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Abstract—In this paper we investigate the unwanted scatter-
ing that exists within the MultiPath Simulator (MPS) array
antennas employed in Over The Air (OTA) testing of mobile
terminals. The impact of scattering is evaluated in terms of the
measurement uncertainty of the average received power and the
Ricean K−factor. The maximum ratio combining diversity is
investigated for a generic device under test comprising two half-
wavelength dipole antennas. We provide closed-form expressions
for the uncertainties of the average received power and the Ricean
K−factor for a uniform circular array of MPS antennas and a 2D
uniformly distributed angle-of-arrival spectrum. We also derive
the maximum number of MPS antennas and the minimum ring
radius of the MPS system as a function of the separation between
the most distant antenna elements if the device under test employs
a uniform linear array. As a result, we provide design guidelines
for MPS array in terms of the number antennas, the radius of
the MPS array and the wavelength of the carrier frequency.

Index Terms—Multipath simulator, scattering, measurement
accuracy, Ricean K−factor, maximum ratio combining diversity.

I. INTRODUCTION

Multiple Input Multiple Output (MIMO) techniques have
become key performance boosters in new wireless technolo-
gies such as the Long Term Evolution (LTE), LTE-Advanced
and mobile Worldwide Interoperability for Microwave Access
(WiMAX) standards, [1]. MIMO antenna systems employ
antennas with multiple elements at both sides of the com-
munication link. Hence, a satisfactory performance of MIMO
systems entails a satisfactory performance of the antennas too.
The role of the antennas has now become even more critical
as compared to their role in Single Input Single Output (SISO)
systems, which employ one receive antenna and one transmit
antenna. Previously, the focus had been on figures of merit that
did not take into account the propagation channel. However, it
is no longer possible to neglect the propagation channel while
testing MIMO antenna systems, since the overall performance
depends upon the statistical properties of the propagation
channel and its interaction with the antennas.

Over-the-air (OTA) testing has become the standard ap-
proach for measuring the radiated performance of mobile ter-
minals in SISO systems, [2, 3]. SISO and MIMO OTA testing
have been extensively researched over more than a decade.
Standardization efforts in the CTIA and the 3GPP have been
supported by contributions from both industry and academia.
An especially fruitful forum has been developed within several

COST (COoperation in Science and Technology) Actions sup-
porting cooperation among scientists and researchers across
Europe. Currently, the ongoing COST Action IC1004 has a
working group pursuing MIMO OTA testing research, [4]. The
ultimate goal with this research is to contribute the homolo-
gation, by the standardisation bodies, of one or several OTA
testing techniques capable of differentiating MIMO devices
with good performance from devices with bad performance in
a reliable, efficient and cost-effective manner.

MIMO OTA testing techniques can be roughly divided
into two main groups depending on the type of measurement
chamber used: anechoic chamber techniques and reverberation
chamber techniques [5]. They take fundamentally different
approaches for generating a fading propagation channel. In
anechoic chambers, arbitrary field distributions can be gen-
erated without disturbance from the walls in the desired
directions of the Angle of Arrival (AoA). On the other hand,
in reverberation chambers, the walls are highly reflective
(metallic) and the resulting field is an isotropically distributed
fading field. For a more complete account of the different
techniques and their variations, see [5–8] and the references
therein. Comparisons of the different techniques can also be
found there.

In this paper we focus on the MPS technique, which is an
anechoic chamber OTA testing technique. An MPS consists
of an array of antennas (also known as multiprobe system)
surrounding the device under test (DUT) at a distance of few
wavelengths, [9–11]. A feed network which distributes the
signals over the array is used to apply different amplitudes
and varying phase shifts at the array antennas. In this way
several waves are generated out of the MPS antennas which
upon superposition at the DUT simulate a multipath fading en-
vironment. A schematic representation of a Uniform Circular
Array (UCA) of MPS antennas is shown in Fig. 1.

Accuracy is key in evaluating the performance of a DUT,
therefore we need to evaluate the measurement uncertainty
due to various sources of error. In this paper, we focus on
the unwanted scattering that exists within the MPS array
antennas, i.e., the interference signals that arise within the
antenna arrays themselves. Various research papers have been
published on the MPS technique highlighting different aspects
of measurements and the impact of various parameters on the
measurement uncertainty. For example, in [11], an experimen-
tal UCA MPS system was built and evaluated at frequencies
2−2.6 GHz. In addition to showing the feasibility of the MPS
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method, another main conclusion was that 16 MPS antennas
ought to be used to generate stable fading signal statistics.
Further, a rule of thumb for the number of single polarized
OTA antennas required to achieve a certain uncertainty level
of the field at the test zone was given by (3) in [12]. In [13],
it is shown that in order to achieve field strength and phase
stability across the test zone the ratio between the radius of
a test zone and the radius of a ring of OTA antennas has to
be 1/10 or lower in the frequency range 0.5 − 6 GHz. The
impact of scattering within an MPS array on the measurement
uncertainty of the MPS system was first studied in [14]. An
expression is derived for the standard deviation of the average
received power in a Rayleigh fading environment. As a result
of simulations and measurements it is suggested that for MPS
antennas in the range 8 − 16 and MPS ring radius in the
range of 1−2 m the measurement uncertainty could be within
±(0.1 − 1) dB. However, in spite of the contributions on
the topic there are still plenty of issues to be analyzed. For
example, the impact of scattering within the MPS antennas on
the fading statistics of the emulated propagation channel has
not been studied previously. In this paper we present a remedy
to this situation by filling the gap:
• We derive the maximum number of MPS antennas and the

minimum ring radius of the MPS system as a function of
the separation between the most distant antenna elements
if the DUT employs a Uniform Linear Array (ULA).
The far-field condition employed is based on a distance
criterium for the antenna gain correction factor to Friis
equation [15].

• We provide closed-form expressions for the uncertainties
of the average received power and the Ricean K−factor
for a UCA of MPS antennas and a 2D uniformly dis-
tributed AoA spectrum.

