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Abstract 
 

In view of today’s security concerns, 3D face 

reconstruction and recognition has gained a 

significant position in computer vision research. Depth 

information of a 3D face can be used to conquer the 

problems of illumination and pose variation associated 

with face recognition. Registration is an integral 

process of any reconstruction process and hence we 

focus on the problem of automatic registration of 3D 

face point sets through a criterion based on Gaussian 

fields. The method defines a simple energy function, 

which is always differentiable and convex in a large 

neighborhood of the alignment parameters; allowing 

for the use of powerful standard optimization 

techniques. The lack of necessity of close initialization 

overcomes the limitations of Iterative Closest Point 

algorithm. Moreover, the use of Fast Gauss Transform 

reduces the computational complexity of the 

registration algorithm.  

 

 

1. Introduction 
 

The need for a robust and effective biometric system 

for security application has been highlighted by 

security agencies all over the world. The human face 

seems to be one of the effective biometric features even 

in the uncooperative environment. Although many 

security systems based on 2D analysis of face are 

prevalent in the market, most of them suffer from the 

inherent problem of illumination and pose [1] [2]. This 

is one of the main motivating factors for research in 3D 

face reconstruction and recognition for security 

purposes. The field of 3D face reconstruction has been 

rapidly growing during the recent past as range finders 

became more accurate, affordable, and commercially 

available. In fact its applications are not restricted just 

to recognition but spread over wide areas ranging from 

medical purposes to computer animation, from video 

surveillance to lip reading systems, from video 

teleconferencing to virtual reality [3].   

Automatic reconstruction of 3D face models 

typically involves three stages: a data acquisition stage 

wherein the samples of the face are collected from 

different views using sensors, a data registration stage 

which aligns the different 3D views into a common 

coordinate system, and an integration stage which 

simplifies the aligned views into parametric models. 

Generally, some parts of the face will be unobservable 

from any given position, either due to occlusion or 

limitations in the sensor's field of view. When seen 

from a slightly different viewpoint, the missing data in 

unobserved regions is readily apparent. However, these 

different views will be in their local coordinate system 

and some transformations have to be employed to align 

them in a common coordinate system. It is in this 

capacity that registration becomes an integral part of 

the reconstruction process. 

In this paper, we address the automatic registration 

problem at the point level without any external 

correspondence. The main contribution of this work is 

the design of a point set criterion which is 

differentiable and convex in the large neighborhood of 

the aligned position, overcoming the shortcomings of 

standard registration techniques, and in particular ICP. 

The ICP algorithm which is a locally convergent 

scheme requires parameter initialization close to the 

aligned position. Without a-priori approximate estimate 

of the transformation, the ICP often ends in a local 

minimum instead of the global minimum which 

represents the best transformation. This is not 

surprising since the ICP is searching a non-convex, 

multi - dimensional space using a gradient descent 

algorithm.  

Our energy function is convex in the neighborhood 

of the solution and always differentiable allowing for 

the use of a wide range of well proven optimization 

techniques. We make use of a straightforward sum of 

Gaussian distances that is defined for point sets with 

associated attributes; local moments in our case. More 

importantly, the computational complexity of this 

criterion is reduced using the numerical technique 

known as Fast Gauss Transform. The obtained results 



affirm that our criterion can be used for accurate 

registration of 3D face datasets while at the same time 

extending the region of convergence, thus avoiding the 

need for close initialization. In the following sections 

we first present the literature overview, then describe 

the Gaussian criterion and the local attributes used, 

followed by an overview of the FGT evaluation 

method. In the results section we present an analysis of 

our approach regarding (a) the effect of parameter 

sigma on the registration accuracy, (b) the robustness 

of the proposed algorithm to different levels of noise, 

and (c) the influence of the data resolution on the 

results. Furthermore, we compare the performance of 

our algorithm to the performance of the standard ICP 

algorithm. Finally, we end with a conclusion. 

