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Probing Three-Way Interactions in Moderated Multiple Regression:
Development and Application of a Slope Difference Test

Jeremy F. Dawson and Andreas W. Richter
Aston University

Researchers often use 3-way interactions in moderated multiple regression analysis to test the joint effect
of 3 independent variables on a dependent variable. However, further probing of significant interaction
terms varies considerably and is sometimes error prone. The authors developed a significance test for
slope differences in 3-way interactions and illustrate its importance for testing psychological hypotheses.
Monte Carlo simulations revealed that sample size, magnitude of the slope difference, and data reliability
affected test power. Application of the test to published data yielded detection of some slope differences
that were undetected by alternative probing techniques and led to changes of results and conclusions. The
authors conclude by discussing the test’s applicability for psychological research.
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The concept of moderation in social science is central to testing
theories that aim to explain the interactive effect of two or more
variables in predicting a dependent variable. Many such contin-
gency theories represent crucial developments in various disci-
plines, including applied psychology, organizational behavior, ad-
ministrative science, and sociology.

A variable Z is a moderator variable of the relation between an
independent variable X and a dependent variable Y, when the
magnitude of this relation varies across levels of Z (Baron &
Kenny, 1986; James & Brett, 1984; Zedeck, 1971). Z can be a
continuous or a categorical variable. Frequently, the relation be-
tween X and Y may depend on more than one variable. The basic
concept and rationale of moderation may then be generalized from
two-way interactions to more complex three-way interactions, in
which the relation between X and Y is contingent not only on Z but
also on another moderator variable, W (as well as the interplay of
Z and W; Jaccard & Turrisi, 2003). Such three-way interactions
serve to examine the concerted interplay of several variables and
can be used to test configurational theories, typologies, or more
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complex contingency theories (e.g., Brown, Ganesan, & Challa-
gala, 2001; Erez & Earley, 1987; Oldham & Fried, 1987).

Detecting Interactions, Plotting Interactions, and Post Hoc
Probing

Detecting Interactions

Moderated multiple regression (MMR) analysis is the method of
choice to detect moderator effects in field research and is superior
to strategies such as comparison of subgroup-based correlation
coefficients (Stone-Romero & Anderson, 1994). The most com-
mon procedure to test two-way interactions statistically is to re-
gress a dependent variable Y on the independent variable X, the
moderator variable Z, and the product (interaction) term of X and
Z (XZ). This interaction term is often entered in a separate step,
although this is not essential. A significant interaction term XZ
indicates that the effect of X on Y differs across the range of the
moderator variable Z (Cohen & Cohen, 1975; Peters, O’Connor, &
Wise, 1984; Zedeck, 1971). Although in the present article we
express this in terms of an independent variable X and a moderator
Z, we note that both variables X and Z might function as a
moderator or as a predictor variable, leaving the distinction to
theoretical reasons (Baron & Kenny, 1986; James & Brett, 1984).

In the case of three-way interactions, this procedure can then be
generalized to test the effect of X on Y depending on two moder-
ator variables, Z and W. Analogously, Y is regressed on the
variables X, Z, and W; the products of each pair of variables, that
is, XZ, XW, and WZ (often in a separate step); and the product term
of all three predictor variables, that is, XWZ (again, often in a
separate step). Similar to the two-way interaction case, the signif-
icance of the three-way interaction term indicates that the relation
between X and Y varies across levels of Z, W, and/or the combi-
nation of Z and W. As with the two-way interaction scenario, we
leave to theoretical reasons which variables function as moderators
or the independent variable.
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Plotting the Interaction

One way to further interpret the three-way interaction involves
plotting the relation between X and Y, at high and low values of Z
and W (for a discussion of plotting techniques, see Aiken & West,
1991; Jaccard & Turrisi, 2003). Such a plot allows a quick, visual
indication of the nature of an interaction effect, and the direction
of the slopes can be interpreted on the basis of face validity (see
Figure 1 for an illustration). Alternatively, the relation between X
and Y at high and low levels of one of the moderators (e.g., Z) may
be plotted in two separate graphs at high and low levels of the
other (e.g., W). Interaction plots are a useful means for illustration
purposes. However, they do not allow inferences as to whether a
significant three-way interaction is the result of significant differ-
ences among any two, three, or all four combinations of the two
moderator variables Z and W at high and low levels; whether any
difference between pairs of slopes is significant; or whether an indi-
vidual slope is a significant predictor of the dependent variable.
Further statistical probing is required to answer these questions.

