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ABSTRACT. The power graph of a group G is a directed graph with the set
G of vertices, and with all edges (u,v) such that u # v and v is the power
of u. For each directed graph D, we give a complete description of all
groups G such that every infinite subset of G contains a power subgraph
isomorphic to D. Also, we describe the structure of the power graphs of
all finite abelian groups.

Giving an answer to a question of Paul Erdés, B.H. Neumann proved that
a group is center-by-finite if and only if every infinite sequence contains a
pair of elements that commute. After that several authors have investigated
combinatorial properties of groups with all infinite subsets containing certain
special elements, and a survey of this direction of research has been given by
the first author in [2].

We consider a combinatorial property defined in terms of power graphs.
The power graph P(G) of a group G has all elements of G as vertices, and it
has edges (u,v) for all u,v € G such that u # v and v is a power of u. Let
D be a directed graph. We say that a group G is power D-saturate if and
only if, for every infinite subset T" of GG, the power graph of G has a subgraph
isomorphic to D with all vertices in T'.

Our first theorem completely describes all pairs (D, G), where D is a di-
rected graph and G is a group, such that G is power D-saturate (Theorem 1).
After that, for each finite abelian group G, we describe the power graph of G
(Theorem 2).

For notation and terminology of graph and group theories not mentioned
in this paper the reader is referred to [1] and [5], respectively. If p is a prime,
then the p-primary component of a group G is denoted by G, the cyclic group
of order p is denoted by C), and Cp~ stands for the quasicyclic p-group. A
directed graph is said to be acyclicif it has no directed cycles. Obviously, if G is
finite or if D is a null graph, then G is power D-saturate. Therefore in our first
main theorem we consider only infinite groups G and directed graphs D which
have edges. Denote by T, the transitive tournament on the set IV of natural
numbers. It has the vertex set IV and the edge set E(T) = {(m,n) | m > n}.

Theorem 1. Let D(V, E) be a directed graph with E # 0, and let G be an
infinite group. Then G is power D-saturate if and only if G is a center-by-finite

1991 Mathematics Subject Classification. 05C, 20E.



2 A.V. KELAREV AND 8S.J. QUINN

torsion group, the center C(G) has a finite number of primary components,
each primary component of C(Q) is finite or quasicyclic, the order of G/C(G)
s not divisible by p for each quasicyclic p-subgroup of G, and D is isomorphic
to a subgraph of Tw.

Clearly, for each group G and every set of vertices V there exist maximal
graphs D(V, E) such that G is D-saturate. Theorem 1 shows that in fact
there are only three types of maximal graphs: null graphs, transitive subtour-
naments of T, and the compete graphs.

For the proof we need the following well-known result due to B.H. Neumann:

Lemma 1. ([3]) A group is center-by-finite if and only if every infinite se-
quence contains a pair of elements that commute.

A directed graph D(V,E) is called a direct product of
Di(V1,E1),...,Dp(Vy, Ep) if V=V x--- x V, and E is the set of all pairs
((a1,...,an),(b1,...,by)) such that (a1,...,an) # (b1,...,b,) and (a;,b;) €
E,U(V;x V) foralll <i<n.

Lemma 2. If G =[]}, Gy, is a direct product of p;-groups, where p1, ..., pn
are pairwise distinct primes, then the power graph of G is the direct product
of the power graphs of Gp,,...,Gyp,.

Proof. If b = (b1,bo,...,by,) is a power of a = (aj,as,...,a,) in G, then
obviously every b; is a power of a; in G;, for allt=1,...,n.

Conversely, suppose that b; = ;" in Gj, for all i = 1,...,n. Denote the
order of a; by k;. Given that G, is a p;-group, we see that ki,...,k, are
pairwise coprime. By the Chinese remainder theorem there exists a positive
integer k which has remainder m; upon division by k;, for all i =1,...,n. It
follows that a® = b, as required. O

Maximal complete subgraphs of a directed graph are called cliques. Evi-
dently, the binary relation of every power graph is transitive.

