A COMBINATORIAL PROPERTY AND POWER GRAPHS OF GROUPS

A.V. KELAREV AND S.J. QUINN

ABSTRACT. The power graph of a group G is a directed graph with the set G of vertices, and with all edges (u, v) such that $u \neq v$ and v is the power of u. For each directed graph D, we give a complete description of all groups G such that every infinite subset of G contains a power subgraph isomorphic to D. Also, we describe the structure of the power graphs of all finite abelian groups.

Giving an answer to a question of Paul Erdös, B.H. Neumann proved that a group is center-by-finite if and only if every infinite sequence contains a pair of elements that commute. After that several authors have investigated combinatorial properties of groups with all infinite subsets containing certain special elements, and a survey of this direction of research has been given by the first author in [2].

We consider a combinatorial property defined in terms of power graphs. The power graph P(G) of a group G has all elements of G as vertices, and it has edges (u, v) for all $u, v \in G$ such that $u \neq v$ and v is a power of u. Let D be a directed graph. We say that a group G is power D-saturate if and only if, for every infinite subset T of G, the power graph of G has a subgraph isomorphic to D with all vertices in T.

Our first theorem completely describes all pairs (D, G), where D is a directed graph and G is a group, such that G is power D-saturate (Theorem 1). After that, for each finite abelian group G, we describe the power graph of G (Theorem 2).

For notation and terminology of graph and group theories not mentioned in this paper the reader is referred to [1] and [5], respectively. If p is a prime, then the p-primary component of a group G is denoted by G_p , the cyclic group of order p is denoted by C_p , and $C_{p^{\infty}}$ stands for the quasicyclic p-group. A directed graph is said to be *acyclic* if it has no directed cycles. Obviously, if G is finite or if D is a null graph, then G is power D-saturate. Therefore in our first main theorem we consider only infinite groups G and directed graphs D which have edges. Denote by T_{∞} the transitive tournament on the set $I\!N$ of natural numbers. It has the vertex set $I\!N$ and the edge set $E(T_{\infty}) = \{(m, n) \mid m > n\}$. **Theorem 1.** Let D(V, E) be a directed graph with $E \neq \emptyset$, and let G be an infinite group. Then G is power D-saturate if and only if G is a center-by-finite

¹⁹⁹¹ Mathematics Subject Classification. 05C, 20E.

torsion group, the center C(G) has a finite number of primary components, each primary component of C(G) is finite or quasicyclic, the order of G/C(G)is not divisible by p for each quasicyclic p-subgroup of G, and D is isomorphic to a subgraph of T_{∞} .

Clearly, for each group G and every set of vertices V there exist maximal graphs D(V, E) such that G is D-saturate. Theorem 1 shows that in fact there are only three types of maximal graphs: null graphs, transitive subtournaments of T_{∞} , and the compete graphs.

For the proof we need the following well-known result due to B.H. Neumann:

Lemma 1. ([3]) A group is center-by-finite if and only if every infinite sequence contains a pair of elements that commute.

A directed graph D(V, E) is called a *direct product* of $D_1(V_1, E_1), \ldots, D_n(V_n, E_n)$ if $V = V_1 \times \cdots \times V_n$ and E is the set of all pairs $((a_1, \ldots, a_n), (b_1, \ldots, b_n))$ such that $(a_1, \ldots, a_n) \neq (b_1, \ldots, b_n)$ and $(a_i, b_i) \in E_i \cup (V_i \times V_i)$ for all $1 \le i \le n$.

Lemma 2. If $G = \prod_{i=1}^{n} G_{p_i}$ is a direct product of p_i -groups, where p_1, \ldots, p_n are pairwise distinct primes, then the power graph of G is the direct product of the power graphs of G_{p_1}, \ldots, G_{p_n} .

Proof. If $b = (b_1, b_2, \ldots, b_n)$ is a power of $a = (a_1, a_2, \ldots, a_n)$ in G, then obviously every b_i is a power of a_i in G_i , for all $i = 1, \ldots, n$.

