A COMBINATORIAL PROPERTY AND POWER GRAPHS OF GROUPS

A.V. KELAREV AND S.J. QUINN

Abstract

The power graph of a group G is a directed graph with the set G of vertices, and with all edges (u, v) such that $u \neq v$ and v is the power of u. For each directed graph D, we give a complete description of all groups G such that every infinite subset of G contains a power subgraph isomorphic to D. Also, we describe the structure of the power graphs of all finite abelian groups.

Giving an answer to a question of Paul Erdös, B.H. Neumann proved that a group is center-by-finite if and only if every infinite sequence contains a pair of elements that commute. After that several authors have investigated combinatorial properties of groups with all infinite subsets containing certain special elements, and a survey of this direction of research has been given by the first author in [2].

We consider a combinatorial property defined in terms of power graphs. The power graph $P(G)$ of a group G has all elements of G as vertices, and it has edges (u, v) for all $u, v \in G$ such that $u \neq v$ and v is a power of u. Let D be a directed graph. We say that a group G is power D-saturate if and only if, for every infinite subset T of G, the power graph of G has a subgraph isomorphic to D with all vertices in T.

Our first theorem completely describes all pairs (D, G), where D is a directed graph and G is a group, such that G is power D-saturate (Theorem 1). After that, for each finite abelian group G, we describe the power graph of G (Theorem 2).

For notation and terminology of graph and group theories not mentioned in this paper the reader is referred to [1] and [5], respectively. If p is a prime, then the p-primary component of a group G is denoted by G_{p}, the cyclic group of order p is denoted by C_{p}, and $C_{p^{\infty}}$ stands for the quasicyclic p-group. A directed graph is said to be acyclic if it has no directed cycles. Obviously, if G is finite or if D is a null graph, then G is power D-saturate. Therefore in our first main theorem we consider only infinite groups G and directed graphs D which have edges. Denote by T_{∞} the transitive tournament on the set \mathbb{N} of natural numbers. It has the vertex set $I N$ and the edge set $E\left(T_{\infty}\right)=\{(m, n) \mid m>n\}$.
Theorem 1. Let $D(V, E)$ be a directed graph with $E \neq \emptyset$, and let G be an infinite group. Then G is power D-saturate if and only if G is a center-by-finite

[^0]torsion group, the center $C(G)$ has a finite number of primary components, each primary component of $C(G)$ is finite or quasicyclic, the order of $G / C(G)$ is not divisible by p for each quasicyclic p-subgroup of G, and D is isomorphic to a subgraph of T_{∞}.

Clearly, for each group G and every set of vertices V there exist maximal graphs $D(V, E)$ such that G is D-saturate. Theorem 1 shows that in fact there are only three types of maximal graphs: null graphs, transitive subtournaments of T_{∞}, and the compete graphs.

For the proof we need the following well-known result due to B.H. Neumann:
Lemma 1. ([3]) A group is center-by-finite if and only if every infinite sequence contains a pair of elements that commute.

A directed graph $D(V, E)$ is called a direct product of $D_{1}\left(V_{1}, E_{1}\right), \ldots, D_{n}\left(V_{n}, E_{n}\right)$ if $V=V_{1} \times \cdots \times V_{n}$ and E is the set of all pairs $\left(\left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, b_{n}\right)\right)$ such that $\left(a_{1}, \ldots, a_{n}\right) \neq\left(b_{1}, \ldots, b_{n}\right)$ and $\left(a_{i}, b_{i}\right) \in$ $E_{i} \cup\left(V_{i} \times V_{i}\right)$ for all $1 \leq i \leq n$.

Lemma 2. If $G=\prod_{i=1}^{n} G_{p_{i}}$ is a direct product of p_{i}-groups, where p_{1}, \ldots, p_{n} are pairwise distinct primes, then the power graph of G is the direct product of the power graphs of $G_{p_{1}}, \ldots, G_{p_{n}}$.