Lemma 3. Let p be a prime, and let a and b be two distinct elements in a
cyclic p-group Cpn, where a has order p" and b has order p*. Then

(i) a belongs to a clique of order p" — p™~*;

(7) (a,b) € E(P(Cyn)) if and only if r > s.

Proof. (i): Denote by g a generator of the Cpn. There are precisely p" — prt

elements of order p" in Cyn, namely all elements g* such that (k,p") = p"".
Each element of order p" generates the same subgroup and can be expressed as
a power of every other element of the same order. Thus all elements of order
p" induce a clique of order p" — p"~! in P(Cpn). When r = 0, the identity
element forms a clique of order 1.
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(i): Suppose that r > s. The order of f = a?" ~ is equal to p°. Since
all elements of the same order belong to the same clique in P(Cyn), it follows
that (f,b) € E(P(Cpn)). Hence (a,b) € E(P(Cpn)).

Conversely, suppose that (a,b) € E(P(Cpn)). Take any generator g of Cpyn.
Then a = g, where (c,p") = p"~". Similarly, b = g%, where (d,p") = p"~*.
Given that a™ = b, we get ()™ = g%, whence mec = d (mod p"). This
congruence is solvable if and only if (¢, p™)|d. Hence (¢, p™)|(d,p™), p" " |p"*
and we get r > s, as required. ]

Proof of Theorem 1. The ‘only if” part. Suppose that G is power D-saturate,
i.e., every infinite subset of G contains a power subgraph isomorphic to D.
Hence every infinite subset has at least two elements a, b such that b is a power
of a, and so a and b commute. Lemma 1 implies that G is center-by-finite.

If G has an element g of infinite order, then the vertices g2, g3, ¢°, ... are
not adjacent in the power graph of G. Since F(D) contains edges between
distinct vertices and G is D-saturate, we see that G has to be torsion.

If G contains elements g; of orders p;, for infinitely many primes p1, po, . . .,
then the vertices g1, go,... are not adjacent in P(G). This contradicts the
D-saturateness of G again. Therefore G has a finite number of primary com-
ponents.

If a p-primary component C(G), of the center C(G) has infinite p-rank,
then C(G), contains independent elements g1, g2,... (see [5], 4.2). Clearly,
these elements are not adjacent in the power graph of C'(G). Thus the p-rank
of C(G), is finite.

It follows that C(G), is a direct product of finitely many cyclic or qua-
sicyclic groups (see [5], 4.3.13). Suppose that C(G), is infinite, but is not
quasicyclic. Then it contains a subgroup isomorphic to C}, x Cpe. Let g be a
generator of Cp, and let g1, g2, ... be generators of Cpeo such that g7 = e and
95,1 = gi forall i =1,2,.... Then the set (g,91),(g,92),(g,93), ... induces a
null subgraph in the power graph. Therefore G is not D-saturate. Thus each
primary component of C'(G) is finite or quasicyclic.

Take any prime number p such that G' has a quasicyclic subgroup Cpeo.
If g1,92,... are the same generators of Cp as above, then we see that they
induce a subgraph of the power graph of G isomorphic to T, that is (g;, g;) €
E(P(G)) if and only if ¢ > j. Since G is D-saturate, D is a subgraph of Tr.

Suppose that p divides |G/C(G)| and that G has a quasicyclic subgroup
Cp~ with generators g1, g2, ... as above. Pick an element h in G such that its
image hC'(G) has order p in G/C(G). Then all vertices (h, ¢1), (h,g2),... are
not adjacent in P(G), and so G is not D-saturate. This contradiction shows
that |G/C(G)] is not divisible by p for each quasicyclic p-subgroup of G.

The ‘if” part. Assume that D has edges, G is a torsion group with a finite
number of primary components, each primary component of G is finite or
quasicyclic, and the order of G/C(G) is not divisible by p for each quasicyclic
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p-subgroup of G. In particular, G = G, x--- x G, for pairwise distinct prime
numbers pi,...,p,. For 1 <14 < n, denote by m; : G — G, the projection of
G onto G),.