• We investigate the Maximum Ratio Combining (MRC)
diversity for a generic DUT comprising two half-
wavelength dipole antennas.

• We provide system emulation guidelines for MPS array
in terms of the number of MPS antennas, the radius of the
MPS array, the physical size of the DUT and the carrier
frequency.

• We present experimental data to validate our numerical
findings.

II. MPS SCATTERING SIGNAL MODEL

In our analysis we consider a UCA of radius R consisting
of NMPS MPS antennas surrounding NDUT DUT antennas
shown in Fig. 1. We make the following assumptions on the
MPS antennas to enable our modeling approach:

1) Each element of the MPS array is matched, which
means that there is no power reflected back from the
antenna load due to mismatch. Hence, the scattered
power depends only on the physical properties of the
antenna aperture, i.e., its shape, size and material.

2) The elements of the MPS array are λ/2-dipoles, which
are minimum scattering antennas. Hence, the scattered
power is equal in magnitude to the received power and
the scattered field pattern is equal to the radiation pattern
of the antenna.
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Fig. 1: Arrangement of antennas in two-antenna DUT MPS system
as uniform circular array and showing the direct and scattered paths
from the fed MPS antenna to DUT antennas.

Now assume that MPS antenna m is fed, while all the other
MPS antennas ` 6= m will act as passive scatterers. Hence, the
total voltage induced at the DUT antenna port n is comprised
by two terms

vtotaln,m = vdirectn,m + vindirectn,m , (1)

where vdirectn,m is the voltage induced by the wave incoming
directly from the fed MPS antenna m and

vindirectn,m =

NMPS∑
`=1
` 6=m

vindirectn,`,m , (2)

is the voltage induced by the wave also originated at the fed
MPS antenna m, but arriving at the DUT due to scattering
from MPS antennas ` 6= m under the assumption that there
is only single scattering. Single scattering means here that
only the first “signal bounce” from the scattering MPS antenna
is considered. In reality this signal propagates further and is
scattered anew by another MPS antenna and so far and so on
giving place to infinite multiple bounces; they, however, can
be neglected due to additional path loss. In order to obtain
the induced voltages we follow the approach outlined in [16];
however, without taking into account multiple scattering.

The voltage associated with the direct signal vdirectn,m is
obtained as a function of the power received at DUT n and
coming from the fed MPS antenna m, which is given by the
Friis transmission formula [17]

P direct
n,m = PmGmGnηn,m

(
λ

4πRn,m

)2

, (3)

where Pm is the total radiated power by MPS antenna m,
Rn,m is the distance between DUT antenna n and MPS an-
tenna m as shown in Fig.1, Gm and Gn are the corresponding
antenna gains evaluated along the line given by Rn,m, ηn,m is
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the polarization mismatch between the two antennas. Hence,
the corresponding induced voltage is given by

vdirectn,m = c
√
P direct
n,m e−j(kRn,m+ψn,m), (4)

where c and ψn,m are a proportionality constant and the
random phase shifts respectively, both related to the receive
DUT antenna n, kRn,m accounts for the phase delay of
the signal going from transmitter to receiver, i.e., from MPS
antenna m to DUT antenna n.

The voltage associated with the indirect signal vindirectn,m is
then obtained with the help of the two assumptions listed
above. Thus, the power scattered (reradiated) by MPS antenna
` originated at the MPS antenna m is obtained by applying
Friis transmission formulas to the corresponding antennas

P`,m = PmG
′
mG
′
`η`,m

(
λ

4πR`,m

)2

, (5)

where R`,m is the distance between MPS antenna ` and MPS
antenna m, G′m and G′` are the corresponding antenna gains
evaluated along the line given by R`,m. Hence, the indirect
received power can be written as follows

P indirect
n,`,m = P`,mGnG`ηn,`

(
λ

4πRn,`

)2

. (6)

The corresponding induced voltage is then modeled as

vindirectn,m = c

NMPS∑
`=1
` 6=m

√
P indirect
n,`,m e−j(k(Rn,`+R`,m)+ψn,`,m), (7)

where c is a constant related to the receive DUT antenna n,
and ψn,`,m is related to both the DUT and MPS antennas,
k(Rn,` + R`,m) accounts for the phase delay of the signal
going from MPS antenna m, to MPS antenna ` and finally to
DUT antenna n (see Fig. 1).

The total voltage induced at DUT antenna n and coming
both directly or indirectly is obtained from (1) and (3)-(7)

vtotaln =

NMPS∑
m=1

vtotaln,m = vdirectn + vindirectn , (8)

where the desired signal, i.e., the direct signal (4)

vdirectn =

NMPS∑
m=1

vdirectn,m , (9)

will be corrupted by the scattering within the MPS antenna
array given by the indirect signal (7)

vindirectn =

NMPS∑
m=1

vindirectn,m . (10)

The model we have derived above is simple yet useful
since it is based on quantities such as the antenna gain,
transmit power and it can be directly simulated from any given
geometry. It can be easily extended to other than the UCA
MPS configuration.

III. FARFIELD CONDITIONS FOR MPS DESIGN

Let us assume that all the MPS antennas are identical and
located in the far-field of each other which justifies the use
of Friis equation in the previous section. In this paper we use
the quadratic antenna gain reduction factor criterium for low-
gain antennas to define the far-field distance Rref between two
identical antennas at boresight [15]

Rref =
4λG

π2

√
αE

1− γA
, (11)

where λ is the wavelength, G is the antenna gain, αE = 0.06
is a fitting coefficient that is the same for all antennas and
γA is the antenna gain reduction factor. Hence, by choosing
γA we can straightforwardly obtain the starting point of the
corresponding far-field region for a required error magnitude
of the antenna gain defined by 1−γA. An errorless assumption
of the antenna gain in the Friis equations, such that γA → 1
requires the antennas to be at an infinite distance from each
other, i.e., R → ∞, independently of the antenna gain or
the wavelength. In [15] the shortest distance for reliable
performance of the correction to Friis equation is given for
various antennas. Here, we specialize to dipole like antennas
and therefore we choose the λ/2–dipole to evaluate the far-
field distance with gain G = 1.64. In this case the shortest
reliable distance equals 0.35λ with corresponding correction
factor γA = 0.7862. Hence, the correction factor can be
chosen within the interval 0.7862 ≤ γA < 1 with corre-
sponding normalized antenna separation within the interval
0.35 ≤ Rref/λ < ∞. Since our objective is to use the Friis
equations we choose γA = 0.99 such that the introduced
antenna error of 1% is much smaller than the error magnitudes
tolerable in OTA testing [3]. Hence, specializing our analysis
to λ/2-dipoles we can insert γA = 0.99 and G = 1.64 into
(11) to obtain a reference distance defining the start of the far-
field zone, Rref ≈ 1.63λ. More practical antennas employed
in wireless devices have G = 1, which give Rref ≈ 0.99λ.

