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Abstract. The power graph of a group G is a directed graph with the set
G of vertices, and with all edges (u, v) such that u 6= v and v is the power
of u. For each directed graph D, we give a complete description of all
groups G such that every infinite subset of G contains a power subgraph
isomorphic to D. Also, we describe the structure of the power graphs of
all finite abelian groups.

Giving an answer to a question of Paul Erdös, B.H. Neumann proved that
a group is center-by-finite if and only if every infinite sequence contains a
pair of elements that commute. After that several authors have investigated
combinatorial properties of groups with all infinite subsets containing certain
special elements, and a survey of this direction of research has been given by
the first author in [2].

We consider a combinatorial property defined in terms of power graphs.
The power graph P (G) of a group G has all elements of G as vertices, and it
has edges (u, v) for all u, v ∈ G such that u 6= v and v is a power of u. Let
D be a directed graph. We say that a group G is power D-saturate if and
only if, for every infinite subset T of G, the power graph of G has a subgraph
isomorphic to D with all vertices in T .

Our first theorem completely describes all pairs (D,G), where D is a di-
rected graph and G is a group, such that G is power D-saturate (Theorem 1).
After that, for each finite abelian group G, we describe the power graph of G
(Theorem 2).

For notation and terminology of graph and group theories not mentioned
in this paper the reader is referred to [1] and [5], respectively. If p is a prime,
then the p-primary component of a group G is denoted by Gp, the cyclic group
of order p is denoted by Cp, and Cp∞ stands for the quasicyclic p-group. A
directed graph is said to be acyclic if it has no directed cycles. Obviously, ifG is
finite or if D is a null graph, then G is power D-saturate. Therefore in our first
main theorem we consider only infinite groups G and directed graphs D which
have edges. Denote by T∞ the transitive tournament on the set IN of natural
numbers. It has the vertex set IN and the edge set E(T∞) = {(m,n) | m > n}.
Theorem 1. Let D(V,E) be a directed graph with E 6= ∅, and let G be an
infinite group. Then G is power D-saturate if and only if G is a center-by-finite
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torsion group, the center C(G) has a finite number of primary components,
each primary component of C(G) is finite or quasicyclic, the order of G/C(G)
is not divisible by p for each quasicyclic p-subgroup of G, and D is isomorphic
to a subgraph of T∞.

Clearly, for each group G and every set of vertices V there exist maximal
graphs D(V,E) such that G is D-saturate. Theorem 1 shows that in fact
there are only three types of maximal graphs: null graphs, transitive subtour-
naments of T∞, and the compete graphs.

For the proof we need the following well-known result due to B.H. Neumann:

Lemma 1. ([3]) A group is center-by-finite if and only if every infinite se-
quence contains a pair of elements that commute.

A directed graph D(V,E) is called a direct product of
D1(V1, E1), . . . , Dn(Vn, En) if V = V1 × · · · × Vn and E is the set of all pairs
((a1, . . . , an), (b1, . . . , bn)) such that (a1, . . . , an) 6= (b1, . . . , bn) and (ai, bi) ∈
Ei ∪ (Vi × Vi) for all 1 ≤ i ≤ n.

Lemma 2. If G =
∏n
i=1Gpi is a direct product of pi-groups, where p1, . . . , pn

are pairwise distinct primes, then the power graph of G is the direct product
of the power graphs of Gp1 , . . . , Gpn.

Proof. If b = (b1, b2, . . . , bn) is a power of a = (a1, a2, . . . , an) in G, then
obviously every bi is a power of ai in Gi, for all i = 1, . . . , n.

Conversely, suppose that bi = ami
i in Gi, for all i = 1, . . . , n. Denote the

order of ai by ki. Given that Gpi is a pi-group, we see that k1, . . . , kn are
pairwise coprime. By the Chinese remainder theorem there exists a positive
integer k which has remainder mi upon division by ki, for all i = 1, . . . , n. It
follows that ak = b, as required.

Maximal complete subgraphs of a directed graph are called cliques. Evi-
dently, the binary relation of every power graph is transitive.

Lemma 3. Let p be a prime, and let a and b be two distinct elements in a
cyclic p-group Cpn, where a has order pr and b has order ps. Then

(i) a belongs to a clique of order pr − pr−1;
(ii) (a, b) ∈ E(P (Cpn)) if and only if r ≥ s.

