection 2.2, we will adapt the tests of Coval and Shumway, arguing that A < 0,
under Assumptions 1 and 2. In Subsection 2.3 we will argue that we cannot account for
the Delta-Vega hedged returns under these assumptions, and in Section 3 we will extend

our set of state variables under Assumption 1, to including the smirk factor.

2.2  Analysing Straddle Returns:

The work of this section is closely related to that of Coval and Shumway (2001) (see also
Bakshi and Kapadia (2003)), in that we isolate the volatility risk premium by looking
at the returns of straddles, in which the price factor should be hedged away. Coval and
Shumway show that these consistently tend to have negative returns, after subtracting
their financing costs, and they conclude from this that the volatility factor has a negative
risk premium.

Coval and Shumway construct straddles, comprising put and call with the same strike.
In order to avoid options for which there are no trades, we form our straddles from ATM
calls and OTM puts, or ATM puts and OTM calls, as detailed in Tables 1 and 2, which
contain the empirical results of this subsection. Given a choice of moneyness levels for
the call and put, then we form our straddle portfolios comprising amounts h{ of the call

and h? of the put with strikes nearest to these levels, and such that
h{AS + hPAY = 0, (3)
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hVEe+ Ve = f, (4)

where f; is the futures price on which the options are written, and the A and V' values are
the appropriate Delta and Vegas, calculated in the Black-Scholes Model for the underlying

returns’

. The first equation here corresponds to the straddle being Delta neutral, and
the other equation is strictly speaking unnecessary, but is included so that the volatility
exposure for the straddle is constant unity, in the Black-Scholes Model, when normalized®
by the futures price.

Table 1 gives the results of 2 regressions, with dependent variable the weekly price
innovations in the straddle, for a number of put and call moneyness levels as indicated,
minus the financing costs’, and normalized by the underlying futures price. In the first
regression, the independent variable is just the unit constant. The coefficient is negative
for every x, usually significant at a level of 0.1%, agreeing with the Coval and Shumway
result. The t-statistics in this table are all calculated using the Newey-West information
matrix taking 4 lags, and are thus robust to non-normality and heteroskedasticity of the
residuals.

However, we cannot rule out the possibility that the straddle is not perfectly Delta
hedged, and that the consistently negative returns reflect the risk premium on the residual
exposure to the underlying. To address this possibility, we appeal to the above Propo-
sition 2, and include the futures return'® into the regression. The second regression

equation for Table 1 is thus

((Stripr — Stry) — rStrydt) ) fr = oo+ B(fixa — fi)/ fr + (mean zero residual), (5)

"By “Black Scholes Model for the underlying returns”, we mean that the interest rate is consant,
and the underlying index with dividends reinvested, whose rate of return will be the same as that of the
futures conract, plus the riskless rate, follows a Geometric Brownian Motion. To calculate the options

prices, etc, we use the Binomial method, taking account of early exercise, opportunities.
8This normalization is appropriate, and prevents h¢, hY from being homogeneous with respect to the

futures price, because Vega is homogeneous, of degree 1, with respect to the underlying futures price.
9In all our tests, we will take the interest rate to be that derived from the Eurodollar futures prices,

and appropriate for the option maturity under consideration. This is rather crude. However, all our

empirical results will be essentially unchanged if we double this interest rate, or take it to be zero.
0By “futures return” we mean the futures price innovation, divided by the initial futures price. This

is a misnomer, because taking a futures position does not entail investment; but it is useful, because the
futures return only trivially differs, by the riskless return minus the dividend yield, from the return on
the index.
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where Str; is the time ¢ price of the straddle. Comparing this equation with Equation
(2), then (3°ds; in Equation (2) (which is a Martingale difference) corresponds to the
(mean zero residual) term in (5), and 87A%¢%dt in (2) corresponds to « in (5). Since the
straddles are positively exposed to the volatility (37 > 0), then a < 0 corresponds to
A7 < 0.

As we have said, in the first regression of Table 1, for all call and put moneyness
combinations, the coefficient on the unit constant is negative, and usually at a significance
level of 0.1%. However, in the second regression, the coefficient on the futures return
is also always negative. This indicates that the hedge might be mis-specified; and the
negative straddle return might be attributed at least partially to the risk premium on
the price factor, which is well established to be positive. But as argued above, under
Assumptions 1 and 2, the coefficient on the constant in the second regression corresponds
to the volatility risk premium having stripped out the price factor, and this coefficient is
also negative for each strike combination, and usually significant at 0.1%. The conclusion
that A7 < 0 thus still stands.

Table 1 also gives the residual Sharpe ratio for the second regression for each strike
combination, i.e. the mean of the residual returns, divided by its standard deviation.
Identifying Equations (2) and (5), then this mean is a = 7A\%07dt, and this residual
standard deviation is 8°¢?v/dt. Thus, under Assumptions 1 and 2, this Sharpe ratio is
an estimate of A\V/dt, i.e. the volatility risk premium itself.