Conversely, suppose that $b_i = a_i^{m_i}$ in G_i , for all i = 1, ..., n. Denote the order of a_i by k_i . Given that G_{p_i} is a p_i -group, we see that $k_1, ..., k_n$ are pairwise coprime. By the Chinese remainder theorem there exists a positive integer k which has remainder m_i upon division by k_i , for all i = 1, ..., n. It follows that $a^k = b$, as required.

Maximal complete subgraphs of a directed graph are called *cliques*. Evidently, the binary relation of every power graph is transitive.

Lemma 3. Let p be a prime, and let a and b be two distinct elements in a cyclic p-group C_{p^n} , where a has order p^r and b has order p^s . Then

- (i) a belongs to a clique of order $p^r p^{r-1}$;
- (ii) $(a,b) \in E(P(C_{p^n}))$ if and only if $r \ge s$.

Proof. (i): Denote by g a generator of the C_{p^n} . There are precisely $p^r - p^{r-1}$ elements of order p^r in C_{p^n} , namely all elements g^k such that $(k, p^n) = p^{n-r}$. Each element of order p^r generates the same subgroup and can be expressed as a power of every other element of the same order. Thus all elements of order p^r induce a clique of order $p^r - p^{r-1}$ in $P(C_{p^n})$. When r = 0, the identity element forms a clique of order 1.

(*ii*): Suppose that $r \geq s$. The order of $f = a^{p^{r-s}}$ is equal to p^s . Since all elements of the same order belong to the same clique in $P(C_{p^n})$, it follows that $(f,b) \in E(P(C_{p^n}))$. Hence $(a,b) \in E(P(C_{p^n}))$.

Conversely, suppose that $(a, b) \in E(P(C_{p^n}))$. Take any generator g of C_{p^n} . Then $a = g^c$, where $(c, p^n) = p^{n-r}$. Similarly, $b = g^d$, where $(d, p^n) = p^{n-s}$. Given that $a^m = b$, we get $(g^c)^m = g^d$; whence $mc \equiv d \pmod{p^n}$. This congruence is solvable if and only if $(c, p^n)|d$. Hence $(c, p^n)|(d, p^n), p^{n-r}|p^{n-s}$ and we get $r \geq s$, as required.

Proof of Theorem 1. The 'only if' part. Suppose that G is power D-saturate, i.e., every infinite subset of G contains a power subgraph isomorphic to D. Hence every infinite subset has at least two elements a, b such that b is a power of a, and so a and b commute. Lemma 1 implies that G is center-by-finite.

If G has an element g of infinite order, then the vertices g^2, g^3, g^5, \ldots are not adjacent in the power graph of G. Since E(D) contains edges between distinct vertices and G is D-saturate, we see that G has to be torsion.

If G contains elements g_i of orders p_i , for infinitely many primes p_1, p_2, \ldots , then the vertices g_1, g_2, \ldots are not adjacent in P(G). This contradicts the D-saturateness of G again. Therefore G has a finite number of primary components.

If a *p*-primary component $C(G)_p$ of the center C(G) has infinite *p*-rank, then $C(G)_p$ contains independent elements g_1, g_2, \ldots (see [5], 4.2). Clearly, these elements are not adjacent in the power graph of C(G). Thus the *p*-rank of $C(G)_p$ is finite.

It follows that $C(G)_p$ is a direct product of finitely many cyclic or quasicyclic groups (see [5], 4.3.13). Suppose that $C(G)_p$ is infinite, but is not quasicyclic. Then it contains a subgroup isomorphic to $C_p \times C_{p^{\infty}}$. Let g be a generator of C_p , and let g_1, g_2, \ldots be generators of $C_{p^{\infty}}$ such that $g_1^p = e$ and $g_{i+1}^p = g_i$ for all $i = 1, 2, \ldots$ Then the set $(g, g_1), (g, g_2), (g, g_3), \ldots$ induces a null subgraph in the power graph. Therefore G is not D-saturate. Thus each primary component of C(G) is finite or quasicyclic.