Post Hoc Probing Techniques

The most popular procedure to further examine significant in-
teraction terms statistically is the pick-a-point approach (Aiken &
West, 1991; Rogosa, 1980). Researchers typically conduct this
analysis by first computing simple slopes of ¥ on X at conditional
values (e.g., high and low levels) of Z and then testing whether
simple slopes at combinations of high and low values of Z and W
differ significantly from zero in predicting the dependent variable.
Calculation of confidence intervals for simple slopes (Cohen,
Cohen, West, & Aiken, 2003) represents a refined advancement of
this method. These tests may be interpreted such that a significant
slope at high or low levels of Z and W represents a significant
relation between the independent and dependent variables at those
values, irrespective of what this relation is at other values of Z and
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Figure 1. A three-way interaction plot illustrating simple slopes of Y on
X at high and low values of W and Z. (c) = difference between simple
slopes at low W and low Z and at low W and high Z.

W. Limitations of this technique have been discussed elsewhere
(see Aiken & West, 1991; Bauer & Curran, 2005; Rogosa, 1980),
including that conditional values may not reflect the entire range of
a continuous moderator variable and are sometimes chosen some-
what arbitrarily. Another probing technique developed in response
to this criticism is the calculation of regions of significance via the
Johnson—-Neyman technique (Bauer & Curran, 2005), which, to
our knowledge, so far only has been developed for two-way
interactions. For the purpose of this article, it is important to stress
one additional limitation of the pick-a-point technique: These post
hoc tests do not allow the conclusion that the impact of the
independent variable on the dependent variable is significantly
more different for one slope at combinations of high and low
conditional values of Z and W than for any other slope. These
comparisons do thus not present a relational test of two simple
slopes but are only an absolute test of a single simple slope.

A commended alternative approach for post hoc probing is the
use of subgroup analysis (see Aiken & West, 1991; Peters et al.,
1984). The researcher may use a median split on one of the two
moderator variables (e.g., W) and then further probe the relation of
the independent variable (X) and the other moderator (Z) for each
subgroup of high and low W separately. Further probing involves
individual subgroup analysis—for instance, through the use of
regression analysis. We argue that subgroup analyses bear three
relevant limitations: First, they represent an artificial split into
subgroups that is not in concordance with the (continuous) nature
of the respective variable. Second, they limit the power of the
analysis, as the sample size of subgroups is reduced. Third and
foremost, they do not allow for a comparative test of slopes that do
exist across the barriers of subgroups (i.e., a comparison of a slope
at high Z and high W with a slope at low Z and low W or a
comparison of a slope at high Z and low W with a slope at low Z
and high W), as subgroups are treated as if they were separate
samples. Subgroup analyses are thus restricted to examine slope
differences within a subgroup only.

Common Strategies in Probing Three-Way Interactions

A literature search in the PsycARTICLES, PsycINFO, and
Proquest databases yielded three common strategies used by re-
searchers to probe three-way interactions: Some authors did not
further probe the significant three-way interaction term by statis-
tical means but simply plotted the interaction and interpreted slope
differences on the basis of face validity, that is, the direction of the
slopes (e.g., Baker & Cullen, 1993; Schaubroeck, Ganster &
Kemmerer, 1994; Schaubroeck & Merritt, 1997). As we have
suggested, this approach tempts researchers to draw unjustified
conclusions as to whether individual slopes differ from each other
or are significant predictors of the dependent variable. A second
group of researchers used the pick-a-point approach (Aiken &
West, 1991; Rogosa, 1980) to examine whether simple slopes
differed significantly from zero and further interpreted the inter-
action on the basis of interaction plots (e.g., Janssen, van de Vliert,
& Veenstra, 1999). The question of which pairs of slopes differed
from each other significantly was then left to speculation. A third (and
perhaps most advanced) strategy was to carry out subgroup analysis
on one moderator variable and subsequently run separate regression
analyses for subgroups at low and high levels of this moderator (e.g.,
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Dickson & Weaver, 1997; Kwong & Leung, 2002; Oldham & Cum-
mings, 1996; Oldham & Fried, 1987). This approach results in igno-
rance of potential slope differences that might have existed across
subgroups; furthermore, it uses the very type of arbitrary split (of at
least one variable) that MMR is designed to overcome.