Looking more closely at Table 1, the evidence for A2 < 0 tends to be weaker for higher
strikes (calls further OTM and puts less OTM). Correspondingly, the Sharpe ratios de-
cline for higher strikes. Since a higher option price corresponds to a lower return, the
maturity price being fixed in terms of the underlying, this is consistent with our inter-
pretation of the smirk, that prices are “too high” for lower strikes, under Assumptions 1
and 2 above.

Coval and Shumway also show how to make their straddles “crash neutral”, by includ-
ing an extra, deep out of the money put in the Delta hedged portfolio, in an amount such
that if the market falls so that both puts are exercised, then the value of the portfolio is
constant. The motivation for this is to see whether the negative return that they isolate,
is really a jump risk premium, and the point about these crash neutral straddles is that
they are not vulnerable, and neither do they provide insurance, against a market crash.

Following this idea, we add to our portfolio an amount h2”“™" of the traded put, which

12



is nearest to being of the money by 15%, and taking the amounts h¢, hY, hY Crash ¢ solve
N N N ) )

hgx/tc + hf‘/tp + hg,CTashV;p,C’rash _ ft, (7)

hy + hf’cr‘wh = 0. (8)

The regression results, replacing the straddles of Table 1 by such “crash neutral” strad-
dles, are given in Table 2. Making the straddles crash neutral further erodes the t-statistic

on the unit constant coefficient, in each regression, but it is usually still highly significant.

2.3 Delta-Vega Hedged Returns:

Our Delta-Vega hedged portfolios comprise 1 long futures contract, and an amount h{ of
the call with strike nearest to being out of the money by a proportion z of the underlying
futures price, and an amount hY of the put, also with strike nearest to being out of the
money by a proportion x of the underlying futures price. We use only options which are
traded on each date, and so we take © = —2%, 0, +2%, +4% and +6%. These amounts

h¢ and hY are chosen such that

1+ hiA7 + hIA? = 0, (9)
hiVe+ Ve =0, (10)

where Af and A} are the Deltas, and V;© and V;” are the Vegas of these options, calculated
in the Black-Scholes Model. (Note that the underlying future itself has Delta = 1, and
Vega = 0.)

Now, since the out of the money amounts x are always approximately the same for
the call and the put in the portfolio, then we have Af ~ —A? > 0 and V* =~ V/ > 0.
From these, and Equations (9) and (10), it follows that h{ ~ —hY < 0. Thus, for z > 0
(x < 0) we expect this Delta Vega hedged portfolio to lose (gain) money. For z = 0, we
expect h§ ~ —1,h} ~ +1, and we expect the portfolio to be close to zero, on the basis of
put-call parity, ignoring the effects of early-exercise on the option prices.

In Table 3 gives the results of 3 regressions, for each x above. The first regression
includes only the unit constant as independent variable, and it confirms our conjecture,

in that the coefficient is positive for z < 0, negative for x > 0, and indistinguishable

13



from zero for!!

x = 0. Motivated as in the previous subsection, we also give a second
regression, which includes the futures return as an extra independent variable. This is
sometimes highly significant, but does not substantially alter the pattern of significance
of the constant coefficient.

The third regression of Table 3 includes the return of the at the money straddle!?
minus financing costs, as another independent variable. Under Assumptions 1 and 2,
then this return, taken together with the futures return, will account for the price and
volatility risk factors, and will also account for the corresponding risk premia, since
these returns are available in the market, with zero investment. This extra independent
variable is never significant, and does not alter the pattern of significance of the constant
coefficient.

Following Coval and Shumway’s idea as in the previous subsection, Table 4 gives the
same results as Table 3, but for the Crash neutral Delta-Vega hedged portfolio returns,
which include an amount h?“™" of the traded put, which is nearest to being OTM by

15%, and with amounts satisfying

14+ hSAS + hYAY 4 RpCresh ARCrash — ), (11)
WV + REVE + BT yperet - = o, (12)
14 AP+ pperash — (13)

As in the previous subsection, this extra ingredient slightly erodes the coefficient on the

1 Bollen and Whaley present a similar regression to this one, but with a different result. See Strategy
5, in their Table 9. This strategy is to sell puts in each of their moneyness categories, and to Delta-Vega
hedge by buying an ATM call, and selling the underlying index. This is essentially the reverse of our
strategy, and to be consistent with our results, it should make a profit when the put is OTM, and be
riskless when the put is ATM. In fact they lose money both for OTM and ATM puts. As an explanation,
they suggest that “the market maker is not charging a high enough volatility risk premium”. We suggest
that this discrepancy between their results and ours is driven by a fundamental difference between our
futures options and their spot options, namely that for futures options we do not have to deal explicitly
with the dividend yield factor. In fact an ‘implied dividend yield’ de; can be extracted from futures prices
via dey = dfy/ fr — dsi/ s + rdt, where s; is the spot index price. In unreported work, we have compared
this with the actual, realized dividend yield, which is available from Datastream. The difference is small,

but might be enough to swamp the very small abnormal residual returns in our Table 3.
12By “return to the straddle”, and any other “return”, we mean the price innovation, divided by the

initial associated futures price. This again is a misnomer, since the ivestment required to establish the
straddle might not be equal to the futures price; but it is useful from the point of view of homogeneity

in the regressions.
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constant in the regressions, but they are still significant, and we can conclude that the
returns on the Delta-Vega hedged portfolios cannot entirely be explained in terms of the

risk premium on the price or the volatility, or in terms of a jump risk (“crash”) premium.