Take any prime number p such that G has a quasicyclic subgroup $C_{p^{\infty}}$. If g_1, g_2, \ldots are the same generators of $C_{p^{\infty}}$ as above, then we see that they induce a subgraph of the power graph of G isomorphic to T_{∞} , that is $(g_i, g_j) \in E(P(G))$ if and only if i > j. Since G is D-saturate, D is a subgraph of T_{∞} .

Suppose that p divides |G/C(G)| and that G has a quasicyclic subgroup $C_{p^{\infty}}$ with generators g_1, g_2, \ldots as above. Pick an element h in G such that its image hC(G) has order p in G/C(G). Then all vertices $(h, g_1), (h, g_2), \ldots$ are not adjacent in P(G), and so G is not D-saturate. This contradiction shows that |G/C(G)| is not divisible by p for each quasicyclic p-subgroup of G.

The 'if' part. Assume that D has edges, G is a torsion group with a finite number of primary components, each primary component of G is finite or quasicyclic, and the order of G/C(G) is not divisible by p for each quasicyclic

p-subgroup of *G*. In particular, $G = G_{p_1} \times \cdots \times G_{p_n}$ for pairwise distinct prime numbers p_1, \ldots, p_n . For $1 \le i \le n$, denote by $\pi_i : G \to G_{p_i}$ the projection of *G* onto G_{p_i} .

Take any infinite subset L of G. By induction on i = 0, 1, ..., n we define infinite subsets L_i of L such that every image $\pi_k(L_i)$ forms a chain (i.e., a transitive tournament) in the power graph of G_{p_k} for k = 1, ..., i. First, put $L_0 = L$. Suppose that the set L_i has already been defined for some $0 \le i < n$.

If $\pi_{i+1}(L_i)$ is finite, then we can find an infinite subset L_{i+1} of L_i such that $\pi_{i+1}(L_{i+1})$ has only one element, and so forms a chain. (Note that in this part of our proof we allow consequtive repetitions of the same vertex in a chain or, equivalently, we attach all loops to the graphs.)

Next consider the case, where $\pi_{i+1}(L_i)$ is infinite. Then $G_{p_{i+1}}$ is infinite too, and so it is quasicyclic. Putting $p = p_{i+1}$, we get $G_p = C_{p^{\infty}}$. Since $|\pi_{i+1}(L_i)| = \infty$ and $C_{p^{\infty}}$ is the union of an ascending chain of cyclic groups, we can choose an infinite sequence $t_1, t_2, \ldots \in L_i$ such that each element $\pi_{i+1}(t_j)$ has order p^{ℓ_j} , for $j = 1, 2, \ldots$, and $\ell_1 < \ell_2 < \ldots$. Take any positive integers j < k. There exists a cyclic subgroup $C_{p^{\ell}}$ of $C_{p^{\infty}}$ such that both $\pi_{i+1}(t_j)$ and $\pi_{i+1}(t_k)$ belong to $C_{p^{\ell}}$. Lemma 3 shows that $\pi_{i+1}(t_j)$ is a power of $\pi_{i+1}(t_k)$. It follows that the sequence $\pi_{i+1}(t_1), \pi_{i+1}(t_2), \ldots$ forms an infinite chain in the power graph of G. We can take $L_{i+1} = \{t_1, t_2, \ldots\}$.

Thus we have defined the sets L_1, \ldots, L_n . All projections of the infinite set L_n form ascending chains in G_{p_1}, \ldots, G_{p_n} . Lemma 2 implies that L_n induces an infinite chain C in the power graph of G.

A vertex u is said to be an *ancestor* of a vertex v, if there is a directed path from v to u. Easy induction shows that the number of ancestors in C of every vertex of C is finite. Hence C is isomorphic to T_{∞} . Thus D embeds in T_{∞} , which completes our proof. \Box

In order to describe the power graphs of all finite abelian groups, we take any finite abelian group G and any elements a, b in G, and introduce the following notation.