 

2. Literature Overview 
 

3D face reconstruction techniques can be broadly 

classified into active and passive methods based on 

their imaging modalities [6]. Active reconstruction 

techniques such as laser scan and structured light use 

external source of illumination for reconstruction 

whereas passive techniques such as stereo vision, 

morphing, structure from motion etc do not depend on 

external source of illumination. Most of the above 

mentioned methods invariably make use of registration 

technique in the process of building a complete face 

model.  

The majority of the registration algorithms attempt 

to solve the classic problem of absolute orientation: 

finding a set of transformation matrices that will align 

all the data sets into a world coordinate system [7]. In 

the literature, a common distinction is found between 

fine and coarse registration methods [4], which are 

often used in a two stage fashion: a coarse registration 

followed by fine registration using the ICP and its 

variants. 

The original ICP algorithm developed by Besl and 

MacKay [5] aligns the two point sets by minimizing the 

sum of squared distances between them. However, this 

approach converges monotonically to a local minimum 

and hence a good estimate of the initial transformation 

between point sets is required. Modifications to the 

original ICP algorithm have been made to improve the 

rate of convergence and register partially overlapping 

datasets. Chen and Medioni [8] used an iterative 

refinement of initial coarse registration between views 

to perform registration and utilized orientation 

information. They devised a new least square problem 

where the energy function being minimized is the sum 

of the distances from points on one view surface to the 

tangent plane of another views surface. Zhang [9] 

proposed a method based on heuristics to remove 

inconsistent matches by limiting the maximum distance 

between closed points allowing registration of partially 

overlapping data. While the basic ICP algorithm was 

used in the context of registration of clouds of points, 

Turk and Levoy [10] devised a modified registration 

metric that dealt with polygon meshes. They used 

uniform spatial subdivision to partition the set of mesh 

vertices to achieve efficient local search.   

In order to improve the robustness of ICP, Masuda 

and Yokoya [11] used a Least Mean Square (LMS) 

error measure that is robust to partial overlap. Some 

other methods involved in the same effort at robustness 

were the Minimum Variance Estimate (MVE) of the 

registration error proposed by Dorai et al. [12], Least 

Median Squares (LMedS) proposed by Trucco et al. 

[13]. Also for reducing the computational complexity 

some other variants were introduced such as the use of 

k-D trees to partition datasets [9] and the use of spatial 

subdivision to partition mesh vertices[10] .  

Stoddart et al. [14] studied the relationship between 

surface shape complexity and registration accuracy. 

Early work by Arun et al. [15] on estimating 3D rigid 

body transformations presented a solution using the 

singular value decomposition (SVD). The method 

requires a connected set of correspondences and 

accurately registers the 3D data. Faugeras and Hebert 

[16] employed the quaternion method to solve the 

registration problem directly.  

Eggert et al. [17] proposed a method in which data 

from each view is passed through Gaussian and Median 

filters, and point position and surface normal 

orientation are used to establish correspondence 

between points. Chen et al. [18] proposed a random 

sample consensus (RANSAC) scheme that is used to 

check all possible data-alignments of two data sets. The 

authors claim that their scheme works with featureless 

data and requires no initial pose estimate. 

The non differentiability of the ICP cost function 

imposes the use of specialized heuristics for 

optimization. Addressing the registration in the context 

of Gradient based optimization has attracted some 

interest recently. In his work Fitzgibbon [19] showed 

that a Levenberg-Marquardt approach to point set 

registration problem offers several advantages over 

current ICP methods. The proposed method uses 

Chamfer distance transforms to compute derivatives 

and Huber kernel to widen the basins of convergence 

of existing techniques. We try to overcome the 

limitations of the ICP algorithm by introducing a 

straightforward differentiable cost function, directly 

and explicitly expressed in terms of point coordinates 

and registration parameters.  



3. Our Approach 

  
The main idea employed in our 3D Registration 

method is to make use of the Gaussian fields to 

measure both the spatial proximity and the visual 

similarity of the two datasets in the point form.  