The distance between any two adjacent MPS antennas in the
array RMPS−MPS shall satisfy the following distance criterium
for the far-field zone at a fixed value of the antenna gain
reduction factor γA

RMPS−MPS ≥ Rref , (12)

where Rref is given by (11). Following the geometry given
in Fig. 1, the distance between any two adjacent MPS array
antennas can be written as follows

RMPS−MPS = 2R sin

(
π

NMPS

)
. (13)

Under the assumption that both the DUT and MPS antennas
are in the far-field of each other, i.e. at distances grater than
(11), the distance between the DUT and MPS antennas needs
to satisfy

RMPS−DUT ≥ Rref . (14)

Now, further assuming that the DUT antennas are identical,
we denote the shortest distance between a DUT antenna and
an MPS antenna as follows

Rshortest
MPS−DUT = R− Ro

2
, (15)
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TABLE I: Minimum MPS ring radius R/λ and corresponding
number of MPS antennas NMPS for a given separation distance
between DUT antennas Ro for antenna gains G = 1.64 and G = 1
with correction factor γA = 0.99.

Ro/λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

G = 1.64(2.15 dBi)

Rm/λ 1.68 1.73 1.78 1.83 1.88 1.93 1.98 2.03 2.08 2.13

Nm
MPS 6 6 6 6 7 7 7 7 7 8

G = 1(0 dBi)

Rm/λ 1.04 1.09 1.14 1.19 1.24 1.29 1.34 1.39 1.44 1.49

Nm
MPS 6 6 6 7 7 7 8 8 8 9

where Ro is the separation distance between the DUTs and
R is the radius of the MPS array for which it is valid that
Rshortest

MPS−DUT ≤ RMPS−DUT.
Now using (12)-(15) we obtain the condition to be satisfied

by the ring radius R given Rref , Ro and NMPS

R ≥ max

 Rref

2 sin
(

π
NMPS

) , Rref +
Ro
2

 , (16)

where the function max (a, b) equals the largest of a and b.
The smallest ring radius is obtained when the arguments in

(16) are equal, i.e., minmax (a, b) = a = b. In our case this
gives the equation

Rref

2 sin
(

π
NMPS

) = Rref +
Ro
2
, (17)

Given Ro and Rref we obtain the corresponding number of
MPS antennas

Nm
MPS =

⌊
π

arcsin
(

Rref

2Rref+Ro

)⌋, (18)

where the function bcc maps a real number c to the largest
previous integer number. The minimum normalized ring radius
is then given by

Rm

λ
=
Rref

λ
+
Ro
2λ
, (19)

Table I shows the the minimum MPS ring radius and the
corresponding number of MPS antennas for different values
of the normalized maximum separation distance between the
DUT antennas Ro obtained using (18) and (19), respectively.

Hence, in order to design an MPS system where all involved
antennas are in the far-field region of each other, the above
limitations on the MPS ring radius and the number of MPS
antennas can be used. It is worthwhile to mention that in
this case, the limitations on the number of MPS antennas and
the size of the quite zone to achieve a given accuracy level
of the reproduced field presented in [12] and [13] are both
fulfilled too. Moreover, the found relationships may serve as a
guideline for designing MPS arrays that are compact in size;
hence allowing for miniaturization alternatives. In addition to
that, the relationships can be used to evaluate upper bounds
on uncertainties since they give the maximum number of MPS
antennas for a given size of the DUT array.

IV. CHANNEL FADING ACCURACY EVALUATION

The measurement uncertainty of the MPS system is evalu-
ated by introducing uncertainty measures for the propagation
channel parameters for a given Ricean channel and also in
terms of MRC diversity.

A. Ricean Fading Statistics

In order to study the impact of scattering on the accuracy
of the emulated propagation channel we assume the desired
channel behavior to be described by the Ricean probability
density function (pdf). Hence, if a test antenna (let’s say a
λ/2-dipole) is placed at the center of the UCA MPS antenna
system then the probability density of the magnitude of the
complex signal received by the antenna |v| is given by, [18]

f|v|(|v|) =
2 (1 +K) |v|

Prec
exp

(
−K − (K + 1)|v|2

Prec

)
×

I0

2

√
K(1 +K)

Prec
|v|

 , (20)

where Prec and K are the parameters of the distribution and
I0 is the modified Bessel function of the first kind and zero
order.

The parameter Prec is the average received power given by

Prec = 〈|v|2〉, (21)

where 〈〉 denotes the sample average operation.
The parameter K is the Ricean K−factor defined as the

power ratio of the fixed and fluctuating components, i.e., the
power of the dominant path |vs|2 and the power of all other
paths 〈|vd|2〉

K =
|vs|2

〈|vd|2〉
, (22)

where Prec = |vs|2 + 〈|vd|2〉.
It is worthwhile noticing that a crucial question is how to

define the reflections of the dominant signal from the other
MPS antennas. In the equations introduced in Section II above
we have assumed that the AoA of the reflected waves are
naturally incorporated as part of the scattering around the
dominant signal. Therefore, reflections of the dominant signal
will affect the level of the non-dominant signals vd, and that
way affect the K−factor. However, a different way of looking
at it would be to consider the scattered waves to be a part of vs
because they might not have independent and random phase
relative to the direct signal path. In this case, the differences
in path lengths of the scattered signals will affect the level of
the dominant path, and thereby affect the K−factor. The latter
interpretation is left to a future study.