None of the three strategies allows the researcher to test each
possible combination of pairs of simple slopes for statistical sig-
nificance. A precise test of an explicit psychological hypothesis of
slope differences, as, for instance, in the Schaubroek et al. (1994)
study, is not possible if the interaction is only plotted. Also, other
researchers might have refined their hypotheses had a test for slope
differences indicated that some slopes differed significantly but
other slopes did not (e.g., Xie, 1996). Such a significance test of
the difference between simple slopes, in fact, does not yet exist
(Cohen et al., 2003, p. 280).

In the remainder of the article, we first theoretically derive a
formula to test slope differences for statistical significance. We
then use Monte Carlo simulations to determine how sample char-
acteristics affect the power of this test. We continue demonstrating
the test’s applicability by reanalyzing published data. We conclude
by discussing test usefulness and limitations.

The Development of a Significance Test for Slope
Differences

The development of the test formula contains four steps: First, one
calculates generic formulas for simple slopes of the relation between
X and Y at high and low levels of Z and W (in a similar fashion to
Aiken & West, 1991). Second, one calculates the difference between
any two pairs of slopes (Aslope). Third, one calculates the standard
error (SEpe) Of the difference of pairs of slopes. To determine
whether slopes differ from each other, it is necessary to put the slope
difference in relation to its standard error. Therefore, the final step
requires one to test whether the ratio of the difference between pairs
of slopes and its standard error (Aslope/SE ) differs from zero.

Generic Formulas for Simple Slopes of X on Y at High
and Low Levels of Z and W

The generic form of the three-way interaction regression equa-
tion can be represented as follows:

Y=0by+ bX + b,Z+ bW+ bXZ
+ bsXW + bgZW + b, XZW + e.
A typical plot of a three-way interaction would consist of four lines.

Each of these lines would show the (estimated) relation between X

Table 1

and Y under one of four conditions: (a) Z high, W high; (b) Z high, W
low; (c) Z low, W high; and (d) Z low, W low. Normally, the high and
low values of Z and W are taken to be 1 standard deviation above and
below the mean values of the variables (Aiken & West, 1991). To
leave this as general as possible, however, we refer to high and low
values of Z and W as Zy, Z;, Wy, and W, respectively.

The lines are described by the regression equation given above,
with substitution of parameter estimates for b, to b, and of Z;, Z, ,
Wy, and W, for Z and W as appropriate. The regression equation
can be rewritten as

Y = (by + byZ + byW + bZW)
+ (by + byZ + bsW + b,ZW) X + e.

The part of this equation in the first set of parentheses represents
the intercept on a graph of Y against X; the part in the second set
of parentheses represents the gradient, or slope, of the line. There-
fore, the slopes of the four lines can be represented by

by + byZy + bsWy + b ZyWy, (1)

by + byZy + bsWy + b, ZyW,, 2)

b, + byZy + bsWy + b;Z Wy, 3)
and

b, + byZy + bsWy + b, Z, W, 4)

Calculating Differences Between Pairs of Slopes

The quantity of interest here is the difference between these
slopes. In total, there are six pairs of slopes that may potentially be
of interest for testing between. These fall into two categories:
Slopes between which only one variable changes (e.g., Equations
1 and 2; W changes between high and low, but Z remains high in
both cases), and slopes for which both variables change (e.g.,
Equations 1 and 4; both Z and W change from high to low). The
difference between each pair of slopes is shown in Table 1.

Although these formulas appear somewhat complicated, if sim-
ple values of Z and W are substituted, they reduce considerably.
For instance, if both variables have been standardized (i.e., cen-
tered with mean O and standard deviation 1) before the interaction
terms are calculated and the regression performed and if the lines
have been plotted for values of Z and W that are one standard
deviation above and below the mean (i.e., Z; = Wiy = 1, and Z_
= W, = 1), Difference a in Table 1 would reduce to 2(b5 + b,),
and Difference e would reduce to 2(b, + bs). Although we

Formulas for Differences Among All Six Pairs of Slopes

Slopes Difference Label
1 and 2 bs (Wy — W) + bZy Wy — W) a
1 and 3 by, (Zy — 7)) + bWy (Zy — Zy) b
2 and 4 b, (Zy — Z,) + bW, (Zy — Z,) c
3 and 4 bs (Wy — Wp) + bZ, (Wy — W) d
1 and 4 by (Zy — Zy) + bs Wy — W) + by (ZyWy — Z W) e
2 and 3 by (Zy — Zy) + bs (W — Wy) + by (ZyWy — ZL W) f
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recommend that such standardization take place, we continue to
describe the general situation and proceed to describe the simpli-
fication achieved by the use of standardized variables.