Proof. If $b=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ is a power of $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ in G, then obviously every b_{i} is a power of a_{i} in G_{i}, for all $i=1, \ldots, n$.

Conversely, suppose that $b_{i}=a_{i}^{m_{i}}$ in G_{i}, for all $i=1, \ldots, n$. Denote the order of a_{i} by k_{i}. Given that $G_{p_{i}}$ is a p_{i}-group, we see that k_{1}, \ldots, k_{n} are pairwise coprime. By the Chinese remainder theorem there exists a positive integer k which has remainder m_{i} upon division by k_{i}, for all $i=1, \ldots, n$. It follows that $a^{k}=b$, as required.

Maximal complete subgraphs of a directed graph are called cliques. Evidently, the binary relation of every power graph is transitive.

Lemma 3. Let p be a prime, and let a and b be two distinct elements in a cyclic p-group $C_{p^{n}}$, where a has order p^{r} and b has order p^{s}. Then
(i) a belongs to a clique of order $p^{r}-p^{r-1}$;
(ii) $(a, b) \in E\left(P\left(C_{p^{n}}\right)\right)$ if and only if $r \geq s$.

Proof. (i): Denote by g a generator of the $C_{p^{n}}$. There are precisely $p^{r}-p^{r-1}$ elements of order p^{r} in $C_{p^{n}}$, namely all elements g^{k} such that $\left(k, p^{n}\right)=p^{n-r}$. Each element of order p^{r} generates the same subgroup and can be expressed as a power of every other element of the same order. Thus all elements of order p^{r} induce a clique of order $p^{r}-p^{r-1}$ in $P\left(C_{p^{n}}\right)$. When $r=0$, the identity element forms a clique of order 1.
(ii): Suppose that $r \geq s$. The order of $f=a^{p^{r-s}}$ is equal to p^{s}. Since all elements of the same order belong to the same clique in $P\left(C_{p^{n}}\right)$, it follows that $(f, b) \in E\left(P\left(C_{p^{n}}\right)\right)$. Hence $(a, b) \in E\left(P\left(C_{p^{n}}\right)\right)$.

Conversely, suppose that $(a, b) \in E\left(P\left(C_{p^{n}}\right)\right)$. Take any generator g of $C_{p^{n}}$. Then $a=g^{c}$, where $\left(c, p^{n}\right)=p^{n-r}$. Similarly, $b=g^{d}$, where $\left(d, p^{n}\right)=p^{n-s}$. Given that $a^{m}=b$, we get $\left(g^{c}\right)^{m}=g^{d}$; whence $m c \equiv d\left(\bmod p^{n}\right)$. This congruence is solvable if and only if $\left(c, p^{n}\right) \mid d$. Hence $\left(c, p^{n}\right)\left|\left(d, p^{n}\right), p^{n-r}\right| p^{n-s}$ and we get $r \geq s$, as required.

Proof of Theorem 1. The 'only if' part. Suppose that G is power D-saturate, i.e., every infinite subset of G contains a power subgraph isomorphic to D. Hence every infinite subset has at least two elements a, b such that b is a power of a, and so a and b commute. Lemma 1 implies that G is center-by-finite.

If G has an element g of infinite order, then the vertices $g^{2}, g^{3}, g^{5}, \ldots$ are not adjacent in the power graph of G. Since $E(D)$ contains edges between distinct vertices and G is D-saturate, we see that G has to be torsion.

If G contains elements g_{i} of orders p_{i}, for infinitely many primes p_{1}, p_{2}, \ldots, then the vertices g_{1}, g_{2}, \ldots are not adjacent in $P(G)$. This contradicts the D-saturateness of G again. Therefore G has a finite number of primary components.

If a p-primary component $C(G)_{p}$ of the center $C(G)$ has infinite p-rank, then $C(G)_{p}$ contains independent elements g_{1}, g_{2}, \ldots (see [5], 4.2). Clearly, these elements are not adjacent in the power graph of $C(G)$. Thus the p-rank of $C(G)_{p}$ is finite.