B. Ricean Fading Emulation Accuracy

The impact of scattering within the UCA MPS array on
the Ricean fading emulation accuracy is evaluated by looking
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upon the distribution parameters (21) and (22). The corre-
sponding measurement uncertainties are the average received
power uncertainty1 and the Ricean K−factor uncertainty.

Average received power uncertainty: Consider the ratio
between the average received power with and without the
scattering component from all the MPS antennas

εP =
P total
rec

P direct
rec

, (23)

where P total
rec and P direct

rec are computed applying (21) to (9),
(4), (3) and (10), (7), (6), (5), respectively. A closed form
expression for εP can be derived for a uniform 2D distribution
of AoA (see Appendix A), it is however not necerary to
assume uniform Rayleigh

εP = 1 +

(
Gλ

8πR

)2 NMPS−1∑
`=1

1

sin2
(

π`
NMPS

) , (24)

where G is the antenna gain assumed to be equal for all the
MPS antennas and the DUT antenna too, R is the radius of the
MPS ring and NMPS is the number of MPS antennas. Here
it is also worthwhile noticing that the second term of (24) is
the disturbance level introduced in [14]. Clearly, εP ≥ 1 since
scattered power will add up to the direct power and εP = 1
is achieved in case of no scattering effects. The impact of
scattering is anticipated to be of the order of 1 dB or less
[14].

We define the average receive power uncertainty2 in dB as
follows

δP = 20 log 10(1 +
√
εP − 1). (25)

where εP has been defined by (23) and (24). As we can see
from (25) δP = 0 dB, when there is no unwanted scattered
power since εP = 1. If the unwanted scattered power is
present then δP > 0 dB which increases with the power
ratio εP . Hence, as the unwanted scattered power increases
the uncertainty (25) also increases. As we can see from (24),
the uncertainty (25) is the same independently of the K−factor
as we would expect. (24) is approximately a half of the
uncertainty given by (4) in [14] when εP − 1 � 1, which
makes a reasonably good agreement between our approaches.

Ricean K−factor uncertainty: Similarly to the power un-
certainty we start considering the ratio between the K−factor
with and without the scattering component

εK =
Ktotal

Kdirect
, (26)

where Ktotal and Kdirect are computed applying (22) to the
corresponding signals as in the average power case computa-
tions above. An expression for εK is derived in terms of the
gain of the antennas, radius of the MPS ring and the number

1In practice a change in average power can be taken care of by calibration.
However, the uncertainty of the average power for different taps in an impulse
response in a wideband system is critical since the average power level might
in general be different for each tap.

2We have defined the uncertainty to be as a function of 20 log 10(...)
instead of 10 log 10(...) as it’s been defined in [14].

−55 −50 −45 −40 −35 −30
10

−3

10
−2

10
−1

10
0

γMRC, [dB]

c.
d
.f

−46 −44 −42 −40 −38 −36

10
−2

γMRC, [dB]

c.
d
.f
.

Close-Up

γdirect
MRC

γtotal
MRC

K = 0
ǫMRC@1% > 1

K = 1
ǫMRC@1% > 1

K = 10
ǫMRC@1% < 1 K = 100

ǫMRC@1% < 1

Fig. 2: Cumulative distribution function of the MRC corresponding
to direct signals, i.e. without scattering, and signals with the scattering
component present.

of MPS antennas (see Appendix B)

εK =
1

1 +
(
1 + KinNMPS

NMPS−1

) (
Gλ
8πR

)2∑NMPS−1
`=1

1

sin2
(

π`
NMPS

) ,
(27)

where Kin is the input K−factor that corresponds to the
Ricean fading statistics we aim to emulate.

It is expected that εK ≤ 1 since the contribution to the non-
coherent power component, i.e., 〈|vd|2〉 in (22) will increase
due to scattering and thus, leading to a small K−factor. In the
case of no scattering we have εK = 1.

The Ricean K−factor uncertainty can be defined in dB as
follows

δK = 20 log 10(1 +
√
1− εK). (28)

As in the case of the average power uncertainty, the K−factor
uncertainty δK = 0 dB when there is no unwanted scattered
power since εK = 1. An increase of unwanted scattered power
results in an increase of δK .

C. Diversity Combining

Here we study the impact of the scattering on the MRC
diversity. It is assumed that the variance of the Additive White
Gaussian Noise (AWGN) equals one. Thus, the output of the
MRC gives the signal-to-noise ratio, [20]

γMRC =

NDUT∑
n=1

|vn|2, (29)

where vn are the voltages induced at antenna port n of the
DUT and NDUT is the number of antenna ports, i.e., diversity
branches.

MRC diversity uncertainty: MRC diversity uncertainty can
be defined at different cumulative distribution function (cdf)
probability levels of (29). Firstly, let’s define the ratio between
the average MRC with and without scattering

εMRC =
〈γtotalMRC〉
〈γdirectMRC 〉

, (30)

where γtotalMRC and γdirectMRC are given by (29) with vn replaced by
vtotaln and vdirectn , respectively. It is expected that εMRC ≥ 1

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TAP.2014.2310191

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs−permissions@ieee.org.



6

2 4 6 8 10 12 14 16
0

0,4

0,8

1,2

1,6
δ
P
,
[d
B
]

NMPS

 

 

R = 2λ (Theory)
R = 4λ (Theory)
R = 6λ (Theory)
R = 8λ (Theory)
R = 10λ (Theory)
R = 2λ (Simulations)
R = 4λ (Simulations)
R = 6λ (Simulations)
R = 8λ (Simulations)
R = 10λ (Simulations)

Fig. 3: Average received power uncertainty δP [dB] v.s. the number
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since scattered power will add up to the direct power and
εMRC = 1 is achieved in case of no scattering effects. This
can be clearly understood noticing that (30) is the same as

εMRC =

∑NDUT

n=1 P total
rec,n∑NDUT

n=1 P direct
rec,n

= εP , (31)

for independent identically distributed MRC diversity branches
(see (23)). This of course is applicable only when the DUT
antennas receive the same signals in average.