Calculating the Standard Error of Slope Differences

To determine whether a difference in slopes is significant, it is
necessary to compare the difference with its standard error. It can
be shown that the standard errors of the slope differences are given
by the formulas in Table 2. The formulas rely on the variances and
covariances of the regression estimates b,, bs, and b,; in keeping
with Aiken and West’s (1991) notation, we refer to the variance of
regression estimate b, as s,, and the covariance of estimates b, and
bs as s,s. For a complete derivation of these formulas, see the
Appendix. Note that the formulas for the cases in which variables
are standardized are far simpler than the general formulas.

Table 2

RESEARCH REPORTS

A Significance Test of Differences Between Pairs of Slopes

The difference between two slopes itself represents a relation
between Y and X (for a certain change in at least one of Z and W)
and, as such, is similar to a slope in its own right. Therefore the
ratio (slope)/(standard error[slope]) has, under the assumption that
the slopes are equal, a ¢ distribution with (n — k — 1) degrees of
freedom, where n is the sample size and k is the total number of
predictors in the regression equation (including all the interaction
terms). Thus, to test the significance of Slope Difference a in Table
1, it is necessary to test the hypothesis

@ bW = W)+ biZu(W — W)
SE,  (Wy — Wo) \/555 + Z%{SW + 2Zuss;

t

bs + b,Z,
_ 5 h 74H £0,
\/555 + Zuss T 2ZySs7

Standard Errors of Differences Between All Six Pairs of Slopes and Associated Test Statistics

Slopes Variable Standard error (difference) Test statistic
a. 1 and 2 General (Wi — Wi) \fsss + Zi 517 + 2Zuss; . bs + b,Zy 2
\Ss5 + Z%{ s77+ 22857
Standardized 2 \[Sss + S99 + 2557 . bs + b, <0
N ap——
/555 77 57
b. 1 and 3 General (Zu = Zi) \Jsau + Wi 577 + 2Wysar . 4+ bWy .
\Saa + Wﬁ s77 + 2Wysysr
Standardized 2 \JSuy 877+ 284 = by + by £0
/544 + 577 + 2549
c.2 and 4 General (Zy — Z) \/s44 + W2 57 + 2Wisy . by + b;W, +0
\Saa + Wi 577 = 2Wisy
Standardized 2 \fsuy + 577 — 254 . by + b, 20
\Sas T 577~ 2syg
d. 3 and 4 General Wy — W) Nsss + Zi 257 + 27,55 L s + biZy 40
\Sss + Z[2_577 = 27,557
Standardized 2 \/s55 + 517 — 2857 . bs + b, +0
\Sss 877 — 2557
e. land 4 General (Zy — Z0)* 544 + (Wy — W) 555 by(Zy — Z1) + bs(Wy — Wo) + by(ZyWy — ZLWy)
2 = #0
+ (ZuWy — ZLWL) 577 (Zyy — Z0)% 544 + Wy — W)ss5
(Zy — ZL)(Wy — Wi)sys + (ZyWy — ZLWL)? 577
+ 2| + (Zu — Z)(ZuWy — ZLW1)s4 (Zy — Zy)(Wy — Wp)sys
+ Wy — WO(ZuWy — ZLW)ss, + 2| +(Zy — Z)(ZyWy — ZLWy)sa7
+ (Wa — WO(ZuWy — ZLWo)ss,
Standardized 2 fsu + Ses + 2 by + b
\Sa4 T Ss5 S45 ‘= 4 S +0
\Sas t 855+ 2sys
f.2and 3 General (Zu — Z0)% sua + (W, — Wyy)? 555 by(Zy — Z) + bs(W, — Wy) + by(ZyWy. — Z Wy)
_ 2 t= > 5 #0
+ (ZyWL — ZLWh)” 57 (Zyg — Z1)" 544 + (W — Wy~ 555
(Z = Z)(WL — Wi)sys + (ZuWy — ZLWy)* 577
+ 2| + (Zu — Z)(ZuWL — ZLWh)sy (Zn — Z)(W, — Wy)sys
+ (WL — Wa)(ZgWL — ZLWy) s57 + 2| + (Zy — Z)(ZyWy — ZLWy)sy
+ (WL — Wi)(ZaWL — Z Wi)ssy
Standardized 2 \[Say + 855 — 2845 by — bs

t=—F———————%#0
\Saa 855 — 2545




RESEARCH REPORTS 921

where ¢ follows a ¢ distribution with (n — k — 1) degrees of
freedom (this is a generalization of the two-way interaction slopes
test proposed by Aiken & West, 1991). Equivalent test formulas
for the other slope differences, including the forms for standard-
ized variables, are given in Table 2.