It follows that $C(G)_{p}$ is a direct product of finitely many cyclic or quasicyclic groups (see [5], 4.3.13). Suppose that $C(G)_{p}$ is infinite, but is not quasicyclic. Then it contains a subgroup isomorphic to $C_{p} \times C_{p^{\infty}}$. Let g be a generator of C_{p}, and let g_{1}, g_{2}, \ldots be generators of $C_{p \infty}$ such that $g_{1}^{p}=e$ and $g_{i+1}^{p}=g_{i}$ for all $i=1,2, \ldots$. Then the set $\left(g, g_{1}\right),\left(g, g_{2}\right),\left(g, g_{3}\right), \ldots$ induces a null subgraph in the power graph. Therefore G is not D-saturate. Thus each primary component of $C(G)$ is finite or quasicyclic.

Take any prime number p such that G has a quasicyclic subgroup $C_{p^{\infty}}$. If g_{1}, g_{2}, \ldots are the same generators of $C_{p^{\infty}}$ as above, then we see that they induce a subgraph of the power graph of G isomorphic to T_{∞}, that is $\left(g_{i}, g_{j}\right) \in$ $E(P(G))$ if and only if $i>j$. Since G is D-saturate, D is a subgraph of T_{∞}.

Suppose that p divides $|G / C(G)|$ and that G has a quasicyclic subgroup $C_{p^{\infty}}$ with generators g_{1}, g_{2}, \ldots as above. Pick an element h in G such that its image $h C(G)$ has order p in $G / C(G)$. Then all vertices $\left(h, g_{1}\right),\left(h, g_{2}\right), \ldots$ are not adjacent in $P(G)$, and so G is not D-saturate. This contradiction shows that $|G / C(G)|$ is not divisible by p for each quasicyclic p-subgroup of G.

The 'if' part. Assume that D has edges, G is a torsion group with a finite number of primary components, each primary component of G is finite or quasicyclic, and the order of $G / C(G)$ is not divisible by p for each quasicyclic
p-subgroup of G. In particular, $G=G_{p_{1}} \times \cdots \times G_{p_{n}}$ for pairwise distinct prime numbers p_{1}, \ldots, p_{n}. For $1 \leq i \leq n$, denote by $\pi_{i}: G \rightarrow G_{p_{i}}$ the projection of G onto $G_{p_{i}}$.

Take any infinite subset L of G. By induction on $i=0,1, \ldots, n$ we define infinite subsets L_{i} of L such that every image $\pi_{k}\left(L_{i}\right)$ forms a chain (i.e., a transitive tournament) in the power graph of $G_{p_{k}}$ for $k=1, \ldots, i$. First, put $L_{0}=L$. Suppose that the set L_{i} has already been defined for some $0 \leq i<n$.

If $\pi_{i+1}\left(L_{i}\right)$ is finite, then we can find an infinite subset L_{i+1} of L_{i} such that $\pi_{i+1}\left(L_{i+1}\right)$ has only one element, and so forms a chain. (Note that in this part of our proof we allow consequtive repetitions of the same vertex in a chain or, equivalently, we attach all loops to the graphs.)

Next consider the case, where $\pi_{i+1}\left(L_{i}\right)$ is infinite. Then $G_{p_{i+1}}$ is infinite too, and so it is quasicyclic. Putting $p=p_{i+1}$, we get $G_{p}=C_{p^{\infty}}$. Since $\left|\pi_{i+1}\left(L_{i}\right)\right|=\infty$ and $C_{p^{\infty}}$ is the union of an ascending chain of cyclic groups, we can choose an infinite sequence $t_{1}, t_{2}, \ldots \in L_{i}$ such that each element $\pi_{i+1}\left(t_{j}\right)$ has order $p^{\ell_{j}}$, for $j=1,2, \ldots$, and $\ell_{1}<\ell_{2}<\ldots$. Take any positive integers $j<k$. There exists a cyclic subgroup $C_{p^{\ell}}$ of $C_{p^{\infty}}$ such that both $\pi_{i+1}\left(t_{j}\right)$ and $\pi_{i+1}\left(t_{k}\right)$ belong to $C_{p^{\ell}}$. Lemma 3 shows that $\pi_{i+1}\left(t_{j}\right)$ is a power of $\pi_{i+1}\left(t_{k}\right)$. It follows that the sequence $\pi_{i+1}\left(t_{1}\right), \pi_{i+1}\left(t_{2}\right), \ldots$ forms an infinite chain in the power graph of G. We can take $L_{i+1}=\left\{t_{1}, t_{2}, \ldots\right\}$.