Following our approach we can then define the MRC
diversity uncertainty in dB as follows

δMRC = 20 log 10(1 +
√
εMRC − 1). (32)

In addition to the average level, the MRC diversity gain is
commonly defined at some probability level p of the cdf.
Hence, we here consider p = 1% to illustrate the impact of
scattering on the distribution of the MRC signal. In this case
we define the ratio between the MRC signal with and without
scattering corresponding to the p = 1% as follows

εMRC@1% =
γtotalMRC@1%

γdirectMRC @1%
. (33)

The MRC diversity uncertainty evaluated at 1% given in dB
is then

δMRC@1% = 20 log 10(1 +
√
|εMRC@1% − 1|). (34)

Both δMRC and δMRC@1% equal 0 dB when the unwanted
scattering is not present but increase as the unwanted scattering
power increases.

Here, as it can be inferred from Fig. 2 based on simulated
data, εMRC@1% may be less or greater than 1 depending on the
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K = 0 (DUT 1)
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Fig. 4: Average received power uncertainty δP [dB] v.s. the normal-
ized separation distance Ro for different Ricean K−factors. The two-
antenna DUT system is considered with MPS simulation parameters
from Table I. DUT1 and DUT2 denote each antenna element in the
two-antenna DUT system.

K factor. In this case, the combined effects of average power
increase and K−factor reduction in the presence of scattering
will result not only in a shift of cdf but also a change of the
slope of the MRC signal. As previously, equality to one is
obtained when no scattering is present.

V. NUMERICAL EXPERIMENTS AND ANALYSIS

In this section we present an analysis of the uncertainty
parameters δP , δK, δMRC and δMRC@1% given in Section IV.
The uncertainty parameters are evaluated as a function of the
number of MPS antennas NMPS ∈ {2, 16}, the normalized
radius of the MPS ring R/λ ∈ {2, 10} and the Ricean fading
parameter K = {0, 1, 10, 100}. We present numerical experi-
ments based on the scattering model introduced in Section II
and the Ricean fading statistics assumption (20)-(22). First, we
evaluate the results for each considered parameter by assuming
an antenna spacing of Ro = λ/2. Secondly, in order to charac-
terize the uncertainty of compact UCA MPS OTA systems we
consider the separation distance of Ro/λ with corresponding
min (R/λ) and max (NMPS) chosen according to Table I. Two
main scenarios are considered regarding the number of DUT
antennas, i.e., one-antenna and two-antenna DUT systems
comprising vertically polarized half-wavelength dipoles with
unit gain, i.e., 0 dBi. The one-antenna DUT is placed in the
center of the MPS simulator. In the two-antenna DUT case, the
antenna elements are placed symmetrically around the center
of the MPS array as shown in Fig. 1. Each simulation point
was obtained based on n = 2 × 106 independent samples of
the fading statistics. In addition, the data is further analyzed
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Fig. 5: Ricean K−factor uncertainty [dB] v.s. the number of MPS
antennas NMPS for different MPS ring radii and different input
K−factors.
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Fig. 6: Ricean K−factor uncertainty δK [dB] v.s. the normalized
separation distance Ro for different Ricean K−factors. The two-
antenna DUT system is considered with MPS simulation parameters
from Table I. For legend see Fig. 4.

by resampling the data with n = 1 × 106 data points in a
bootstrapping approach [21]. The employed Ricean K−factor
estimator is based on the method-of-moments described in
[22]. We compare simulation results to analytical expressions
where applicable.

Since we are interested in investigating the impact of scat-
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Fig. 7: MRC diversity uncertainty at the 1% probability level
δMRC@1% [dB] v.s. the number of MPS antennas NMPS for different
MPS ring radii and different input K−factors.
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Fig. 8: MRC diversity uncertainty at the 1% probability level
δMRC@1% [dB] v.s. the normalized separation distance Ro for differ-
ent Ricean K−factors. The two-antenna DUT system is considered
with MPS simulation parameters from Table I.

tering we adopt a simplified Ricean fading model to generate
the desired first order statistics. The simulations are based on
a UCA MPS antenna arrangement comprising of vertically
polarized half-wavelength dipole antennas also with unit gains
for the sake of convenience. Each MPS antenna transmits
signals of constant amplitudes proportional to the square root
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Fig. 9: Ricean K−factor uncertainty δK [dB] v.s. input Ricean
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separation Ro = λ/2.
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Fig. 10: MRC diversity uncertainty at the 1% probability level
δMRC@1% [dB] v.s. input Ricean K−factors. A two-antenna DUT
system is considered with element separation Ro = λ/2.

of the radiated power
√
P . The phases ψ of the transmit

signals, on the other hand, are changed randomly between 0
and 2π and drawn from a 1D uniform distribution (i.e., the
induced voltages at a DUT antenna v ∼

√
P e−j(ψ) as shown

in Section II). In order to obtain a Rayleigh distributed signal
(i.e., K = 0 in (20)), all the amplitudes transmitted by the
MPS antennas are assumed to be equal. Thus, in our model
we assume for K = 0 the input power of MPS antenna m is
given by

Pm =
1

NMPS
for all m. (35)

The Ricean fading (i.e., K > 0 in (20)), is achieved when the
amplitude of one of the transmit signals is larger than all the
others (see Appendix B and [24] for further details). In this
case, the input power of MPS antenna m is given by

Pm =

{ KinNMPS

KinNMPS+NMPS−1 if m = 1
1

KinNMPS+NMPS−1 otherwise
, (36)

where P1 is the transmit power by the MPS antenna that
simulates the fixed path, while all the other represents the
transmit power by the MPS antennas m 6= 1 and emulate
the fluctuating paths in Ricean fading. As can be seen from

Fig. 11: MPS system in anechoic room with 8 pairs orthogonally
polarized MPS antennas. The receiving vertically polarized half-
wavelength dipole is shown in the center of the MPS array.

