About
28
Publications
4,509
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
509
Citations
Introduction
Current institution
Additional affiliations
January 2012 - present
Publications
Publications (28)
Ischemic stroke, brain tissue infarction following obstructed cerebral blood flow, leads to long-term neurological deficits and death. While neocortex is a commonly affected region with established preclinical models, less is known about deeper brain strokes, despite having unique neurological outcomes. We induced focal ischemic stroke while simult...
In recent years, evidence supporting non‐ionotropic signalling by the NMDA receptor (niNMDAR) has emerged, including roles in long‐term depression (LTD). Here, we investigated whether niNMDAR‐pannexin‐1 (Panx1) contributes to LTD at the CA3–CA1 hippocampal synapse. Using whole‐cell, patch clamp electrophysiology in rat hippocampal slices, we show t...
Polygala paniculata L. is a native plant from tropical America. The therapeutic potential of the hydroalcoholic extract of P. paniculata (HEPp) has been scientifically explored due to folk medicine reports on its action against several afflictions. HEPp contains several bioactive molecules with neuroprotective activities, making it a promising cand...
Progress in neuroscience research hinges on technical advances in visualizing living brain tissue with high fidelity and facility. Current neuroanatomical imaging approaches either require tissue fixation (electron microscopy), do not have cellular resolution (magnetic resonance imaging) or only give a fragmented view (fluorescence microscopy). Her...
Following stroke, women have worse functional outcomes than men, due in part to more frequent non-focal symptoms, leading to misdiagnosis and lack of treatment. Understanding changes in peri-stroke behavior is critical to improving outcomes. During an ischemic stroke, energy loss in tissue fed by a blocked cerebral vessel induces rapid neuronal dea...
Progress in neuroscience research hinges on technical advances in visualizing living brain tissue with high fidelity and facility. Current neuroanatomical imaging approaches either require tissue fixation, do not have cellular resolution or only give a fragmented view. Here, we show how regular light microscopy together with fluorescence labeling o...
Progress in neuroscience research hinges on technical advances in visualizing living brain tissue with high fidelity and facility. Current neuroanatomical imaging approaches either require tissue fixation, do not have cellular resolution or only give a fragmented view. Here, we show how regular light microscopy together with fluorescence labeling o...
Glutamate excitotoxicity during ischemia triggers an intracellular signaling avalanche leading to cell death, yet blocking NMDA receptors directly in human stroke trials failed. In this issue of Neuron, Zong et al. (2022) disrupt downstream NMDAR-TRPM2 coupling to improve stroke outcomes, supporting intracellular NMDAR signaling as an alternate the...
Macropinocytosis is an endocytic process that allows cells to respond to changes in their environment by internalizing nutrients and cell surface proteins, as well as modulating cell size. Here, we identify that adenosine triphosphate (ATP) triggers macropinocytosis in murine neuroblastoma cells, thereby internalizing the ATP release channel pannex...
Neuronal hyperactivity is an early primary dysfunction in Alzheimer's disease (AD) in humans and animal models, but effective neuronal hyperactivity-directed anti-AD therapeutic agents are lacking. Here we define a previously unknown mode of ryanodine receptor 2 (RyR2) control of neuronal hyperactivity and AD progression. We show that a single RyR2...
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Astrocytes support the energy demands of synaptic transmission and plasticity. Enduring changes in synaptic efficacy are highly sensitive to stress, yet whether changes to astrocyte bioenergetic control of synapses contributes to stress-impaired plasticity is unclear. Here we show in mice that stress constrains the shuttling of glucose and lactate...
The Pannexin 1 (Panx1) ion and metabolite channel is expressed in a wide variety of cells where it regulates a number of cell behaviours including proliferation and differentiation. Panx1 is expressed on the cell surface as well as intracellular membranes. Previous work suggests that a region within the proximal Panx1 C-terminus (Panx1CT) regulates...
Objective:
Sympathetic nerve innervation of vascular smooth muscle cells (VSMCs) is a major regulator of arteriolar vasoconstriction, vascular resistance, and blood pressure. Importantly, α-adrenergic receptor stimulation, which uniquely couples with Panx1 (pannexin 1) channel-mediated ATP release channels in resistance arteries, also requires loc...
FK506 binding proteins (FKBPs) catalyze the interconversion of cis-trans proline conformers in proteins. Importantly, FK506 drugs have anti-cancer and neuroprotective properties, but the effectors and mechanisms underpinning these properties are not well understood because the cellular function(s) of most FKBP proteins are unclear. FKBP25 is a nucl...
Pannexin 1 (Panx1) channels are widely recognized for their role in ATP release, and as follows, their function is closely tied to that of ATP-activated P2X7 purinergic receptors (P2X7Rs). Our recent work has shown that extracellular ATP induces clustering of Panx1 with P2X7Rs and their subsequent internalization through a non-canonical cholesterol...
In the nervous system, extracellular ATP levels transiently increase in physiological and pathophysiological circumstances, effecting key signalling pathways in plasticity and inflammation through purinergic receptors. Pannexin 1 (Panx1) forms ion and metabolite-permeable channels that mediate ATP release and are particularly enriched in the nervou...
Pannexins are a 3-membered family of proteins that form large pore ion and metabolite channels in vertebrates. The impact of pannexins on vertebrate biology is intricately tied to where and when they are expressed, and how they are modified, once produced. The purpose of this review is therefore to outline our current understanding of transcription...
Background:
Lung cancer is associated with rapid disease progression, which can significantly progress over a duration of four to eight weeks. This study examines the time interval lung cancer patients from the interior of British Columbia (BC) experience while undergoing diagnostic evaluation, biopsy, staging, and preparation for treatment.
Meth...
The ubiquitous pannexin 1 (Panx1) ion- and metabolite-permeable channel mediates the release of ATP, a potent signalling molecule. Here we present striking evidence that ATP, in turn, stimulates internalisation of Panx1 to intracellular membranes. These findings hold important implications for understanding the regulation of Panx1 when extracellula...
The roles of pannexin 1 (Panx1) large-pore ion and metabolite channels are becoming recognized in many physiological and pathophysiological scenarios. Recent evidence has tightly linked Panx1 trafficking and function to the cytoskeleton, a multi-component network that provides critical structural support, transportation, and scaffolding functions i...
Pannexins (Panxs) are a multifaceted family of ion and metabolite channels that play key roles in a number of physiological and pathophysiological settings. These single membrane large-pore channels exhibit a variety of tissue, cell type, and subcellular distributions. The lifecycles of Panxs are complex, yet must be understood to accurately target...
Pannexins (Panxs) are a three-member family of large pore ion channels permeable to ions and small molecules. Recent elegant work has demonstrated that the Panx1 C-terminus plays an important role in channel trafficking. Panx2, another family member, has a longer and highly dissimilar C-terminus. Interestingly, Panx1 is readily found at the plasma...
Questions
Question (1)
I have looked through several purinergic receptor papers, as well as on addgene, and can't seem to find evidence of one. Is it non-functional? Has anyone tried making one? Thanks!