Denote the primary components of G by G_{p_1}, \ldots, G_{p_n} , and express each G_{p_i} as a direct product of cyclic groups $G_{p_i} = (C_{p_i^{w_{i,1}}})^{q_{i,1}} \times (C_{p_i^{w_{i,2}}})^{q_{i,2}} \times \cdots \times (C_{p_i^{w_{i,n_i}}})^{q_{i,m_i}}$ and $w_{i,1} < w_{i,2} < \cdots < w_{i,m_i}$. For $i = 1, \ldots, n$, denote the projections of a and b on G_{p_i} , by a_i and b_i , respectively. Choose generators $g_{i,j,k}$ in the cyclic groups of G_{p_i} above, where $1 \leq j \leq m_i$ and $1 \leq k \leq q_{i,j}$. Write a_i and b_i in the form $a_i = g_{i,1,1}^{c_{i,1,1}} \dots g_{i,m_i,q_{i,m_i}}^{c_{i,m_i,q_{i,m_i}}}$, and $b_i = g_{i,1,1}^{d_{i,1,1}} \dots g_{i,m_i,q_{i,m_i}}^{d_{i,m_i,q_{i,m_i}}}$, where $c_{i,j,k} = u_{i,j,k} p_i^{w_{i,j}-r_{i,j,k}}$, $d_{i,j,k} = v_{i,j,k} p_i^{w_{i,j}-s_{i,j,k}}$ and $(u_{i,j,k}, p_i) = 1$, $(v_{i,j,k}, p_i) = 1$.

Theorem 2. Let G be a finite abelian group, and let a, b be any elements of G. Suppose that the prime factorization of the order of a is $|a| = \prod_{i=1}^{n} p_i^{t_i}$, where $1 \leq t_i \leq w_{i,m_i}$. Then

(a) a belongs to a clique of order

$$\prod_{i=1}^{n} (p_i^{t_i} - p_i^{t_i - 1}),$$

where we replace $(p_i^{t_i} - p_i^{t_i-1})$ by 1 if $t_i = 0$;

(b) (a,b) is an edge of the power graph of G if and only if, for every $i = 1, \ldots, n$,

$$p_i^{w_{i,j}} | v_{i,j,k} u_{i,j,k}^{\phi(p_i^{w_{i,j}})-1} p_i^{r_{i,j,k}-s_{i,j,k}} - v_{i,j',k'} u_{i,j',k'}^{\phi(p_i^{w_{i,j'}})-1} p_i^{r_{i,j',k'}-s_{i,j',k'}},$$

for all $1 \leq j \leq j' \leq m_i$, and $1 \leq k \leq k' \leq q_{i,j'}$.

(c) If w_{i,h_i} is the smallest exponent in G_{p_i} such that $t_i \leq w_{i,h_i}$ then P(G) contains

$$\prod_{i=1}^{n} \frac{(p_i^{w_{i,1}})^{q_{i,1}} (p_i^{w_{i,2}})^{q_{i,2}} \dots (p_i^{w_{i,h_{i-1}}})^{q_{i,h_{i-1}}} ((p_i^{t_i})^{q_{i,h_i} + \dots + q_{i,m_i}} - (p_i^{t_i-1})^{q_{i,h_i} + \dots + q_{i,m_i}})}{(p_i^{t_i} - p_i^{t_i-1})}$$

cliques of order $\prod_{i=1}^{w} (p_i^{t_i} - p_i^{t_i-1})$, for each t_i . If $t_i = 0$ for any i then we replace $(p_i^{t_i} - p_i^{t_i-1})$ by 1.

Proof of Theorem 2. It is enough to focus on a primary component of G, verify all formulas, and then apply Lemma 2 to obtain complete results. To simplify notation we drop all references involving *i* throughout the proof. In other words, we fix *i* and put $p = p_i$, $t = t_i$, $w_s = w_{i,s}$, etc.