3 The Smirk Factor

In this section we analyze the abnormal returns of the Delta-Vega hedged portfolios, in
terms of what we call the smirk factor, and its risk premium. In Subsection 3.1 we use
a Principal Components Analysis to identify 2 factors in the dynamic of the implied
volatility structure, which account for the overwhelming part of this dynamic. These
factors can be interpreted as a parallel shift and a twist of the implied volatility, thus
corresponding to changes in the implied volatility, and in the smirk itself.

In Subsection 3.2 we test a linear priced factor (no-arbitrage) structure, with 1 and 2
factors corresponding to these components, against an alternative, which allows returns
which are not accounted for in terms of exposure to these factors. The input data to this
test is a vector of option price innovations, in which the futures price factor has already
been hedged out. The result is that with 1 factor, the priced factor structure is rejected,
consistent with the results of Section 2, but with 2 factors, the priced factor structure is
not rejected. Thus, the smirk factor accounts for the apparent arbitrage opportunities in
the Delta-Vega hedged portfolios.

In Subsection 3.3 we present some diagnostic tests on the smirk factor, and finally
in Subsection 3.4 we present a hedging exercise, in which a single option is hedged
with other options. Hedging the smirk factor does lead to a significant reduction of the
hedged volatility. In this hedging exercise, we use the Principal Components approach
to construct the hedges, and we are careful to do this out of sample, i.e. the hedge on

each date is constructed using only data available before that date.

3.1 A Principal Components Analysis (PCA) of the Implied

Volatility Innovation Structure:

Denote by &7 the time ¢ price of the OTM option with moneyness = := X /fL and
maturity 7. (Thus, the option is a put if z < 1 and a call if x > 1.) Also define the
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corresponding implied volatility o} T to be such that
o7 = BS(fl x,r,0p", T — 1), (14)

in which BS is the Black Scholes valuation function of the option, taking account of the
fact that it is American, and that the dividend yield should be taken to be equal to the
interest rate, since the underlying is the futures contract.

In this subsection, we will present a PCA of the weekly implied volatility innovations
{607 tomsr o....en) b1, linearly interpolated at moneyness points x;, and for each t, tak-
ing 7T} to be the nearest maturity beyond the roll-over time'®. A similar exercise has been
carried out by Skiadopoulos, Hodges and Clewlow (2000). Principal Components Analy-
sis simply takes an orthogonal basis of eigenvectors e!, e?, ..., e" of the covariance matrix
of these volatility innovations, with corresponding eigenvalues p* > p? > ... > p" > 0.

The innovations vector can then be expressed as
So; = g'ds; +g%0s; + ... + g s}, (15)

in which g/ = v/p/e/, and we refer to this as the jth principal component, and s :=

ﬁ Yo eldof are uncorrelated dynamic factors with unit variance. The most efficient
W;y to summarize the innovations in terms of k independent factors, is then to take only
the first & components on the RHS of Equation (15).

In Figure 4 we graph the first 2 principal components, taking moneyness points 0.90,
0.92, 0.94, 0.96, 0.98, 1.00, 1.02, 1.04, 1.06. We see from this graph, as one might
expect, that the most important aspect of movement in the implied volatility vector is
(roughly) parallel shift, and the second is a twist. The corresponding eigenvalues make
up respectively 91.3% and 6.8% of the sum of all the eigenvalues, which tells us that
these 2 components account for 98.1% of the part of the implied volatility dynamic, that
has been accounted for in the linear structure we have imposed by using the covariance

structure.

13Thus, our implied volatilities are not time homogeneous with respect to maturity. We agree, in
unreported work, with the conclusions of Skiadopoulos, Hodges and Clewlow (2000), that the implied

volatility structure is not sensitive to the time to maturity.
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3.2 Fitting a Linear Priced Factor Structure to the Option

Price Innovations:

Applying the Ito formula to Equation (14), we have
07" = AP ot Yo fE + VT (fE 0P sl T + O(6t), (16)

where A and V' are the corresponding derivatives of the Black Scholes function, i.e. the
Delta and Vega, and we have subsumed the Ito correction terms, and terms involving
derivatives with respect to x, into the term'* O(dt).

Rearranging this equation, we can then deduce
Uy = [(6B7T — r®7Tot) — APTS T JVET = G0 4 O(0t). (17)

Note that U7 here is the price innovation, net of financing costs, of a portfolio of an
option and the futures contract. In fact replacing (6o7"""); by (6¥7"""); in the PCA of
the previous subsection does not significantly alter the result there. (This is not shown.)

1 n J

Moreover, the corresponding dynamic factors ds] := —— Y1, e/dUy* can also be realized
p]

in terms of actual portfolios of options and the future.