 

3.1 Gaussian fields and Energy Function 
 

We introduce our criterion on two point-sets 

))}(,{( iPSiPM = and ))}(,{( jQSjQD = , with their 

associated attribute vectors. As we consider our 

datasets in point form we utilize 3D moments as our 

attributes. However, those vectors can include 

curvature for smooth surfaces and curves, invariant 

descriptors, as well as color attributes when available. 

The Gaussian measure is given by:           
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with ),( jQiPd  being the Euclidean distance between 

the points and Ca being the attribute confidence 

parameter. In the context of particle physics the 

expression (1) can be seen as a force field whose 

sources are located at one point and are decaying with 

distance in Euclidean and attribute space. We can now 

define an energy function that measures the registration 

of M and D as:                 
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where Tr  is the transformation that registers the two 

point-sets. The Force Range parameter (σ) controls the 

region of convergence, while the parameter Σ  

normalizes the differences in the attributes, and the 

parameter Ca compensates the effect of noise on the 

features used in Gaussian criterion. If we choose the 

decay parameters very small, the energy function E  

will just ‘count’ the number of points that overlap at a 

given pose. This is due to exponential being very small 

except for )( tjRQiP += and )()( jQSiPS = . In 

particular, if M is a subset of D  we will have at the 

registered position:  
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Thus, for this case we meet a rigorous definition of 

registration as maximization of both overlap and local 

shape similarity between the datasets.  

 
(a) 

 
(b)                                      (c) 

 
Figure 1. Profiles of the Gaussian energy function 
for a displacement around the registered position 
of the dataset shown in (a). In (b) the profiles are 
plotted in the case without attributes for                   
σ = 30,50,70,90,150 (from narrowest to widest). 
Plots with moment invariants as attributes for the 
same values of σ are shown in (c) (For (b) 
magnitudes were rescaled for comparison).   
 

The Gaussian energy function is convex and is 

differentiable in a large region around the registered 

position, allowing us to make use of the standard 

optimization techniques such as Quasi-Newton method. 

As mentioned earlier the parameter σ controls the 

convex safe region of convergence. Higher its value 

larger will be the region of convergence, but this comes 

at an expense of reduced localization accuracy. 

However, the region of convergence can be extended 

considerably with limited reduction in localization 

accuracy if the datasets have sufficient shape 

complexity and many independent local descriptors are 

used. This tradeoff can be illustrated with the behavior 

of the matching criteria with and without attributes as 

illustrated in Fig. 1. The profile of the criterion with 

increasing values of sigma was plotted for relative 

displacement of the two point sets of Fig. 1(a). It is 

noticed that for the non-attributed case (Fig. 1(b)) as σ 

increases the width of the Gaussian bell increases too, 

but the maximum starts to drift away from the correct 

position. However, when we use the Gaussian criterion 

with moment invariants, as attributes associated with 

the points, the maximum is stable for the same values 

of σ (Fig. 1(c)). Instead of just continuously 

incorporating additional information from the point 

sets, we employ a strategy of tuning the parameter σ to 

increase the ROC without losing localization accuracy.  

A rough alignment is performed initially using a large 

sigma and then its value is decreased for future 

refinement steps. 



3.2 The Fast Gauss Transform 
 

The registration criterion which is a mixture 

of
DN Gaussians evaluated at 

MN  points then summed 

together has a high computational cost of 

)( DM NNO × , which is very high for large datasets. 

This problem which is also encountered in other 

computer vision applications can be solved by a new 

numerical technique called as Fast Gauss Transform 

(FGT). The method introduced by Greegard and Strain 

[20] is derived from a new class of fast evaluation 

algorithms known as “fast multipole” methods and can 

reduce the computational complexity of the Gaussian 

mixture evaluation to )( DM NNO + . The basic idea is 

to exploit the fact that all calculations are required only 

up to a certain accuracy. In this framework the sources 

and targets of potential fields were clustered using 

suitable data structures, and the sums were replaced by 

smaller summations that are equivalent to a given level 

of precision.   