To conduct such a test, a researcher would need to run a
regression analysis to test the three-way interaction (as exempli-
fied in the introduction) but obtain the covariance matrix of the
regression coefficients. In most statistics packages, such as SPSS,
this function is not included by default but is available as an
option. Having extracted the relevant coefficients and variances or
covariances of the coefficients, one can easily calculate the rele-
vant formula above and compare it against a table of values of the
t distribution with n — k — 1 degrees of freedom.'

One can then use the test either to test a priori hypotheses or to
explore detected interactions in a post hoc manner. Although in the
former case a specific difference between two slopes has been
hypothesized (e.g., Kwong & Leung, 2002), the researcher aims to
interpret a three-way interaction effect, which is more exploratory
in nature in the latter (e.g., Smither & Walker, 2004). These two
cases require different conditions for acceptable levels of test
power: If the researcher has hypothesized a difference (or more
than one difference), then he or she can use the test as described in
this article without necessary adjustment. If, conversely, the re-
searcher discovers a three-way interaction effect and wishes to
explore which differences are significant, a correction for multiple
post hoc testing (analogous to adjustment in multiple tests for
analysis of variance) is necessary. A common such adjustment is
the Bonferroni correction, which approximately divides the ac-
cepted significance level of a test () by the number of simulta-
neous tests carried out (e.g., Miller, 1981).

Monte Carlo Simulation

In the following section, we aim to describe under which con-
ditions the significance test will yield reliable results and when
significant slope differences may remain undetected because of
sample limitations. A computer program was written in S-Plus
(Insightful Corporation, 2001) to generate multiple data sets, under
different conditions, with underlying three-way interactions. Agui-
nis (1995, 2004) reviewed four areas that have been discussed to
affect the power of MMR—variable distribution, operationaliza-
tion of predictor and dependent variables, sample size, and char-
acteristics of the predictor variables—as well as interactive effects
of these four. We have selected one key criterion from each of
these categories and examine their individual and combined effect
on test power.

Method

Variable distribution. One characteristic of variable distribution
known to affect power of MMR with categorical moderators is range
restriction (reduction in the variance of the predictor; e.g., Aguinis, 1995;
Aguinis & Stone-Romero, 1997). However, range restriction per se is
unlikely to cause a problem for continuous moderators. A three-way
interaction effect, if it is linear in nature (as the regression equation for
continuous moderators assumes it is), should be equally detectable even
when there is a lack of variance in a predictor, because the estimation of the
equation relies only on the variance within the sample. If the three-way

interaction is indeed linear, it should be as observable within this sample
variance as within any larger population variance (unless the sample
variance is negligible). However, an important side effect of range restric-
tion is a change in distribution. Departure from normality is known to cause
a loss of power for many statistical techniques, including multiple regres-
sion (e.g., Wilcox, 1998). For these reasons, we examine four different
distributions: the normal distribution, a skewed normal distribution (cal-
culated by the natural logarithm of the normal distribution), the uniform
distribution, and a triangular distribution (calculated by the square root of
a uniform distribution—in particular, this is not dissimilar from a truncated
normal distribution, as may be caused by range restriction).

Operationalization of predictor and dependent variables. Aguinis
(2004) highlighted three variable operationalizations that can affect the
power of MMR: measurement error, scale coarseness, and polychotomi-
zation of truly continuous variables. Both Stone-Romero and Anderson
(1994) and Aguinis and Stone-Romero (1997) found measurement error to
be a highly important factor in the power of MMR, so we chose to vary
this. We used reliabilities of 1.00, .80, and .60 (in both predictor and
moderator variables) to represent values of perfect, acceptable, and barely
acceptable reliability, respectively.