In this subsection, we will apply a linear factor analysis to the vector of innovations
oW, = (W7, 002, ..., 0¥¢). Our aim is to test for arbitrage opportunities. Our ap-
proach is conceptually parallel to that of Jones (2001), except that he attempts to model
explicitly the non-linear nature of options returns, whereas we are relying on the Black
Scholes Model to account sufficiently for the nonlinearity, so that we can apply linear
techniques to the pricing dynamics of dWy.

In detail, we fit the linear model

k
oW, =Y g/(0s] + Not) + e, (18)

j=1
in which each g’ is an n vector of parameters, constrained such that each is orthogonal
to its predecessors for lower j; the ds)’s are jointly normal, with mean zero, standard
deviation v/6t, and independent with respect to ¢ and j; and the €i’s making up ¢; are

normally distributed, with mean zero and variance w’, and independent with respect to

4Our numerical results will be presented on a weekly basis, i.e. taking 6t = 1. Thus, we could delete

the factor 0t from our equations, but we keep it for the sake of clarity.
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t and ¢. Under our linearity assumptions, and applying Proposition 1 of Section 2, this
equation will hold if there are no arbitrage opportunities, and then A represents the
price of risk associated with the factor s/. This equation represents our null hypothesis,
and the alternative hypothesis is that the drifts are not so constrained, so that we can

write

k
oW, =" glds] + pdt + ¢, (19)
j=1
in which the n parameters p := (!, ..., u") replace the k parameters \!, ..., \¥. If Equation
(19) is favored over Equation (18), then this is evidence either that there are arbitrage
opportunities, or that the model is not adequate to represent the dynamic of the options
prices.

Our technique for fitting the null and its alternative, is simply MLE, using the fact
that under the null, then d¥; ~ N( ?:1 Ngist, BBT + W), where B = [g!,...g"] and
W = diag(w',...,w"), and under the alternative, then the mean >-* , Mg should be
replaced by pu.

We have implemented this test taking 9 moneyness values x?, ranging over 0.90, 0.92,
0.94, 0.96, 0.98, 1.00, 1.02, 1.04, 1.06, and taking £ = 1 and k£ = 2. The results are given
in Table 5. With £ = 1, i.e. the 1 factor model, the null hypothesis is rejected strongly in
favor of the alternative: the difference in the log-likelihoods is 65.12, and under the null
hypothesis, this should be distributed as % times x2, with n — k = 8 degrees of freedom,
and so the probability of the null is virtually zero. This result is in tune with those
of Section 3 relating to the Delta-Vega hedged portfolios: First, note that our portfolio
innovations 0V} represent the price innovations of Delta hedged options, and the factor
ds} can be identified with the innovation of implied volatility. If price and volatility
(corresponding to Delta and Vega) are the only random factors, and Equation (18) holds,
then hedging the volatility between any pair of innovations will yield a portfolio whose
return is essentially just the riskless return. The portfolios of Section 3 are Delta and
Vega hedged, but their returns are not just the riskless return.

Turning to k = 2, i.e. the 2 factor model, the difference in the log-likelihoods tells us
that this is overwhelmingly favored over the 1 factor model, both in null and alternative
forms. But more striking, the alternative is now not favored over the null: the difference
in the log-likelihoods is only 3.96, which under the null is distributed as % times x?,

with n — k& = 7 degrees of freedom. This has a p-value of about 20%. Moreover, the
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factor loadings g! and g? are virtually the same as the principal components of the
previous subsection, and so we can identify the factors as the “(implied) volatility”, and
the “smirk”. The associated risk premia should be compared with the Sharpe ratio for
investing in the underlying futures themselves, which we estimate at 0.11 (¢-stat. 3.17)
for our data. We see that the volatility premium is comparable in magnitude to this
ratio, but negative, and the smirk premium is about twice the magnitude of this ratio,
and positive. These signs are consistent with option prices being generally “high”, and
to the prices of options with low strikes, i.e out of the money puts, being “high” relative

t'5. Thus, consistent with Backshi and Kapadia, etc, the market is prepared to

to the res
pay a premium for options, since they provide insurance against volatility. The market is
also prepared to pay a premium for OTM puts, causing the smirk, presumably to insure
against market declines, but this does not represent an arbitrage opportunity, and can be
explained in terms of the risk premium of the dynamic smirk factor. The risk premium
on the smirk factor is rather high, relative to that on the index itself. Writing OTM puts
is thus good business; but we suggest that this premium represents a reasonable rent for
the put writers’ expertise in hedging, and so it does not represent a market anomaly or

disequilibrium.

3.3 Some Diagnostics on the Smirk Factor:

The factor innovations ds},ds? can be extracted from the data in the MLE framework,
by minimizing the residual ||0¥; — Zle e]0z]||? for each t. Graphs of our 3 factor
innovations 0 f*/f*, s}, 8s? are given in Figure 5.

Table 6 presents some diagnostic statistics relating to these innovations. For clarity,
in this table we write the implied volatility factor innovation ds; as dimpl;, and the smirk
factor innovation ds? as dsmirk,;. From Panel A, we see that at each moneyness level,
the residuals from the 2 factor fit have standards deviation of about 12% of the standard
deviation of the innovations 6¥, themselves. This is consistent with an R? for the model
of about 1—(12%)? = 98.5%, i.e. the 2 factors account for 98.5% of the innovations. Also,
these innovations are not much correlated with each other, as one should expect from

their construction, but they are significantly correlated with the futures return df{*/ f*.