The FGT method is used to evaluate sums of the 
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identity and expansion in terms of Hermite series are 

used: 
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where 
nH  are the Hermite polynomials. Given that 

these series converge rapidly, and that only few terms 

are needed for a given precision, this expression can be 

used to replace several sources by 0s with a linear cost 

at the desired precision, these clustered sources can 

then be evaluated at the targets. For a large number of 

targets the Taylor series (5) can similarly be used to 

group targets together at a cluster center 0t , further 

reducing the number of computations. 
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where the Hermite functions )(thn
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Figure 2. Sample models in different poses from 
our IRIS 3D face database. The two dimensional 
intensity images (a) (b) (c) along with their 
associated 3D models (d) (e) (f) 

 

asymptotically to a linear behavior as the number of 

sources and targets increases.  

 

4. Experimental Analysis 
 

In our experiments we have used two different data 

sets: the synthetic dataset (Fig.1.a) and the IRIS 3D 

face dataset (Fig.3) from our database. The 3D face 

dataset was scanned using the Genex 3DFaceCam 

which operates on the principle of structured light. 

Some of the models from our database are depicted in 

Fig. 2. 

 

    

(a) (b) (c) (d) 
 
Figure 3. 3D face model from our database. The 2D 
image (a); two different views of the face (b); 
registered model (c); and the complete 3D model 
with texture (d). In our experiments the texture is 

discarded and point sets are used instead. 

 

4.1 Effect of varying the parameter Sigma 
 

The parameter σ controls the region of convergence 

which should be large for better practical applications. 

However, increasing the value of σ without any 

constraints causes the decrease in the localization 

accuracy.  It is with this motivating factor we analyze 

the effect of varying sigma on the registration accuracy 

using the synthetic and 3D face dataset from our 

   
(a) (b)  (c) 

   
(d)  (e) (f) 



database. The results of this experiment are shown in 

Fig. 4. 

It is interesting to find that both the models exhibit 

similar trends in the sense that the registration error 

increases linearly as a function of σ. However rate of 

increase slows down for larger values of σ and tends 

towards an asymptotic limit.  This can be the explained 

by the fact that as σ exceeds the average distance 

between the points in the datasets the exponential can 

be approximated by its first order development:  
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The optimization problem now reduces to 

minimizing the sum of average distances from one 

point set to other dataset and doesn’t depend anymore 

on σ. Another interesting observation is that the 

registration error generally remains less that 20% the 

length of the model for translation and less than 25° for 

rotation. Based on this behavior we can develop an 

algorithm that starts with initial rough alignment with a 

large σ and then end up with a refinement step where σ 

is sharply decreased leading to a very low registration 

error. 

 

4.2 Resolution Analysis 
 

The main criterion of a good registration method is the 

level of accuracy and the computational complexity 

involved. There are many optimization techniques 

which would reduce the computational complexity 

burden. Although Fast Gauss transform was utilized to 

reduce the computational complexity of the criterion, 

the sub- sampling of the datasets would lead to a lower 

level of complexity. However, the number of points in 

the datasets should be sufficient to maintain the 

accuracy level. Hence this turns out to be an 

optimization between the computational complexity 

and level of accuracy. It was this factor which drove us 

to experiment on the minimum number of points in 

space required for an effective 3D Registration.  

The dataset utilized was taken from our IRIS 3D 

face database. We start with the relatively low number 

of 6000 points for each view then sample by two to 

obtain the next pairs until we reach 750 points. To 

study the influence of reduction in resolution we sub-

sampled our datasets in three different ways: uniform 

sampling wherein the points are sampled at equal 

intervals; curvature based sampling wherein points in 

high curvature regions are less deleted than low 

curvature region in order to maintain the accuracy of 

the curvature line and random sampling wherein the 

points are randomly sampled throughout the dataset. 

 
(a) 

 
(b) 

Figure 4. Plots showing the rotation (a) and 
translation error (b) of the real face data and the 
synthetic face as a function of parameter σ.  The 
parameter sigma and translation error are in terms 
of fraction of the length of the face model      

 

Although at higher levels of sampling (lower 

number of points) the curvature sampling provides a 

slight insignificant edge over others, no particular 

method can be considered superior to others. The 

reason that no particular sampling method can be 

attributed as perfect is due to the following reasons: 

• Uniform sampling has better spatial distribution of 

points but this may lead to coarser description of 

objects. 