Proof. (i): Denote by g a generator of the Cpn . There are precisely pr − pr−1
elements of order pr in Cpn , namely all elements gk such that (k, pn) = pn−r.
Each element of order pr generates the same subgroup and can be expressed as
a power of every other element of the same order. Thus all elements of order
pr induce a clique of order pr − pr−1 in P (Cpn). When r = 0, the identity
element forms a clique of order 1.
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(ii): Suppose that r ≥ s. The order of f = ap
r−s

is equal to ps. Since
all elements of the same order belong to the same clique in P (Cpn), it follows
that (f, b) ∈ E(P (Cpn)). Hence (a, b) ∈ E(P (Cpn)).

Conversely, suppose that (a, b) ∈ E(P (Cpn)). Take any generator g of Cpn .

Then a = gc, where (c, pn) = pn−r. Similarly, b = gd, where (d, pn) = pn−s.
Given that am = b, we get (gc)m = gd; whence mc ≡ d (mod pn). This
congruence is solvable if and only if (c, pn)|d. Hence (c, pn)|(d, pn), pn−r|pn−s
and we get r ≥ s, as required.

Proof of Theorem 1. The ‘only if’ part. Suppose thatG is powerD-saturate,
i.e., every infinite subset of G contains a power subgraph isomorphic to D.
Hence every infinite subset has at least two elements a, b such that b is a power
of a, and so a and b commute. Lemma 1 implies that G is center-by-finite.

If G has an element g of infinite order, then the vertices g2, g3, g5, . . . are
not adjacent in the power graph of G. Since E(D) contains edges between
distinct vertices and G is D-saturate, we see that G has to be torsion.

If G contains elements gi of orders pi, for infinitely many primes p1, p2, . . . ,
then the vertices g1, g2, . . . are not adjacent in P (G). This contradicts the
D-saturateness of G again. Therefore G has a finite number of primary com-
ponents.

If a p-primary component C(G)p of the center C(G) has infinite p-rank,
then C(G)p contains independent elements g1, g2, . . . (see [5], 4.2). Clearly,
these elements are not adjacent in the power graph of C(G). Thus the p-rank
of C(G)p is finite.

It follows that C(G)p is a direct product of finitely many cyclic or qua-
sicyclic groups (see [5], 4.3.13). Suppose that C(G)p is infinite, but is not
quasicyclic. Then it contains a subgroup isomorphic to Cp ×Cp∞ . Let g be a
generator of Cp, and let g1, g2, . . . be generators of Cp∞ such that gp1 = e and
gpi+1 = gi for all i = 1, 2, . . . . Then the set (g, g1), (g, g2), (g, g3), . . . induces a
null subgraph in the power graph. Therefore G is not D-saturate. Thus each
primary component of C(G) is finite or quasicyclic.

Take any prime number p such that G has a quasicyclic subgroup Cp∞ .
If g1, g2, . . . are the same generators of Cp∞ as above, then we see that they
induce a subgraph of the power graph of G isomorphic to T∞, that is (gi, gj) ∈
E(P (G)) if and only if i > j. Since G is D-saturate, D is a subgraph of T∞.

Suppose that p divides |G/C(G)| and that G has a quasicyclic subgroup
Cp∞ with generators g1, g2, . . . as above. Pick an element h in G such that its
image hC(G) has order p in G/C(G). Then all vertices (h, g1), (h, g2), . . . are
not adjacent in P (G), and so G is not D-saturate. This contradiction shows
that |G/C(G)| is not divisible by p for each quasicyclic p-subgroup of G.

The ‘if’ part. Assume that D has edges, G is a torsion group with a finite
number of primary components, each primary component of G is finite or
quasicyclic, and the order of G/C(G) is not divisible by p for each quasicyclic
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p-subgroup of G. In particular, G = Gp1×· · ·×Gpn for pairwise distinct prime
numbers p1, . . . , pn. For 1 ≤ i ≤ n, denote by πi : G → Gpi the projection of
G onto Gpi .

Take any infinite subset L of G. By induction on i = 0, 1, . . . , n we define
infinite subsets Li of L such that every image πk(Li) forms a chain (i.e., a
transitive tournament) in the power graph of Gpk for k = 1, . . . , i. First, put
L0 = L. Suppose that the set Li has already been defined for some 0 ≤ i < n.

If πi+1(Li) is finite, then we can find an infinite subset Li+1 of Li such that
πi+1(Li+1) has only one element, and so forms a chain. (Note that in this part
of our proof we allow consequtive repetitions of the same vertex in a chain or,
equivalently, we attach all loops to the graphs.)