15Note that the smirk factor, as given in Table 5 is negative for low strikes. This is arbitrary: If the

signs on this factor were reversed, and the risk premium were reversed, the model would not be altered.
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This is consistent with the results of Section 2, that the Black Scholes Delta hedge, which
has been used to construct the innovation dWy, is not perfect.

We see in Panel B, that the factor innovations are not autocorrelated. This indicates
that they are distinct from the “buying pressure” factor identified by Bollen and Whaley
(2003), which corresponds to option price increases, when there is more demand to buy
them. Bollen and Whaley show that this price distortion is temporary, and in fact its
innovation will be highly negatively autocorrelated, and self correcting within a few days,
as more options are written to satisfy the demand.

Panel C presents a regression of the underlying return cubed, and normalized by
the implied volatility at the beginning of the time step, against the contemporaneous
innovation in the smirk factor, and its lags. The significant result shows that the smirk
factor can be used to hedge the skew in the underlying return. This is not surprising, since
the smirk innovation itself is skewed, since it corresponds to short puts and long calls.
This panel also presents a regression of the underlying returns squared and normalized
by the implied volatility at the beginning of the time step, against the implied volatility
factor innovation. The result is again significant, but not surprising, since this return
squared is a proxy for the innovation in the underlying volatility.

In Panel D we investigate whether the implied volatility and smirk factors themselves
(not their innovations) can predict respectively the underlying volatility and skew, prox-
ied respectively by the underlying return squared, and the underlying return cubed and
normalized by the implied volatility. We characterize the implied volatility and smirk fac-
tors by projecting the implied volatility vector onto the corresponding eigenvector. Also,
we include in the regression the time to maturity of the option at each date, to obviate
any maturity effects. The implied volatility factor can, as expected, predict the underly-
ing volatility. This result would seem necessary, under the assumption that volatility is
a dynamic factor, which is reflected in option prices. However, it seems that the smirk
factor cannot predict the underlying skew. It seems that the options smirk, unlike the
implied volatility, is not determined in relation to the underlying dynamic. This negative
result has consequences for constructing a no-arbitrage option pricing model incorporat-
ing our dynamic smirk factor. Any such model could be characterized as an Equivalent
Martingale measure on the underlying dynamic, which differs from the objectively real-
ized measure by a Radon Nykodym derivative representing a risk premium. Our result

suggests that in a no-arbitrage model, the smirk dynamic must reside purely in this risk
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premium, and not in the objectively realized dynamic. It seems that the options smirk

represents a dynamic “crash fear”, that cannot be detected in the underlying returns.

3.4 Hedging with the Smirk Factor:

We now present a Delta-Vega-Smirk hedging exercise, based on the factors isolated above.
We will hedge the option at each moneyness level 0.90, 092, ...1.06, with all the options
together, at the other moneyness levels. Taking the the first £ components, using Equa-
tion (18) above, and recalling that ds) := ﬁzgzl €)Wyt and gl = \/piel, then for
each 7, the portfolio § Wy — Zle PR ege‘zélllff is hedged against the first £ factors. This
portfolio has weight 1 — Z?Zl(e{ )2 in §¥7, and so the portfolio in which 1 unit of the
option with moneyness ¢ is hedged with the other options, has price innovation

(owy — ok S, elelowy)
(1= i(e)?)
Table 7 shows that standard deviations of these price innovations, for values k = 0,1, 2,

which correspond to the Delta hedge, the Delta-Vega hedge, and the Delta-Vega-Smirk

hedge, respectively. The ez ’s used to construct these portfolios are calculated separately

(20)

for each date, via the Principal Components Analysis of Section 3.1, and using only data
for previous dates, i.e. out of sample. This ensures that the hedging could have been
done in real-time. In detail, for each date we use the covariance matrix, calculated with
previous data, but with exponentially decaying weight factor, such that the data 0.25
years before the date being considered, is weighted half as much as the most recent data.
For this reason, we have started the hedging from 1991, instead of 1990.

We see from table 7, that the Delta-Vega hedge is always much better than the Delta
hedge, and the Delta-Vega-Smirk is significantly better that the Delta-Vega hedge, except
for middle moneyness levels, where the influence of the smirk factor is relatively small.
For kK = 0 and 1, the Sharpe ratios of the corresponding returns reflect the risk premia

of the unhedged exposures.