Thus we have defined the sets L_{1}, \ldots, L_{n}. All projections of the infinite set L_{n} form ascending chains in $G_{p_{1}}, \ldots, G_{p_{n}}$. Lemma 2 implies that L_{n} induces an infinite chain C in the power graph of G.

A vertex u is said to be an ancestor of a vertex v, if there is a directed path from v to u. Easy induction shows that the number of ancestors in C of every vertex of C is finite. Hence C is isomorphic to T_{∞}. Thus D embeds in T_{∞}, which completes our proof.

In order to describe the power graphs of all finite abelian groups, we take any finite abelian group G and any elements a, b in G, and introduce the following notation.

Denote the primary components of G by $G_{p_{1}}, \ldots, G_{p_{n}}$, and express each $G_{p_{i}}$ as a direct product of cyclic groups $G_{p_{i}}=\left(C_{p_{i}}^{w_{i, 1}}\right)^{q_{i, 1}} \times\left(C_{p_{i} w_{i, 2}}\right)^{q_{i, 2}} \times \cdots \times$ $\left(C_{p_{i}, m_{i}}\right)^{q_{i, m_{i}}}$ and $w_{i, 1}<w_{i, 2}<\cdots<w_{i, m_{i}}$. For $i=1, \ldots, n$, denote the projections of a and b on $G_{p_{i}}$, by a_{i} and b_{i}, respectively. Choose generators $g_{i, j, k}$ in the cyclic groups of $G_{p_{i}}$ above, where $1 \leq j \leq m_{i}$ and $1 \leq k \leq q_{i, j}$. Write a_{i} and b_{i} in the form $a_{i}=g_{i, 1,1,1}^{c_{i, 1}} \ldots g_{i, m_{i}, q_{i}, m_{i}}^{c_{i, m_{i}}, q_{i, m_{i}}}$, and $b_{i}=g_{i, 1,1}^{d_{i, 1}} \ldots g_{i, m_{i}, q_{i}, m_{i}}^{d_{i, m_{i}}, q_{i, m_{i}}}$, where $c_{i, j, k}=u_{i, j, k} p_{i}^{w_{i, j}-r_{i, j, k}}, d_{i, j, k}=v_{i, j, k} p_{i} w_{i, j}-s_{i, j, k}$ and $\left(u_{i, j, k}, p_{i}\right)=1$, $\left(v_{i, j, k}, p_{i}\right)=1$.

Theorem 2. Let G be a finite abelian group, and let a, b be any elements of G. Suppose that the prime factorization of the order of a is $|a|=\prod_{i=1}^{n} p_{i}{ }^{t_{i}}$, where $1 \leq t_{i} \leq w_{i, m_{i}}$. Then
(a) a belongs to a clique of order