Next consider the case, where πi+1(Li) is infinite. Then Gpi+1 is infinite
too, and so it is quasicyclic. Putting p = pi+1,we get Gp = Cp∞ . Since
|πi+1(Li)| = ∞ and Cp∞ is the union of an ascending chain of cyclic groups,
we can choose an infinite sequence t1, t2, . . . ∈ Li such that each element
πi+1(tj) has order p`j , for j = 1, 2, . . ., and `1 < `2 < . . .. Take any positive
integers j < k. There exists a cyclic subgroup Cp` of Cp∞ such that both
πi+1(tj) and πi+1(tk) belong to Cp` . Lemma 3 shows that πi+1(tj) is a power
of πi+1(tk). It follows that the sequence πi+1(t1), πi+1(t2), . . . forms an infinite
chain in the power graph of G. We can take Li+1 = {t1, t2, . . .}.

Thus we have defined the sets L1, . . . , Ln. All projections of the infinite set
Ln form ascending chains in Gp1 , . . . , Gpn . Lemma 2 implies that Ln induces
an infinite chain C in the power graph of G.

A vertex u is said to be an ancestor of a vertex v, if there is a directed
path from v to u. Easy induction shows that the number of ancestors in C of
every vertex of C is finite. Hence C is isomorphic to T∞. Thus D embeds in
T∞, which completes our proof. 2

In order to describe the power graphs of all finite abelian groups, we take
any finite abelian group G and any elements a, b in G, and introduce the
following notation.

Denote the primary components of G by Gp1 , . . . , Gpn , and express each
Gpi as a direct product of cyclic groups Gpi = (C

p
wi,1
i

)qi,1 × (C
p
wi,2
i

)qi,2 × · · · ×
(C

p
wi,mi
i

)qi,mi and wi,1 < wi,2 < · · · < wi,mi . For i = 1, . . . , n, denote the pro-

jections of a and b on Gpi , by ai and bi, respectively. Choose generators gi,j,k
in the cyclic groups of Gpi above, where 1 ≤ j ≤ mi and 1 ≤ k ≤ qi,j . Write

ai and bi in the form ai = g
ci,1,1
i,1,1 . . . g

ci,mi,qi,mi
i,mi,qi,mi

, and bi = g
di,1,1
i,1,1 . . . g

di,mi,qi,mi
i,mi,qi,mi

,

where ci,j,k = ui,j,kpi
wi,j−ri,j,k , di,j,k = vi,j,kpi

wi,j−si,j,k and (ui,j,k, pi) = 1,
(vi,j,k, pi) = 1.
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Theorem 2. Let G be a finite abelian group, and let a, b be any elements of
G. Suppose that the prime factorization of the order of a is |a| =

∏n
i=1 pi

ti,
where 1 ≤ ti ≤ wi,mi. Then

(a) a belongs to a clique of order

n∏
i=1

(pi
ti − piti−1),

where we replace (pi
ti − piti−1) by 1 if ti = 0;

(b) (a, b) is an edge of the power graph of G if and only if, for every i =
1, . . . , n,

pi
wi,j |vi,j,ku

φ(pi
wi,j )−1

i,j,k pi
ri,j,k−si,j,k − vi,j′,k′u

φ(pi
wi,j′ )−1

i,j′,k′ pi
ri,j′,k′−si,j′,k′ ,

for all 1 ≤ j ≤ j′ ≤ mi, and 1 ≤ k ≤ k′ ≤ qi,j′ .
(c) If wi,hi is the smallest exponent in Gpi such that ti ≤ wi,hi then P (G)

contains

n∏
i=1

(p
wi,1

i )
qi,1(p

wi,2

i )
qi,2 . . . (p

wi,hi−1

i )
qi,hi−1 ((ptii )

qi,hi+···+qi,mi − (pti−1i )
qi,hi+···+qi,mi )

(ptii − p
ti−1
i )

cliques of order
∏w
i=1 (pi

ti − piti−1), for each ti. If ti = 0 for any i then
we replace (pi

ti − piti−1) by 1.

Proof of Theorem 2. It is enough to focus on a primary component of G,
verify all formulas, and then apply Lemma 2 to obtain complete results. To
simplify notation we drop all references involving i throughout the proof. In
other words, we fix i and put p = pi, t = ti, ws = wi,s, etc.

Each element of order pt in Gp belongs to a clique of order pt− pt−1. Since
the order of elements in different p-components are mutually co-prime, the
formula in (a) follows from Lemma 2.