3.5 Discussion of our results:

We now discuss our analysis of the smirk, and how it relates to some of the previous
literature. First, like us, many authors, notably Bakshi, Cao and Chen (1997), Bates
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(2000) and Pan (2001), and very recently Liu and Pan (2003), Eraker, Johannes and
Polson (2003) and Eraker (2004) have studied index options pricing and hedging, taking
the price and the volatility to be state variables, as we have done, but with Poisson
jumps as a third source of risk, in place of our dynamic smirk factor. It is pertinent
therefore to ask whether our smirk factor can be interpreted in the context of these
models. We note that in these models, the Poisson jump is not a sate variable, since
the propensity for the market to jump is dependent only on the volatility. Therefore
the jump component cannot make the smirk dynamic, which seems at odds with the
behavior that we have documented. On the other hand, Liu and Pan show that the jump
component in their model can be hedged in a portfolio containing at least 2 options!S.
From our Table 7, we see that the option portfolios of our Section 3.4 are very effective
in hedging our price, volatility and smirk factors, and so it is natural to ask whether
our smirk factor is the same as the Poisson jump component in these papers, which is
isolated by Eraker, Johannes and Polson, in their Figure 3. Comparing this Figure with
Figure 5C of the present paper, there seems to be no resemblance between our smirk
innovations and their jumps: our smirk innovations seem to be white noise, whereas the
jumps are quite infrequent impulses, occurring about once per year. In fact Bakshi, Cao
and Chen find that their third jump factor can improve the pricing of their model, by
better representing the smirk, but not the hedging ability. We conclude that our smirk
factor is not accounted for by the jump component of these papers.

In fact our approach is different from that of the papers mentioned above, in that these
concentrate on modelling the underlying dynamic and associated risk premia, such that
options can be accurately priced in terms of the Equivalent Martingale Measure (EMM).
By contrast, and consistent with Coval and Shumway (2001) and Bakshi and Kapadia
(2003), we have taken the option prices as given by the market, and concentrated on
directly modelling their returns. Thus, we cannot speak directly of the “pricing ability” of
our approach, but only whether the market option prices are arbitrage free and consistent
with reasonable levels of risk premia, and we find that they are.

In contrast to our smirk risk premium estimation, we have mentioned above that in her
GMM fit of the jump diffusion model to index option prices, Pan (2001) estimates a mean

jump size of about -0.9% but a risk neutral mean jump size of -19.2%. This represents an

16This paper works with the relatively simple model, in which the jump size is constant, but intuitively,

their procedure will hedge most of the risk, if the jump size is random.
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unreasonably large premium of 18.3%. Using more recent MCMC econometric methods,
Eraker gets a lower premium of p? = 7.9% (see his Table III), but this still seems very
high!”.

Our diagnostic tests failed to show that the smirk can predict the underlying returns
skew, and so we suspect that it might be problematic to identify our dynamic smirk with
some aspect of the underlying return. The EMM must exist, if there are no arbitrage
opportunities, but we suspect that the smirk corresponds to a dynamic risk premium,
which is not tied to the underlying returns.

We have mentioned the conceptual parallels and contrasts between our approach and
that of Jones (2001). The basic difference is that he uses a semi-parametric framework to
accommodate the nonlinearity of the problem, whereas we work with the residuals from
a Black Scholes approximation, and rely on a linear analysis of these. We agree with
Jones, in favoring a 3 factor diffusive model, but it seems unclear whether Jones’ factors
can encompass our smirk factor. With his factors, Jones is not able to account for all
option returns in terms of risk premia associated with his factors.

Finally, our results are distinct from, but not in disagreement with, those of Bollen
and Whaley (2003), who identify a “price pressure” factor for options, which is essentially
the excess of demand interest over supply interest. They show that this factor influences
the price. This is perhaps not surprising, but is problematic for no-arbitrage models,
under which options prices should be completely determined by the underlying factors,
with supply/demand imbalances being immediately obviated. However, they show that
the effect on the option price is temporary, lasting only a few days, and this means that
the effect will not be very strong in our data, because we are working with a weekly time
step. Also, our smirk factor is not temporary, since its increments are not negatively

autocorrelated.

4 Summary and Conclusions

Our aim in this paper has been to analyze the “smirk” in S&P500 futures options prices,
which is the stylized fact that options with lower strikes have a higher Black-Scholes

1"Eraker, Johannes and Polson (2003) note, on page 1291, that a more modest risk premium of 2%
seems to account for the smirk in the jump diffusion model. However, this result is informal and predates
the estimate M;? = 7.9% of Eraker.
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implied volatility, so that the option pricing “smile” is lop-sided.

Our approach has been first to construct portfolios of options and the underlying
future, which are Delta hedged, i.e. hedged against movements in the underlying price,
and Vega hedged, i.e. hedged against movements in the options implied volatility. These
earn excess returns, consistent with a “market imperfection” interpretation of the smirk,
i.e. that the out of the money puts are “too expensive”, relative to the out of the money
calls. Our hedges have been constructed using the Black Scholes Model, but we have
also included checks to account for mis-specification of this model. We conclude from
this exercise that either there really are market imperfections, of that we must search for
factors beyond price and volatility, to explain the smirk. By including an extra, deep out
of the money put in the Delta-Vega hedged portfolio, to make it “crash neutral”, we can
conclude that the smirk does not represent an insurance premium against a large market
crash. These tests are extensions of the tests of Coval and Shumway (2001) and Bakshi
and Kapandia (2003), who deal with Delta (but not Vega) hedged portfolios.