Take any infinite subset L of G. By induction on i = 0,1,...,n we define
infinite subsets L; of L such that every image mx(L;) forms a chaln (i.e., a
transitive tournament) in the power graph of G,, for k =1,...,4. First, put
Lo = L. Suppose that the set L; has already been defined for some 0 < i < n.

If ;41 (L;) is finite, then we can find an infinite subset L; 11 of L; such that
Ti+1(Li+1) has only one element, and so forms a chain. (Note that in this part
of our proof we allow consequtive repetitions of the same vertex in a chain or,
equivalently, we attach all loops to the graphs.)

Next consider the case, where m;1(L;) is infinite. Then G, is infinite
too, and so it is quasicyclic. Putting p = pi;1,we get G, = Cp~. Since
|Ti+1(L;)] = oo and Cpeo is the union of an ascending chain of cyclic groups,
we can choose an infinite sequence tq,to,... € L; such that each element
mi+1(t;) has order p%, for j = 1,2,..., and ¢; < f3 < .... Take any positive
integers j < k. There exists a cyclic subgroup C)¢ of Cpee such that both
mi+1(t;) and 711 (tx) belong to Cpe. Lemma 3 shows that m;11(¢;) is a power
of 7TZ+1(tk) It follows that the sequence m;11(t1), mi+1(t2), ... forms an infinite
chain in the power graph of G. We can take L;11 = {t1,t2,...}.

Thus we have defined the sets L1, ..., L,. All projections of the infinite set
L,, form ascending chains in Gp,,...,G,,. Lemma 2 implies that L,, induces
an infinite chain C in the power graph of G.

A vertex u is said to be an ancestor of a vertex v, if there is a directed
path from v to u. Easy induction shows that the number of ancestors in C' of
every vertex of C' is finite. Hence C' is isomorphic to T,. Thus D embeds in
Tso, which completes our proof. O

In order to describe the power graphs of all finite abelian groups, we take
any finite abelian group G and any elements a,b in G, and introduce the
following notation.

Denote the primary components of G by Gy,,...,G,,, and express each
G)p, as a direct product of cyclic groups G, = (C’pw 1)‘71 1 (C’ wi )2 X - X

(C’ Wim, )4 and w1 < wig < -0 < Wigm,. Fori=1,...,n, denote the pro-

JeCtIOIlS of a and b on G),, by a; and b;, respectively. Choose generators g; j »
in the cyclic groups of G,, above, where 1 < j <m; and 1 < k < ¢; ;. Write

— Cimi i, m, Disms, a5, m.
. .3 . Ci,1,1 v, My 111 i 9i,my
a; and b; in the form a; = 9iid - imigim, and b; = = 9il1  Gimigim,
— W4, 5T . — L. w; i —S8 . . _
where ¢; jp = w; Pk, d; g = v i 000k and (uwﬁ,pz) = 1,

(vijr pi) = L.
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Theorem 2. Let G be a finite abelian group, and let a,b be any elements of
G. Suppose that the prime factorization of the order of a is |a| = [y pi*,
where 1 < t; < wjm,;. Then

(a) a belongs to a clique of order

where we replace (p;t — p;t~ 1) by 1 if t; = 0;
(b) (a,b) is an edge of the power graph of G if and only if, for every i =
1,...,n,

[ G HI) =1y —s d(pi »17)—1
P vy g R TIE =g g

p,L',ri,jlgk/iSiyj/ykl’
foralll <j<j <my, and1 <k <k <gq;;.

(c) If w;p, is the smallest exponent in Gp, such that t; < w;p, then P(G)
contains

% 4 [

n (pEUi,l)‘Ii,l(szi,Q)Qiﬂ o (p’ljuiahi—l )qiﬁhi—l ((pti)%,hi‘i’““i’(h’,mi . (p@q)qi,hiJr“-Jrqi,mi)

i i—1
n i —pit)

7

cliques of order T2, (pi — pi"™1), for each t;. If t; =0 for any i then
we replace (p;ti — p;ti=1) by 1.

Proof of Theorem 2. It is enough to focus on a primary component of G,
verify all formulas, and then apply Lemma 2 to obtain complete results. To
simplify notation we drop all references involving 7 throughout the proof. In
other words, we fix ¢ and put p = p;, t = t;, ws = w; s, etc.