$$
\prod_{i=1}^{n}\left(p_{i}^{t_{i}}-p_{i}^{t_{i}-1}\right)
$$

where we replace $\left(p_{i}^{t_{i}}-p_{i}^{t_{i}-1}\right)$ by 1 if $t_{i}=0$;
(b) (a, b) is an edge of the power graph of G if and only if, for every $i=$ $1, \ldots, n$,
$p_{i}{ }^{w_{i, j}} \mid v_{i, j, k} u_{i, j, k}^{\phi\left(p_{i} w_{i, j}\right)-1} p_{i}^{r_{i, j, k}-s_{i, j, k}}-v_{i, j^{\prime}, k^{\prime}} u_{i, j^{\prime}, k^{\prime}}^{\phi\left(p_{i} w_{i, j^{\prime}}\right)-1} p_{i}{ }^{r_{i, j^{\prime}, k^{\prime}}-s_{i, j^{\prime}, k^{\prime}}}$,
for all $1 \leq j \leq j^{\prime} \leq m_{i}$, and $1 \leq k \leq k^{\prime} \leq q_{i, j^{\prime}}$.
(c) If $w_{i, h_{i}}$ is the smallest exponent in $G_{p_{i}}$ such that $t_{i} \leq w_{i, h_{i}}$ then $P(G)$ contains

$$
\prod_{i=1}^{n} \frac{\left(p_{i}^{w_{i, 1}}\right)^{q_{i, 1}}\left(p_{i}^{w_{i, 2}}\right)^{q_{i, 2}} \cdots\left(p_{i}^{w_{i, h_{i-1}}}\right)^{q_{i, h_{i-1}}}\left(\left(p_{i}^{t_{i}}\right)^{q_{i, h_{i}}+\cdots+q_{i, m_{i}}}-\left(p_{i}^{t_{i}-1}\right)^{q_{i, h_{i}}+\cdots+q_{i, m_{i}}}\right)}{\left(p_{i}^{t_{i}}-p_{i}^{t_{i}-1}\right)}
$$

cliques of order $\prod_{i=1}^{w}\left(p_{i}{ }^{t_{i}}-p_{i}{ }^{t_{i}-1}\right)$, for each t_{i}. If $t_{i}=0$ for any i then we replace $\left(p_{i}^{t_{i}}-p_{i}^{t_{i}-1}\right)$ by 1 .

Proof of Theorem 2. It is enough to focus on a primary component of G, verify all formulas, and then apply Lemma 2 to obtain complete results. To simplify notation we drop all references involving i throughout the proof. In other words, we fix i and put $p=p_{i}, t=t_{i}, w_{s}=w_{i, s}$, etc.

Each element of order p^{t} in G_{p} belongs to a clique of order $p^{t}-p^{t-1}$. Since the order of elements in different p-components are mutually co-prime, the formula in (a) follows from Lemma 2.

Consider the primary p-component $G_{p}=\left(C_{p^{w_{1}}}\right)^{q_{1}} \times\left(C_{p^{w_{2}}}\right)^{q_{2}} \times \cdots \times\left(C_{p^{w_{m}}}\right)^{q_{m}}$, where the $k^{t h}$ copy of $C_{p^{w_{j}}}$ has generator $g_{j, k}$, for $1 \leq j \leq m$ and $1 \leq$ $k \leq q_{j}$. Assume $w_{1}<w_{2}<\cdots<w_{m}$. Suppose that $a=g_{1,1}^{c_{1,1}} \ldots g_{m, q_{m}}^{c_{m, q_{m}}}$ and $b=g_{1,1}^{d_{1,1}} \ldots g_{m, q_{m}}^{d_{m, q_{m}}}$ are two elements in G_{p} where $g_{j, k}^{c_{j, k}}$ and $g_{j, k}^{d_{j, k}}$ have orders $p^{r_{j, k}}$ and $p^{s_{j, k}}$, respectively. Solving $a^{x}=b$ yields the system of congruences:

$$
\begin{equation*}
x c_{j, k} \equiv d_{j, k} \bmod \left(p^{w_{j}}\right), \text { for all } j, k \tag{1}
\end{equation*}
$$