• Curvature sampling has better visual description but 

may sometimes lead to complications due to 

clustering of points in certain areas. 

• Random sampling may create complications due to 

uneven distribution of points. 

Another observation from Fig. 5 is that the criterion 

does not break down even at higher levels of sampling 

and remains intact even for a few points around 800, 

thus reducing the computational burden by multi 

resolution strategy that initializes at coarser levels. 



 
(a) 

 
(b) 

Figure 5. Effect of sampling on the registration 
accuracy. Rotation error (a) and translation error (b) 
as a function of number of points for three different 
sampling methods 

 

4.3 Noise Analysis 
 

Noise has a significant effect on the 3D registration 

process especially in the Gaussian criterion framework 

because it influences both the position of the point-sets 

as well as the descriptors computed from them. In 

practical applications noise is more dominant in the 

radial direction with respect to camera’s coordinate 

frame. However, we focus our experimental analysis on 

uniform noise to study the worst case scenario. As 

mentioned in earlier sections the parameter Ca is added 

to our criterion to compensate the effect of descriptors 

which become practically useless at higher levels of 

noise. This is achieved by forfeiting a part of 

discriminatory power that the descriptors add at higher 

levels of noise. For practical applications the 

confidence level factor is typically chosen to be around 

10
-3

 for datasets with low noise levels and around unit 

value for higher noise values. For the purpose of noise 

analysis we add uniform noise of amplitude going up 

(a) 

 
(b) 

Figure 6. Registration error versus uniform noise: 
rotation error (a) in degrees, translation error (b) as 
a fraction of the length of the face model. We show 
plots for three values of the confidence parameter. 
 

to 10% of the length of the head to both the models. 

The effect of uniform noise on the drift in the 

maximum of the criterion can be studied from the plots 

shown in Fig. 6.  The first conclusion made from plots 

is that our algorithm is robust for levels of uniform 

noise upto ±7% which is very high by any practical 

standards. The effect of Ca in moderating the effect of 

registration accuracy at higher levels of noise can also 

be clearly seen. 

 

4.4 Comparison with ICP 
 

In order to study the effect of σ  on the region of 

convergence and to prove its advantages over the ICP 

algorithm, we analyzed the basins of convergence of 

the algorithm for the Head dataset. A relationship 

between the initial value of transformation parameters 

provided to the algorithm and the residual error at the 

end of the process with different values of σ can be 

seen from Fig. 7. 



These plots confirm the tradeoff between a large 

basin of convergence for a large value of σ associated 

with a large residual error as well, and a smaller basin 

of convergence for a small value of σ that comes with a 

better registration accuracy. It can also be found that 

the width of the basins will grow fast first but then does 

not increase much after a certain value of the force 

range parameter which can be deduced from earlier 

sections. Also when these basins are compared with 

that of ICP, it is found that they are wider even for 

small values of σ. This can be attributed to the fact that 

ICP is a locally convergent scheme and needs close 

initialization. However, the ICP has a small residual 

error except when compared with algorithm tuned for 

close Gaussian fields. Thus a balance between residual 

error and the region of convergence can be obtained by 

a suitable adaptive optimization scheme. 

 

5. Conclusions 
 

In this paper we demonstrate a new automatic 

registration method based on Gaussian Fields applied 

to 3D face reconstruction. The method overcomes the 

close initialization limitation of ICP and avoids the two 

stage registration process employed by the other 

algorithms. Moreover, the method allows us to start 

from arbitrary initial position and converge to the 

registered position. A simple energy function is utilized 

and by the application of Fast Gauss Transform, the 

computational complexity is reduced to linear level. 

The experiments performed on real noisy 3D Head 

datasets demonstrate the effectiveness of our method. 

Furthermore, the simple energy criterion can be applied 

for the task of 3D face recognition which is currently 

under investigation. 
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