Fig. 12: Same as in Fig.11, but with flat laminate absorbers.

(35) and (36), the total input power to the MPS antennas
is normalized to one. It is worthwhile to mention that the
signal variation can be modeled by the Ricean distribution
with K = 0 (i.e., Rayleigh distribution) with good accuracy
for NMPS ≥ 6, [24]. As K increases, the number of required
MPS antennas might be lower.

A. Average Received Power Uncertainty

The results of the average received power uncertainty cor-
responding to the one-antenna DUT case are shown in Fig.
3. Similar results were obtained for the two-antenna DUT
case with antenna element spacing Ro = 0.5λ and therefore
are omitted. Fig. 3 illustrates the dependence of δP upon the
number of MPS antennas NMPS for different values of the
ring radius to wavelength ratios R/λ. Moreover, the small
spread in values correspond to different K−factors; δP is
independent of the Ricean K−factor as we had concluded
in Section IV above. As we can see from Fig. 3, the impact
of scattering increases with the number of MPS antennas, i.e.,
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from NMPS = 2 to NMPS = 16, whereas it decreases with the
size of the MPS ring radius, i.e., from R = 2λ to R = 10λ.
So implementing a UCA MPS OTA system with NMPS = 16
antennas and ring radius R = 10λ will result in an average
received power uncertainty δP ≈ 0.30 dB. This result is well
in line with the results obtained in [14]. The discrete points
represent simulated results, while theoretical results (see (24)
and (25)) are shown by the continuous lines.

Fig. 4 shows the average received power uncertainty corre-
sponding to the two-antenna DUT case as a function of the
separation distance between the DUT antennas Ro given in
wavelengths at K = 0, K = 1, K = 10 and K = 100.
Furthermore, as we wanted to understand the impact of the
limitations of the far-field conditions (18) and (19) on δP we
produced the results with R/λ and NMPS according to Table
I.

As expected, the variations δP as a function of K−factor are
small and are a result of numerical uncertainties. Moreover,
we can see from Fig. 4 that δP is also rather constant and
equals approximately 1 dB in average. The small oscillations
we believe are a result of the geometrical disposition of the
DUT array within the MPS array. As we can see, δP = 1 dB
is much higher than most values shown in Fig. 3. This can be
explained by the fact that, in the majority of the considered
cases, the ring radii were much larger than those in Table
I. Clearly, the average received power uncertainty could be
reduced by decreasing the number of MPS antennas. Hence,
Fig. 4 shows an upper bound on δP which is independent of
the maximum separation between the DUT antenna elements.
In other words, we have obtained the worst case average
received power uncertainty for the “miniaturization” of the
UCA MPS OTA testing.

B. Ricean K−factor uncertainty

Fig. 5 shows the Ricean K−factor uncertainty results for
the one-antenna DUT case. Here also similar results were
obtained for the two-antenna DUT case with antenna element
separation Ro = 0.5λ and therefore are omitted. As we
can see from Fig. 5, δK increases with the number of MPS
antennas, whereas it decreases with the size of the MPS ring
radius. Moreover, δK increases with the K−factor. This can
be understood by noticing the fact that scattering from the
MPS array antennas will add power to fluctuating paths but
relatively much less to the fixed path component, which causes
the K−factor to decrease (see (22)). The impact considerably
increases for large K−factors. The discrete points represent
simulated results, while theoretical results (see (27) and (28))
are shown by the continuous lines.

The results in Fig. 6 are plotted in a similar way as described
for Fig. 4. The results in Fig. 6 show almost no variation of the
Ricean K−factor uncertainty as a function of the separation
distance between the DUT antennas in an MPS system. On
the other hand, the uncertainty considerably increases as a
function of the Ricean K−factor. It is worthwhile noticing the
variation (oscillations) of the uncertainty for K = 0, which
can be explained by the stochastic nature of the underlying
simulation, but also inaccuracies introduced by the employed
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Fig. 13: Average received power uncertainty δP [dB] v.s. the number
of MPS antennas NMPS at MPS ring radius R = 12λ. The boxplot
correspond to the parameter estimated from measurements. The
diamonds and the circles correspond to predictions with our model
with the difference that in the latter case (circles) we double the
scattered power.
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Fig. 14: Ricean K−factor uncertainty [dB] v.s. the number of
MPS antennas NMPS at MPS ring radius R = 12λ. The boxplot
correspond to the parameter estimated from measurements. The
diamonds and the circles correspond to predictions with our model
with the difference that in the latter case (circles) we double the
scattered power.

Ricean K−factor estimator at K = 0, [22] (see [23] for an
alternative estimator). In Fig. 6, it is also observed that results
are similar for both the DUTs. Following a similar reasoning as
in Fig. 4 we can conclude that plots shown in Fig. 6 represent
an upper bound on δK which is independent of the maximum
separation between the DUT antenna elements.

Fig. 9 shows the dependence of the Ricean K−factor
uncertainty as a function of the input K−factor for two
different sets of values of MPS ring radius and number of
MPS antennas. As we can see, the uncertainty increases with
the K−factor for K & 1, while for lower values, i.e., less
than 1, there are small fluctuations. The trend depends on the
MPS ring radius and number of MPS antennas.

C. MRC Diversity Uncertainty

In this section, the MRC diversity uncertainty is discussed
for both the average power and the power corresponding to
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the 1% cdf probability level of the combined signals (29),
i.e., δMRC and δMRC@1%, respectively. The two-antenna DUT
system comprises two identical antennas with spacing Ro =
0.5λ. Then, the average MRC diversity uncertainty is, in this
case, equal to the average power uncertainty, i.e., δMRC = δP
(see (31)). Hence, for an analysis of the average MRC diversity
uncertainty behavior please see Section V.A.