Each congruence, considered in isolation, is solvable if and only if $\left(c_{j, k}, p^{w_{j}}\right)$ divides $d_{j, k}$. As in the proof of Lemma 3, this implies that $r_{j, k} \geq s_{j, k}$. Moreover, since $g_{j, k}^{c_{j, k}}$ has order $p^{r_{j, k}}$, we see that $c_{j, k}$ can be expressed as $u_{j, k} p^{w_{j}-r_{j, k}}$,
where $\left(u_{j, k}, p\right)=1$. Similarly, $d_{j, k}=v_{j, k} p^{w_{j}-s_{j, k}}$, where $\left(v_{j, k}, p\right)=1$, for a positive integer $v_{j, k}$. Thus (1) gives us

$$
\begin{align*}
x u_{j, k} & \equiv v_{j, k} p^{r_{j, k}-s_{j, k}} \bmod \left(p^{w_{j}}\right) \\
x & \equiv v_{j, k} u_{j, k}^{\phi\left(p^{w_{j}}\right)-1} p^{r_{j, k}-s_{j, k}} \bmod \left(p^{w_{j}}\right) \tag{2}
\end{align*}
$$

where ϕ is the Euler phi-function (see [4, 13.4]).
Thus $(a, b) \in E\left(P\left(G_{p}\right)\right)$ if and only if there exists a solution to (2). The system of congruences in (2) is solvable if and only if

$$
p^{w_{j}} \mid \quad v_{j, k} u_{j, k}^{\phi\left(p^{w}\right)-1} p^{r_{j, k}-s_{j, k}}-v_{j^{\prime}, k^{\prime}} u_{j^{\prime}, k^{\prime}}^{\phi\left(p^{w}\right)-1} p^{r_{j^{\prime}, k^{\prime}}-s_{j^{\prime}, k^{\prime}}}
$$

for $1 \leq j \leq j^{\prime} \leq m$, and $1 \leq k \leq k^{\prime} \leq q_{j^{\prime}}$. The formula in (b) follows directly from Lemma 2.

We observe that, $|a| \geq|b|$ is a necessary, but not sufficient condition for $(a, b) \in E\left(P\left(G_{p}\right)\right)$. In $C_{4} \times C_{4}=\langle a\rangle \times\langle b\rangle$ we have $|a b|=4$ and $\left|a^{2}\right|=2$ but $\left(a b, a^{2}\right)$ does not belong to $E\left(P\left(C_{4} \times C_{4}\right)\right)$. Moreover, $P\left(G_{p}\right)$ is not the direct product of the power graphs of its components as in Lemma 2 for $\left(a, a^{2}\right) \in E\left(P\left(C_{4}\right)\right)$ and $\left(b, b^{3}\right) \in E\left(P\left(C_{4}\right)\right)$, but $\left(a b, a^{2} b^{3}\right) \notin E\left(P\left(C_{4} \times C_{4}\right)\right)$.

Next, we count the number of cliques in $P(G)$. Suppose $|a|=p^{t}$ in G_{p}. At least one $g_{j, k}$ has order p^{t} in $\left(C_{p} w_{j}\right)^{q_{k}}$, where $w_{j} \geq t$. Assume w_{h} is the least such w_{j}. Then $\left|g_{j, k}\right| \leq p^{t}$ for all other j, k.

For $j<h$ rewrite G_{p} in the form

$$
\left(C_{p^{1}}\right)^{f_{1}}\left(C_{p^{2}}\right)^{f_{2}} \ldots\left(C_{p^{h-1}}\right)^{f_{h-1}},, \text { where } f_{j} \geq 0
$$

The number of elements of order p^{t} is obtained by summing over all possible combinations of elements of order up to p^{t} in G_{p}. For ease in notation define $y=q_{h}+\cdots+q_{m}$ and $e_{i}=f_{h-1}+\cdots+f_{h-i}$, for $i=1, \ldots h-1$. Then the number of elements of order p^{t} to be