Sample size. Subgroup sample size is not an issue with continuous
moderators, so we varied only the overall sample size, choosing values of
50, 100, 200, and 500 cases to represent sample sizes typically found in
empirical studies.

Characteristics of the predictor variables. Research has shown that the
intercorrelation between predictor variables has relatively little effect on
the power of MMR (e.g., Aguinis, 1995). Rather, the relation between
predictor and criterion is a far more important factor (Rogers, 2002).
However, we are not interested so much in the power of finding a
three-way interaction itself as in detecting the difference between a pair of
slopes. Therefore, the correlations we are interested in varying are those of
the relation between X and Y at particular values of Z and W. We chose
differences between the correlations of the slopes of 0.50, 0.30, and 0.10 to
tie in with Cohen’s (1988) large, medium, and small effect sizes.? Addi-
tionally, we generated data with no underlying effect (i.e., zero correlation
differences between the slopes) to test the level of Type I error of the test
under the different conditions.

Consistent with this body of literature examining factors that reduce the
power of MMR, we expect that restrictions in variable distribution, reli-
ability, sample size, and magnitude of slope difference (which we refer to
for the remainder of this article as effect size) will result in reduced test
power. Additionally, we expect the four factors to interact such that test
power will decline as a function of combinations of the four variables.

For each of the 108 (4 X 3 X 3 X 3) conditions, we generated 10,000
data sets on the basis of populations with the specified effect size. We
generated effects of a given size for one selected pair of slopes (slopes
representing the relation between X and Y): for low values of W, with
differences between high and low values of Z (Situations b and d described
earlier; see Difference c, Figure 1). For each data set, we performed the test
of slope differences associated with this difference (Test c). We used the
percentage of occasions when a significant result (with p < .05) was
detected (i.e., the test correctly rejected the null hypothesis of no difference

' A Microsoft Excel worksheet for conducting these slope difference
tests is available online at www.jeremydawson.co.uk/slopes.htm

2 Note that the size of the slope difference is not necessarily indicative
of the traditional effect size (such as AR? or f*; Aguinis, 2004), which refers
to the three-way interaction term and does not represent the difference
between only one pair of slopes. It is possible that a small value of /> (e.g.,
.002, the value revealed by Aguinis, Beaty, Boik, & Pierce, 2005, as the
median effect size in 261 MMR studies) is associated with a large slope
difference or vice versa.
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Table 3
Percentage of Rejection of the Null Hypothesis as a Function of Size of Slope Difference, Reliability, Sample Size, and Distribution at
p <.05
Reliability of data
Large effect size Medium effect size Small effect size Zero effect size
Distribution
and sample size 1.00 .80 .60 1.00 .80 .60 1.00 .80 .60 1.00 .80 .60
Normal
n =50 25.2 12.7 8.9 0.3 2.5 4.5 0.0 0.6 2.8 4.8 4.9 5.0
n = 100 98.5 39.0 16.7 35.6 10.3 75 0.0 2.0 3.7 4.7 4.7 5.1
n = 200 100.0 80.6 30.6 99.8 34.4 13.2 10.5 7.2 5.6 5.1 4.9 4.8
n = 500 100.0 99.9 66.1 100.0 89.9 33.7 100.0 37.7 12.8 5.0 5.1 4.8
Skewed normal
n =50 25.1 12.1 9.5 0.0 2.5 4.7 0.0 0.5 29 4.9 52 4.7
n = 100 99.9 40.0 17.1 27.0 10.4 7.6 0.0 1.8 4.3 4.9 53 5.1
n = 200 100.0 83.4 32.1 100.0 372 134 5.0 73 59 4.8 5.1 5.0
n = 500 100.0 99.9 69.2 100.0 92.9 34.5 100.0 39.7 13.4 53 4.7 4.9
Uniform
n =50 21.0 8.9 6.9 0.0 1.8 3.8 0.0 0.3 2.0 54 5.0 5.1
n = 100 99.8 34.6 132 223 8.4 6.5 0.0 1.3 3.1 5.0 52 5.1
n = 200 100.0 80.2 26.0 100.0 32.3 11.7 6.8 54 5.0 5.0 4.9 5.1
n = 500 100.0 99.9 62.7 100.0 91.9 31.8 100.0 37.7 12.4 44 5.0 4.8
Triangular
n =50 19.7 9.0 7.4 0.1 5.1 53 0.0 0.3 1.5 4.9 52 5.0
n = 100 100.0 37.9 16.1 22.5 9.4 6.9 0.0 1.3 2.5 4.6 5.1 4.8
n = 200 100.0 85.4 29.4 100.0 323 13.1 1.6 5.0 4.4 5.1 5.1 4.9
n = 500 100.0 100.0 66.6 100.0 93.5 29.5 100.0 38.7 12.3 5.0 5.2 5.0

between slopes) as an estimate of test power (e.g., Stone-Romero &
Anderson, 1994).