Results for the MRC diversity uncertainty evaluated at the
1% cdf probability level are given in Fig. 7. As we can see,
δMRC@1% increases with the number of MPS antennas, but
decreases with the size of the MPS ring radius. Furthermore,
the increase of δMRC@1% with the Ricean K−factor can
be clearly observed for larger K− factors, but δMRC@1% is
slightly larger at K = 0 than for K = 1.

Fig. 8 shows the dependence of δMRC@1% on Ro/λ
for different Ricean K−factors. Fig. 8 was obtained in a
similar way as described above for Fig. 6, Fig. 5 and Fig.
3. Here, δMRC@1% remains almost constant as a function
of the normalized separation distance between the antenna
elements Ro and UCA MPS parameters chosen from Table
I. On the other hand, at smaller K−factors, i.e., K = 0 and
K = 1, δMRC@1% oscillates due to the stochastic nature of
the simulations. Here, the uncertainty at K = 0 is larger than
at K = 1. This can be explained by the impact of scattering
on the MRC signal, which depends on the K−factor as shown
in Fig. 2. For K = 0, we have that εMRC@1% > 1, but
decreases with the increase of K−factor. For K ≈ 1 and
above εMRC@1% < 1, but the uncertainty (34) increases since
|εMRC@1%−1| increases even faster leading to a minimum for
K = 1 as illustrated in Fig. 10.

VI. EXPERIMENTAL VALIDATION

Above, we studied a large number of different performance
measures under various MPS system parameters both numer-
ically and analytically. In this section we present the experi-
mental evaluation of the average received power uncertainty
δP and the Ricean K−factor uncertainty δK . For this purpose
we use the MPS system at the Sony Mobile Communications
facility in Lund, Sweden. The MPS system comprises 16
identical omnidirectional UWB antennas with a scattering
parasitic element. 8 antennas are horizontally polarized and the
other 8 are vertically polarized as shown in Fig.11. Hence, up
to 16 different signal paths can be simulated. Different Doppler
spectra can be simulated by feeding the MPS antennas via a
sweeping phase shifter. The amplitude of each path can be
controlled by attenuators fed to the MPS antennas. A vector
network analyzer is used to record the complex transmission
coefficient S21 between the antenna under test (AUT) and the
MPS antennas. Further information can be found in [25].

To estimate the impact of scattering we specialize our
investigations to the vertically polarized case and therefor only
up to 8 paths were generated since NMPS = 8 in our case.
The CW (Continuous Wave) measurements were performed at
the LTE-A band of 2600 MHz with a vertically polarized half-
wavelength antenna placed in the center of the MPS system.
The MPS ring radius was fixed and equal to 1.4 m, which at
2600 MHz gives R = 12λ. For our purposes we din’t use the
phase shifter.

The experimental procedure is described next. We started
by covering all the MPS antenna pairs but one with flat
laminate absorbers as shown in Fig.12. The average reflection
coefficient of the absorbers is −20 dB over the considered
frequency band. We then collected a sequence of 16001 values
of S21. In order to emulate a given K−factor value, i.e.,
0, 5 and 33, we repeated the measurements with three
different transmit powers, i.e., the power to one of the MPS
antennas is varied, while keeping the other powers fixed. This
procedure was repeated 6 times to check for consistency. Next,
we removed a second absorber, a third and so on until all eight
absorbers were removed. Each time we collected the same
amount of data, i.e., we have 8 sets of 16001× 3× 6 values
of S21.

We reduce the effect of the additive white gaussian noise
by averaging over the 16001 points which improves the signal
to noise ratio by 42 dB and reduces the data to 3× 6 vectors
containing 8 elements each. Then we minimize the squared
error norm between the complex measured signals and the
model in Section II. This leads to a nonlinear optimization
problem, which we solve numerically by means of the fmincon
Interior Point Algorithm implemented in the Matlab Optimiza-
tion Toolbox [26]. Among the set of solutions we have chosen
the data with the lowest fitting errors between measurement
and model. The data with large fitting errors give also large
measurement uncertainties. We assume they are not caused by
scattering within the MPS system.

The obtained results are shown in Fig.13 and Fig.14; they
depict the average received power uncertainty δP and the
Ricean K−unceratinty δK for K = 33 (results for K = 0
and K = 5 follow a similar trend but with lower values). The
boxplots show the statistics of the estimated uncertainties. The
circles and the diamonds represent the results obtained from
the model when the scattered power is accounted for twice or
only once, respectively. As we can see, the agreement between
data and model is rather good, especially for the case when
scattered power in the model is doubled (given by the circles).
This is explained by the fact that our model considers only one
ring of MPS antennas, while the used MPS system comprises
two superimposed rings, one of them with passive antennas.
Moreover, we see that the disagreement increases as we move
towards the lower values of NMPS. This difference can be
explained by the fact that with fewer NMPS antennas the
contribution from the adjacent (orthogonally polarized passive
antenna) has a larger relative contribution to the scattering as
compared to the case with a larger number of MPS antennas.

VII. DISCUSSION & CONCLUSIONS

The study of the impact of scattering within an MPS array
on the measurement uncertainty is evaluated for a narrowband
Ricean channel by performing MPS simulations based on
the proposed MPS scattering model and the derived far-field
criteria. Based on the simulation results it can be said that
the average received power uncertainty, the Ricean K−factor
uncertainty and the MRC diversity uncertainty (both average
and at the 1 % probability level), they all increase with the
larger number of MPS antennas and decrease with the smaller
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radius of the MPS ring. Typical values of the number of
MPS antennas and radii of the MPS ring are within 8 − 16
and 2 − 10 wavelengths, respectively. In this case it was
found that the average received power uncertainty is within
0.1− 0.7 dB. The Ricean K−factor uncertainties for K = 0
and K = 10 are within 0.1−1 dB and 0.5−2 dB, respectively.
The corresponding MRC diversity uncertainties at the 1 %
probability level are within 0.2− 0.6 dB and 0.3− 1.5 dB for
K = 0 and K = 10, respectively.