$$
\begin{align*}
& \sum_{z_{1}=1}^{y}\binom{y}{z_{1}}\left(p^{t}-p^{t-1}\right)^{z_{1}} \cdot\left(\sum _ { z _ { 2 } = 0 } ^ { e _ { 1 } + y - z _ { 1 } } (\begin{array} { c }
{ e _ { 1 } + y - z _ { 1 } } \\
{ z _ { 2 } }
\end{array}) (p ^ { t - 1 } - p ^ { t - 2 }) ^ { z _ { 2 } } \cdot \left(\sum \cdots\right.\right. \\
& \left.\left.\left.\cdots \sum_{z_{h}=0}^{e_{h-1}+y-\left(z_{1}+\cdots+z_{h-1}\right)}\binom{e_{h-1}+y-\left(z_{1}+\cdots+z_{h-1}\right)}{z_{h}}(p-1)^{z_{h}}\right) \ldots\right)\right) \tag{3}
\end{align*}
$$

Now (3) is a series of nested binomial expansions and simplifies to

$$
\begin{equation*}
\left(p^{1}\right)^{f_{1}}\left(p^{2}\right)^{f_{2}} \cdots\left(p^{h-1}\right)^{f_{h-1}}\left(\left(p^{t}\right)^{q_{h}+\cdots+q_{m}}-\left(p^{t-1}\right)^{q_{h}+\cdots+q_{m}}\right) \tag{4}
\end{equation*}
$$

Resubstituting, (4) becomes

$$
\left(p^{w_{1}}\right)^{q_{1}}\left(p^{w_{2}}\right)^{q_{2}} \cdots\left(p^{w_{h-1}}\right)^{q_{h-1}}\left(\left(p^{t}\right)^{q_{h}+\cdots+q_{m}}-\left(p^{t-1}\right)^{q_{h}+\cdots+q_{m}}\right)
$$

Each element of order p^{t} in G_{p} belongs to a clique of order $\left(p^{t}-p^{t-1}\right)$. Therefore $P\left(G_{p}\right)$ has exactly

$$
\frac{\left(p^{w_{1}}\right)^{q_{1}}\left(p^{w_{2}}\right)^{q_{2}} \cdots\left(p^{w_{h-1}}\right)^{q_{h-1}}\left(\left(p^{t}\right)^{q_{h}+\cdots+q_{m}}-\left(p^{t-1}\right)^{q_{h}+\cdots+q_{m}}\right)}{\left(p^{t}-p^{t-1}\right)}
$$

cliques containing elements of order $\left(p^{t}-p^{t-1}\right)$ for $t=1,2, \ldots w_{m}$. When $t=0$, the identity forms a clique of order 1 . Lemma 2 yields the formula in (c) and completes the proof.

The authors are grateful to the referee for suggesting a substantial improvement to our Theorem 1.

References

[1] G. Chartland and L. Lesniak, "Graphs and Digraphs", Chapman \& Hall, London, 1996.
[2] A. V. Kelarev, Combinatorial properties of sequences in groups and semigroups, Combinatorics, Complexity and Logic, Discrete Mathematics and Theoretical Computer Science, 1996, 289-298.
[3] B. H. Neumann, A problem of Paul Erdös on groups, J. Austral. Math. Soc., 21 1976, 467-472.
[4] R. Lidl, G. Pilz, "Applied Abstract Algebra", Springer, New-York, 1998.
[5] D.J.S. Robinson, "A Course in the Theory of Groups", Springer, New-York, Berlin, 1982.
(A.V. Kelarev) School of Mathematics and Physics, University of Tasmania in Hobart, G.P.O. Box 252-37, Hobart, Tasmania 7001, Australia

E-mail address: Andrei.Kelarev@utas.edu.au
URL: http://www.utas.edu.au/People/Kelarev/HomePage.html
(S.J. Quinn) School of Mathematics and Physics, University of Tasmania in

Launceston, P.O. Box 1214, Launceston, Tasmania 7250, Australia
E-mail address: Stephen.Quinn@utas.edu.au
URL: http://www.utas.edu.au/People/Quinn/HomePage.html

[^0]: 1991 Mathematics Subject Classification. 05C, 20E.