Second, we have isolated the smirk as a third, diffusive factor, and shown that the
returns to the Delta-Vega hedged portfolios do not represent arbitrage opportunities,
but can be explained in terms of the risk premium of this factor. Our technique for
this has been Principal Components Analysis, applied to the Delta hedged option price
innovations, and an estimation of a linear priced factor model for these innovations. This
risk premium is about twice the risk premium for investing in the underlying S&P500
index itself, and we suggest that this is not excessive, but represents a reasonable rent
for the expertise of writing and hedging these options. We show that this dynamic smirk
factor is useful for hedging options portfolios, but in contrast to the volatility factor, it
does not seem able to predict any aspect of the underlying return. The smirk factor seems
to represent a dynamic aversion to market falls, which is not reflected in the underlying
index futures prices.

Finally, we have discussed our results in connection with other recent work on the
smirk. Most authors have modelled the smirk in terms of Poisson jumps in the under-
lying price. However, this is not able to make the smirk dynamic, and fails to account
adequately for its magnitude. Also, including the Poisson jump component is not able

to improve the hedging performance of the resulting models.
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TABLE 1

Regressions of the Weekly Returns to Delta Neutral Straddles

(t-statistics in brackets)

Call | Put | Av. call | Av. put | Regressor 1st regr. 2nd regr. Residual
mon. | mon. | position | position Sharpe ratio
1.00 | 0.92 | 2.015 7.792 Unit const. | -0.00322 ( -5.07)*** | -0.00302 ( -4.29)***

Futures ret. -0.08879 ( -1.17) -0.203
1.00 | 0.94 | 2.165 5.914 Unit const. | -0.00321  ( -5.08)*** | -0.00299 ( -4.31)***

Futures ret. -0.09627  ( -1.29) -0.201
1.00 | 0.96 | 2.351 4.589 Unit const. | -0.00301 ( -4.67)*** | -0.00276 ( -3.89)***

Futures ret. -0.11614  ( -1.50) -0.182
1.00 | 098 | 2.602 | 3.682 | Unit const. | -0.00280 ( -4.31)** | -0.00251 ( -3.55)"*"

Futures ret. -0.12843  ( -1.63) -0.163
1.00 | 1.00 | 2.964 3.089 Unit const. | -0.00292 ( -3.89)*** | -0.00267 ( -3.22)***

Futures ret. -0.11204  ( -1.35) -0.159
1.02 | 1.00 | 3.595 2.696 Unit const. | -0.00255 ( -3.62)*** | -0.00225 ( -2.95)**

Futures ret. -0.13518 ( -1.66)* -0.138
1.04 | 1.00 | 5.245 2.355 Unit const. | -0.00223 ( -3.25)*** | -0.00189 ( -2.62)**

Futures ret. -0.15513  ( -1.93)* -0.118
1.06 | 1.00 | 9.129 | 2.100 | Unit const. | -0.00197 ( -2.86) | -0.00160 ( -2.33)*"

Futures ret. -0.16661 ( -2.12)* -0.100

Notes:

This table gives the results of regressions, in which the dependent variable is the weekly return
to the straddle, comprising puts and calls at the moneyness levels indicated, and with amounts,
so that the straddle is Delta neutral, in the Black Scholes framework.

In the first regression, the regressor is the unit constant only, and the salient point is that the
coefficient is always negative.

In the second regression, then futures return is also included as a regressor, to compensate for
any mis-specification in the hedge. The corresponding coefficient are sometimes significantly
negative, indicating that there is some mis-specification, but the unit constant is usually still
highly significant.

The t-statistics are obtained using the Newey-West procedure, with 4 lags. Single, double and
triple asterisk indicates significance at 5%, 1%, 0.1%, in a 2 tailed test.
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TABLE 2
Regressions of the Weekly Returns to Delta and Crash Neutral Straddles

(t-statistics in brackets)

Call | Put | Av. call | Av. put | Regressor 1st regr. 2nd regr. Residual
mon. | mon. | position | position Sharpe ratio
1.00 | 0.02 | 2.315 | 14.307 | Unit const. | -0.00280 ( -4.53)"** | -0.00268 ( -3.91)"**

Futures ret. -0.09319 ( -1.23) -0.170
1.00 | 0.94 | 2.467 9.216 Unit const. | -0.00289  ( -4.53)*** | -0.00268 ( -3.91)***

Futures ret. -0.09580 ( -1.31) -0.173
1.00 | 0.96 | 2.659 6.572 Unit const. | -0.00271 ( -4.11)*** | -0.00243  ( -3.41)***

Futures ret. -0.12280 ( -1.59) -0.155
1.00 | 0.98 | 2.926 5.007 Unit const. | -0.00249 ( -3.78)** | -0.00219 ( -3.10)**

Futures ret. -0.13752  (-1.72)* -0.136
1.00 | 1.00 | 3.315 4.056 Unit const. | -0.00262 ( -3.43)** | -0.00235 ( -2.82)**

Futures ret. -0.12388  ( -1.49) -0.136
1.02 | 1.00 | 3.951 3.524 Unit const. | -0.00226 ( -3.15)** | -0.00193 ( -2.53)**

Futures ret. -0.14689  ( -1.79)* -0.115
1.04 | 1.00 | 5.654 3.063 Unit const. | -0.00196 ( -2.79)** | -0.00158 ( -2.19)**

Futures ret. -0.16747  ( -2.08)* -0.096
1.06 | 1.00 | 9.667 2.721 Unit const. | -0.00169 ( -2.39)** | -0.00129 ( -1.86)*

Futures ret. -0.17936  ( -2.27)** | -0.078

Notes:

This table gives the results of regressions, in which the dependent variable is the weekly return to
the straddle, as in Table 1, comprising puts and calls at the moneyness levels indicated, together
with a deep out of the money put, in an amount to make the portfolio crash neutral.