The general trend is that uncertainty also increase with the
Ricean K−factor except for the average power uncertainty and
the average MRC diversity uncertainty which are shown not to
depend on the K−factor. Thus, the obtained results suggest
that to counter the impact of the scattering within the MPS
antennas emulating a Ricean fading environment one has to
design a large MPS system and this leads to higher costs.

To keep costs low we therefore need to “miniaturize” the
UCA MPS system while keeping measurement uncertainties at
an acceptable levels. We have shown that if the UCA MPS sys-
tem fulfills the derived far-field criteria, then there is a certain
minimum ring radius and a maximum number MPS antennas
for each maximum separation between antennas in a DUT
system. Under these conditions, the considered uncertainties
change only slightly as a function of the maximum separation
between antennas in a DUT system.

Future studies could consider the combined impact of
reflections from the chamber walls and reflections from the
MPS array. Other aspect of interest could be study cross-talk
within the measurement equipment, which may set an upper
limit to the K−factor that can be implemented.
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APPENDIX A: DERIVATION OF THE AVERAGE RECEIVED
POWER UNCERTAINTY

Let’s assume a UCA MPS system with NMPS MPS antennas
and one DUT antenna which are co-polarized (i.e., η = 1 in
(3)) and have equal gain G as in the case of omnidirectional
antennas. According to Section II the total power received at
a DUT is the sum of the direct and the indirect powers

P total = P direct + P indirect, (37)

where the total direct power is given by

P direct =

NMPS∑
m=1

P direct
m , (38)

and the total indirect (i.e., scattered) power is given by

P indirect =

NMPS∑
m=1

NMPS∑
` 6=m

P indirect
`,m . (39)

The direct receive power at the DUT arriving from the fed
MPS antenna m with transmit power Pm can be written as
follows according to Friis transmission formula (3)

P direct
m = Pm

(
Gλ

4πR

)2

. (40)

The indirect receive power at the DUT which has been
scattered by passive MPS antenna `, but radiated by fed MPS
antenna m is obtained by combining (5) and (6)

P indirect
`,m = Pm

(
Gλ

4πR

)2(
Gλ

4πR`,m

)2

, (41)

where R`,m is the distance between MPS antenna m and MPS
antenna ` which for a UCA MPS system is given by

R`,m = 2R sin

(
π|`−m|
NMPS

)
. (42)

Now substituting (41) into (39) gives

P indirect =

NMPS∑
m=1

Pm

(
Gλ

4πR

)2 NMPS−1∑
`=1

(
Gλ

4πR`

)2

, (43)

where due to circular symmetry

R`,m = R` = 2R sin

(
π`

NMPS

)
. (44)

Combining the above equations and substituting the result in
(23) gives the sought result for the average received power
uncertainty (24).

APPENDIX B: DERIVATION OF THE RICEAN K−FACTOR
UNCERTAINTY

The Ricean K−factor of the direct signal, i.e., without
scattering is defined as

Kdirect =
P direct
s

P direct
d

. (45)

where by applying the model given by (35) and (36) together
with results presented in Appendix A we obtain the direct
power for the fixed component and the Ricean K−factor Kin

P direct
s =

KinNMPS

KinNMPS +NMPS − 1

(
Gλ

4πR

)2

. (46)

The direct power due to the fluctuating NMPS − 1 paths is
written as follows

P direct
d =

NMPS − 1

KinNMPS +NMPS − 1

(
Gλ

4πR

)2

. (47)

Now by substituting (46) and (47) in (45) we obtain

Kdirect =
KinNMPS

NMPS − 1
. (48)

The Ricean K−factor of the total power is by definition

Ktotal =
P total
s

P total
d

, (49)
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where the total and the direct power of the fixed component
are equal, i.e., P total

s = P direct
s , as a result of the scattering

model in Section II.
The total power due to the fluctuating NMPS− 1 paths and

Ricean K−factor Kin can be written as

P total
d =

NMPS − 1

KinNMPS +NMPS − 1

(
Gλ

4πR

)2

A

+
KinNMPS

KinNMPS +NMPS − 1

(
Gλ

4πR

)2

B, (50)

where

B =

NMPS−1∑
`=1

(
Gλ

4πR`

)2

, (51)

and A = 1 + B. By substituting (50) and (46) in (49) we
obtain

Ktotal =
KinNMPS

(NMPS − 1)A+KinNMPSB
. (52)

Now (52) can be further simplified and written as follows:

Ktotal =
KinNMPS

(NMPS − 1) + (KinNMPS +NMPS − 1)B
. (53)

The K−factor uncertainty (27) is then obtained by straight-
forward algebraic substitutions that are omitted due to lack of
space. Substituting (44) into (51) and further substituting the
obtained result into (53) gives an expression for Ktotal. We
can now substitute the resulting expression and (48) into (26)
that readily leads to (27).
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Processing. Dr. Händel has served as a member of

the Editorial Board of the Journal on Advances in Signal Processing, as a
member of the Editorial Advisory Board of Recent Patents on Electrical
Engineering, and as an Associate Editor for IEEE TRANSACTIONS ON
SIGNAL PROCESSING.

Thomas Bolin MSc AP & EE LiTH 1979. Industry
background: RF-Engineer at ITT Standard Radio &
Telefon AB in Stockholm 1979− 1983 in R&D of
maritime kW HF-transmitters, technical manager at
Ericsson and Sony Ericson in Lund in 1985−2009
in mobile phone RF and Antenna Design. Present
position: Master Engineer at the Network Technol-
ogy Research Lab of Sony Mobile Lund with a
responsibility of terminal MIMO antenna design and
measurement technology. Is a member of the Sony
Mobile IPR-board. Holds some 10 patents and is

co-author to a few scientific papers.

Kjell Prytz received his BSc in physics and his
PhD in high energy physics in 1984 and 1991,
respectively, both from Uppsala University. In 1998
he was appointed Docent in high energy physics at
Uppsala University. He has worked at CERN and
DESY laboratories in high energy physics and has
since 1996 been employed as lecturer in physics at
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