Each element of order p^t in G_p belongs to a clique of order $p^t - p^{t-1}$. Since the order of elements in different *p*-components are mutually co-prime, the formula in (*a*) follows from Lemma 2.

Consider the primary *p*-component $G_p = (C_{p^{w_1}})^{q_1} \times (C_{p^{w_2}})^{q_2} \times \cdots \times (C_{p^{w_m}})^{q_m}$, where the k^{th} copy of $C_{p^{w_j}}$ has generator $g_{j,k}$, for $1 \leq j \leq m$ and $1 \leq k \leq q_j$. Assume $w_1 < w_2 < \cdots < w_m$. Suppose that $a = g_{1,1}^{c_{1,1}} \dots g_{m,q_m}^{c_{m,q_m}}$ and $b = g_{1,1}^{d_{1,1}} \dots g_{m,q_m}^{d_{m,q_m}}$ are two elements in G_p where $g_{j,k}^{c_{j,k}}$ and $g_{j,k}^{d_{j,k}}$ have orders $p^{r_{j,k}}$ and $p^{s_{j,k}}$, respectively. Solving $a^x = b$ yields the system of congruences:

(1)
$$xc_{j,k} \equiv d_{j,k} \mod (p^{w_j}), \text{ for all } j,k.$$

Each congruence, considered in isolation, is solvable if and only if $(c_{j,k}, p^{w_j})$ divides $d_{j,k}$. As in the proof of Lemma 3, this implies that $r_{j,k} \ge s_{j,k}$. Moreover, since $g_{j,k}^{c_{j,k}}$ has order $p^{r_{j,k}}$, we see that $c_{j,k}$ can be expressed as $u_{j,k}p^{w_j-r_{j,k}}$, where $(u_{j,k}, p) = 1$. Similarly, $d_{j,k} = v_{j,k}p^{w_j - s_{j,k}}$, where $(v_{j,k}, p) = 1$, for a positive integer $v_{j,k}$. Thus (1) gives us

(2)
$$\begin{aligned} xu_{j,k} &\equiv v_{j,k}p^{r_{j,k}-s_{j,k}} \mod (p^{w_j}) \\ x &\equiv v_{j,k}u_{j,k}^{\phi(p^{w_j})-1}p^{r_{j,k}-s_{j,k}} \mod (p^{w_j}) \end{aligned}$$

where ϕ is the Euler phi-function (see [4, 13.4]).

Thus $(a,b) \in E(P(G_p))$ if and only if there exists a solution to (2). The system of congruences in (2) is solvable if and only if

$$p^{w_j} \mid v_{j,k} u_{j,k}^{\phi(p^{w_j})-1} p^{r_{j,k}-s_{j,k}} - v_{j',k'} u_{j',k'}^{\phi(p^{w_j'})-1} p^{r_{j',k'}-s_{j',k'}},$$

for $1 \leq j \leq j' \leq m$, and $1 \leq k \leq k' \leq q_{j'}$. The formula in (b) follows directly from Lemma 2.

We observe that, $|a| \geq |b|$ is a necessary, but not sufficient condition for $(a,b) \in E(P(G_p))$. In $C_4 \times C_4 = \langle a \rangle \times \langle b \rangle$ we have |ab| = 4 and $|a^2| = 2$ but (ab, a^2) does not belong to $E(P(C_4 \times C_4))$. Moreover, $P(G_p)$ is not the direct product of the power graphs of its components as in Lemma 2 for $(a,a^2) \in E(P(C_4))$ and $(b,b^3) \in E(P(C_4))$, but $(ab,a^2b^3) \notin E(P(C_4 \times C_4))$.

Next, we count the number of cliques in P(G). Suppose $|a| = p^t$ in G_p . At least one $g_{j,k}$ has order p^t in $(C_{p^{w_j}})^{q_k}$, where $w_j \ge t$. Assume w_h is the least such w_j . Then $|g_{j,k}| \le p^t$ for all other j, k.