Each element of order p' in G, belongs to a clique of order p’ — pt~1. Since
the order of elements in different p-components are mutually co-prime, the
formula in (a) follows from Lemma 2.

Consider the primary p-component G, = (Cpuw1 ) X (Cpwz )9
where the k' copy of C,w; has generator g;j, for 1 < j

C

X .><(C'pwm)‘1m7
< mand 1l <
k < q;. Assume wy < wa < -+ < wy,. Suppose that a = gljil .. .gﬁ%ﬁq and

d d . cj d;
b=g,5" ... gmg™ are two elements in G, where gjj,’f and gjj,f have orders

pik and p®ik, respectively. Solving a® = b yields the system of congruences:
(1) xcj = dj mod (p*7), for all j, k.

Each congruence, considered in isolation, is solvable if and only if (¢; &, p"7)
divides d; . As in the proof of Lemma 3, this implies that 7;; > s; . More-
over, since g;];f has order p"i¥, we see that c; can be expressed as wu; xp*“7 "7k,
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where (u; 1, p) = 1. Similarly, d; , = v xp"7~%*, where (v;y,p) = 1, for a pos-
itive integer v; . Thus (1) gives us

Tujk = vjkp’ % mod (p*7)
(2) x = vjyku%f j)_lij,k—Sj,k mod (p"7)

where ¢ is the Euler phi-function (see [4, 13.4]).
Thus (a,b) € E(P(G))) if and only if there exists a solution to (2). The
system of congruences in (2) is solvable if and only if

) w .
w | ¢(pw])_1ij,k—Sj,k ¢(]7 ]l)_lprj/’klfsj/’k/,

P VjkUj R N Y

for 1 <j <j <m,and1 < k <K < gy. The formula in (b) follows
directly from Lemma 2.

We observe that, |a| > |b| is a necessary, but not sufficient condition for
(a,b) € E(P(Gp)). In Cy x Cy = (a) x (b) we have |ab| =4 and |a?| = 2
but (ab,a?) does not belong to E(P(Cy x Cy)). Moreover, P(Gp) is not the
direct product of the power graphs of its components as in Lemma 2 for
(a,a?) € E(P(Cy)) and (b,b%) € E(P(Cy)), but (ab,a’b?) ¢ E(P(Cy x Cy)).

Next, we count the number of cliques in P(G). Suppose |a| = p' in G,. At
least one g, has order p! in (pr]- )%, where w; > t. Assume wy, is the least
such w;. Then |g; | < p’ for all other j, k.

For j < h rewrite G}, in the form

(Cpl)fl (sz)f2 .. (Cph—l)fhfl, , where f; > 0.

The number of elements of order p is obtained by summing over all possible
combinations of elements of order up to p' in G,. For ease in notation define
y=qn+ ---+qnande = fn_1+---+ frn, fori =1,...h — 1. Then the
number of elements of order p’ to be

- Y Al e1+y—2
— zZ - — — z
) <Z>(pt—pt 1)1-< > ( Z >(pt L pt 2)2-<§
z1=1 1 29=0 2

en—1+y—(z1++2p_1)

3) - 3 (eh—ﬁy_(Zl+"'+zh—1)>(p—1)Zh)...)>

zp=0 Z“h
Now (3) is a series of nested binomial expansions and simplifies to
f f — f - +tam — +tam
(4) 7 (Y e N (17 R 7 R ¢
Resubstituting, (4) becomes

(PP T (p92) 2 | (pn—1)an ((pt)dn T am =1 ant ety
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Each element of order p’ in G, belongs to a clique of order (pt — p'=1).

Therefore P(G)) has exactly
_ ot gm —1\Gh g
()7 ()" (P ()
W)
cliques containing elements of order (p' — p'~!) for t = 1,2,...w,,. When

t = 0, the identity forms a clique of order 1. Lemma 2 yields the formula in
(c¢) and completes the proof. O

The authors are grateful to the referee for suggesting a substantial improve-
ment to our Theorem 1.
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