Consider the primary p-componentGp = (Cpw1 )q1×(Cpw2 )q2×· · ·×(Cpwm )qm ,

where the kth copy of Cpwj has generator gj,k, for 1 ≤ j ≤ m and 1 ≤
k ≤ qj . Assume w1 < w2 < · · · < wm. Suppose that a = g

c1,1
1,1 . . . g

cm,qm
m,qm and

b = g
d1,1
1,1 . . . g

dm,qm
m,qm are two elements in Gp where g

cj,k
j,k and g

dj,k
j,k have orders

prj,k and psj,k , respectively. Solving ax = b yields the system of congruences:

(1) xcj,k ≡ dj,k mod (pwj ), for all j, k.

Each congruence, considered in isolation, is solvable if and only if (cj,k, p
wj )

divides dj,k. As in the proof of Lemma 3, this implies that rj,k ≥ sj,k. More-

over, since g
cj,k
j,k has order prj,k , we see that cj,k can be expressed as uj,kp

wj−rj,k ,
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where (uj,k, p) = 1. Similarly, dj,k = vj,kp
wj−sj,k , where (vj,k, p) = 1, for a pos-

itive integer vj,k. Thus (1) gives us

xuj,k ≡ vj,kp
rj,k−sj,k mod (pwj )

x ≡ vj,ku
φ(pwj )−1
j,k prj,k−sj,k mod (pwj )(2)

where φ is the Euler phi-function (see [4, 13.4]).
Thus (a, b) ∈ E(P (Gp)) if and only if there exists a solution to (2). The

system of congruences in (2) is solvable if and only if

pwj | vj,ku
φ(pwj )−1
j,k prj,k−sj,k − vj′,k′u

φ(p
wj′ )−1

j′,k′ prj′,k′−sj′,k′ ,

for 1 ≤ j ≤ j′ ≤ m, and 1 ≤ k ≤ k′ ≤ qj′ . The formula in (b) follows
directly from Lemma 2.

We observe that, |a| ≥ |b| is a necessary, but not sufficient condition for
(a, b) ∈ E(P (Gp)). In C4 × C4 = 〈a〉 × 〈b〉 we have |ab| = 4 and |a2| = 2
but (ab, a2) does not belong to E(P (C4 × C4)). Moreover, P (Gp) is not the
direct product of the power graphs of its components as in Lemma 2 for
(a, a2) ∈ E(P (C4)) and (b, b3) ∈ E(P (C4)), but (ab, a2b3) /∈ E(P (C4 × C4)).

Next, we count the number of cliques in P (G). Suppose |a| = pt in Gp. At
least one gj,k has order pt in (Cpwj )qk , where wj ≥ t. Assume wh is the least

such wj . Then |gj,k| ≤ pt for all other j, k.
For j < h rewrite Gp in the form

(Cp1)f1(Cp2)f2 . . . (Cph−1)fh−1 , , where fj ≥ 0.

The number of elements of order pt is obtained by summing over all possible
combinations of elements of order up to pt in Gp. For ease in notation define
y = qh + · · · + qm and ei = fh−1 + · · · + fh−i, for i = 1, . . . h − 1. Then the
number of elements of order pt to be

y∑
z1=1

(
y

z1

)
(pt − pt−1)z1 .

(e1+y−z1∑
z2=0

(
e1 + y − z1

z2

)
(pt−1 − pt−2)z2 .

(∑
. . .

· · ·
eh−1+y−(z1+···+zh−1)∑

zh=0

(
eh−1 + y − (z1 + · · ·+ zh−1)

zh

)
(p− 1)zh

)
. . .

))
(3)

Now (3) is a series of nested binomial expansions and simplifies to

(4) (p1)
f1(p2)

f2 . . . (ph−1)
fh−1

((pt)
qh+···+qm − (pt−1)

qh+···+qm).

Resubstituting, (4) becomes

(pw1)q1(pw2)q2 . . . (pwh−1)qh−1((pt)
qh+···+qm − (pt−1)

qh+···+qm)



A COMBINATORIAL PROPERTY AND POWER GRAPHS OF GROUPS 7

Each element of order pt in Gp belongs to a clique of order (pt − pt−1).
Therefore P (Gp) has exactly

(pw1)q1(pw2)q2 . . . (pwh−1)qh−1((pt)
qh+···+qm − (pt−1)

qh+···+qm)

(pt − pt−1)
cliques containing elements of order (pt − pt−1) for t = 1, 2, . . . wm. When
t = 0, the identity forms a clique of order 1. Lemma 2 yields the formula in
(c) and completes the proof. 2

The authors are grateful to the referee for suggesting a substantial improve-
ment to our Theorem 1.
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