For j < h rewrite G_p in the form

$$(C_{p^1})^{f_1}(C_{p^2})^{f_2}\dots(C_{p^{h-1}})^{f_{h-1}},$$
, where $f_j \ge 0.$

The number of elements of order p^t is obtained by summing over all possible combinations of elements of order up to p^t in G_p . For ease in notation define $y = q_h + \cdots + q_m$ and $e_i = f_{h-1} + \cdots + f_{h-i}$, for $i = 1, \ldots h - 1$. Then the number of elements of order p^t to be

$$\sum_{z_1=1}^{y} {\binom{y}{z_1}} (p^t - p^{t-1})^{z_1} \cdot \left(\sum_{z_2=0}^{e_1+y-z_1} {\binom{e_1+y-z_1}{z_2}} (p^{t-1} - p^{t-2})^{z_2} \cdot \left(\sum \cdots \right)^{(j_1+y-z_1)} (j_2) \cdots \sum_{z_h=0}^{e_{h-1}+y-(z_1+\cdots+z_{h-1})} {\binom{e_{h-1}+y-(z_1+\cdots+z_{h-1})}{z_h}} (p^{j_1+y-j_2}) \cdots (p^{j_h+y-j_h}) \cdots (j_h) \cdots (j_h)$$

Now (3) is a series of nested binomial expansions and simplifies to

(4)
$$(p^1)^{f_1}(p^2)^{f_2}\dots(p^{h-1})^{f_{h-1}}((p^t)^{q_h+\dots+q_m}-(p^{t-1})^{q_h+\dots+q_m})$$

Resubstituting, (4) becomes

$$(p^{w_1})^{q_1}(p^{w_2})^{q_2}\dots(p^{w_{h-1}})^{q_{h-1}}((p^t)^{q_h+\dots+q_m}-(p^{t-1})^{q_h+\dots+q_m})$$

7

Each element of order p^t in G_p belongs to a clique of order $(p^t - p^{t-1})$. Therefore $P(G_p)$ has exactly

$$\frac{(p^{w_1})^{q_1}(p^{w_2})^{q_2}\dots(p^{w_{h-1}})^{q_{h-1}}((p^t)^{q_h+\dots+q_m}-(p^{t-1})^{q_h+\dots+q_m})}{(p^t-p^{t-1})}$$

cliques containing elements of order $(p^t - p^{t-1})$ for $t = 1, 2, \ldots w_m$. When t = 0, the identity forms a clique of order 1. Lemma 2 yields the formula in (c) and completes the proof. \Box

The authors are grateful to the referee for suggesting a substantial improvement to our Theorem 1.

References

- [1] G. Chartland and L. Lesniak, "Graphs and Digraphs", Chapman & Hall, London, 1996.
- [2] A. V. Kelarev, Combinatorial properties of sequences in groups and semigroups, Combinatorics, Complexity and Logic, Discrete Mathematics and Theoretical Computer Science, 1996, 289-298.
- [3] B. H. Neumann, A problem of Paul Erdös on groups, J. Austral. Math. Soc., 21 1976, 467-472.
- [4] R. Lidl, G. Pilz, "Applied Abstract Algebra", Springer, New-York, 1998.
- [5] D.J.S. Robinson, "A Course in the Theory of Groups", Springer, New-York, Berlin, 1982.

(A.V. Kelarev) School of Mathematics and Physics, University of Tasmania in Hobart, G.P.O. Box 252-37, Hobart, Tasmania 7001, Australia

 $E\text{-}mail\ address:$ Andrei.KelarevQutas.edu.au

URL: http://www.utas.edu.au/People/Kelarev/HomePage.html

(S.J. Quinn) School of Mathematics and Physics, University of Tasmania in Launceston, P.O. Box 1214, Launceston, Tasmania 7250, Australia

E-mail address: Stephen.QuinnQutas.edu.au

URL: http://www.utas.edu.au/People/Quinn/HomePage.html