In the first regression, the regressor is the unit constant only, and the salient point is that the

coefficient is always negative.

In the second regression, then futures return is also included as a regressor, to compensate for
any mis-specification in the hedge. The corresponding coefficients are usually not significant, and
do not greatly effect on the coefficient of the constant.

The t-statistics are obtained using the Newey-West procedure, with 4 lags. Single, double and
triple asterisk indicates significance at 5%, 1%, 0.1%, in a 2 tailed test.
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TABLE 7
Residual Standard Deviations of Hedged Returns

Moneyness 0.90

Residual SD

Sharpe Ratio

(t-statistic)

k =0 (Delta hedge) 0.01413 -0.249 (—5.49)**
k =1 (Delta-vega hedge) 0.00682 -0.177 (—3.76)**
k = 2 (Delta-vega-Smirk hedge) | 0.00387 -0.051 (—1.17)
Moneyness 0.92 Residual SD  Sharpe Ratio  (t-statistic)
k =0 (Delta hedge) 0.01420 -0.231 (—5.18)**
k =1 (Delta-vega hedge) 0.00559 -0.162 (—3.29)**
k = 2 (Delta-vega-Smirk hedge) | 0.00237 0.034 (0.84)
Moneyness 0.94 Residual SD  Sharpe Ratio  (-statistic)
k = 0 (Delta hedge) 0.01397 10.236 (—5.30)**
k =1 (Delta-vega hedge) 0.00424 -0.227 (—4.25)**
k = 2 (Delta-vega-Smirk hedge) | 0.00176 -0.067 (—1.53)
Moneyness 0.96 Residual SD  Sharpe Ratio  ({-statistic)
k =0 (Delta hedge) 0.0141 -0.215 (—4.89)**
k =1 (Delta-vega hedge) 0.0034 -0.195 (—3.98)***
k = 2 (Delta-vega-Smirk hedge) | 0.0019 0.002 (0.06)
Moneyness 0.98 Residual SD  Sharpe Ratio  (-statistic)
k = 0 (Delta hedge) 0.0144 -0.192 (—4.42)**
k =1 (Delta-vega hedge) 0.0028 -0.098 (—2.07)*
k = 2 (Delta-vega-Smirk hedge) | 0.0026 0.023 (0.56)
Moneyness 1.00 Residual SD  Sharpe Ratio  (t¢-statistic)
k =0 (Delta hedge) 0.0145 -0.175 (—4.00)***
k =1 (Delta-vega hedge) 0.0027 0.013 (0.31)
k = 2 (Delta-vega-Smirk hedge) | 0.0025 0.024 (0.53)
Moneyness 1.02 Residual SD  Sharpe Ratio  (¢-statistic)
k = 0 (Delta hedge) 0.01501 -0.140 (—3.30)**
k =1 (Delta-vega hedge) 0.00383 0.143 (3.04)**
k = 2 (Delta-vega-Smirk hedge) | 0.00245 0.042 (0.93)
Moneyness 1.04 Residual SD  Sharpe Ratio  (t-statistic)
k = 0 (Delta hedge) 0.01587 -0.105 (—2.45)**
k =1 (Delta-vega hedge) 0.00592 0.186 (3.91)**
k = 2 (Delta-vega-Smirk hedge) | 0.00221 0.032 (0.71)
Moneyness 1.06 Residual SD  Sharpe Ratio  (¢-statistic)
k = 0 (Delta hedge) 0.01669 -0.076 (—1.73)*
k =1 (Delta-vega hedge) 0.00902 0.173 (3.40)***
k = 2 (Delta-vega-Smirk hedge) | 0.00529 -0.038 (—0.86)

Notes:

e This table gives the residual standard deviations for each option price innovation, hedged with

the other options, and with financing costs included.

e The t-statistics correspond to the hypothesis that the corresponding Sharpe Ratio is zero.
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Figure 1: The smirk for put and calls, on the date 06/25/97:

Black Scholes implied volatilities on the date 06/25/97; Call implied (+); put implied (x)
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Figure 2: Traded Strikes
in terms of Moneyness:
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Figure 3: Traded Strikes and Open Interest for our Put Data, in
terms of Moneyness:

Put strikes with daily trading
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Figure 4: First and Second Principal Components of the Implied
Volatility Innovations:

First 2 principal components of the implied volaitlity dynamic
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Figure 5: Time Series of our

Futures return:

3 Factor Innovations:
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