Results and Discussion

Table 3 illustrates that test power varied as a function of the
conditions, whereas the level of Type I error was consistently
around the .05 level, as it should be. To test more accurately how
the different conditions affected test power, we used generalized
linear models> to assess the significance of each factor individually
and interactions between factors. To increase the power of this
analysis, we ran further Monte Carlo simulations, with sample
sizes of 150, 250, 300, 350, 400, and 450; reliabilities of .90 and
.70; and effect sizes of 0.40 and 0.20, giving a total of 1,000 cases.
The results of these simulations are not reported separately here
but are available on request from Jeremy F. Dawson.

Main effects. Four separate models showing the effect of each
predictor variable on test power were used to examine main effects.
Results revealed no significant effect of sample distribution on test
power (deviance = 0.13, p = .98). Each of the other three predictor
variables had a significant main effect: sample size (deviance =
193.57, p < .001), reliability (deviance = 184.03, p < .001), and
effect size (deviance = 117.07, p < .001). When entered together into
one model, all remained significant, which indicates that the three
effects were independent of each other. As suggested by Table 3, the
effects of all three variables were positive: The greater sample size,
reliability, and effect size were, the higher the power was. To test for
nonlinear effects, we added the squared term of each predictor to the
model. The (sample size)* term was significant (deviance = 21.83,
p < .001), indicating the presence of a nonlinear effect. In particular,
the coefficient was negative, indicating that the positive effect of

sample size decreased as sample size increased. The other effects
were not significant, indicating that these main effects were (approx-
imately) linear in nature.

Interaction effects. Each pair of predictors was tested for an
interaction effect on the power of the slope test. Two significant
interaction effects emerged: between sample size and reliability
(deviance = 30.58, p < .001), and between effect size and reli-
ability (deviance = 16.03, p < .001). The final model predicting
test power was represented by the ensuing equation: Power = &
[—0.65 — 0.020 X sample size + .000017 X (sample size)*> —
4.33 X reliability — 2.75 X effect size + 0.039 X (sample size X
reliability) — 0.000029 X (sample size)* X reliability + 11.18 X
reliability X effect size], where ® represents the cumulative nor-
mal distribution function. Interpretation of the interaction effects is
not straightforward because of this transformation, but the multi-
plicative effect of sample size and reliability suggests that the
higher the sample size was, the less was the advantage of having
more reliable data. However, the multiplicative effect of reliability
and effect size suggests that the larger the underlying effect size
was, the greater was the advantage of having more reliable data
(until power got close to 1). As is often the case with interaction
effects, the negative coefficients associated with the main effects
are misleading: Without the interaction terms present, these were
all positive. The model fitted the data well: The residual deviance
was only 51.54 on 992 degrees of freedom, compared with 747.87
on 999 degrees of freedom for the null model.

3 Generalized linear models were needed as the dependent variable
(power) was a percentage (a probit link function was used).
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Table 3 illustrates that to achieve power of at least 80% of
detecting a large effect (80% being a commonly used figure for
minimum acceptable power in experimental design), it is necessary
to have either (a) perfectly reliable data and around 100 cases or
(b) data with a reliability of .80 and 200 cases. Using the model
equation above, we can show that either a situation of 125 cases
and .90 reliability or a situation of 200 cases and .79 reliability
would result in approximately 80% test power.

To detect a moderate effect with at least 80% power, Table 3
shows, it is necessary to have either (a) perfectly reliable data and
approximately 200 cases or (b) data with a reliability of .80 and
500 cases. From the model equation, we can show that either a
situation of 249 cases and .90 reliability or a situation of 500 cases
and .72 reliability would yield about 80% test power. This points
to the danger of failing to detect moderate slope differences due to
small sample size. To detect a small effect size with power of at
least 80%, Table 3 suggests, it is necessary to have both perfectly
reliable data and 500 cases. The model equation above shows that,
actually, .90 reliability and 410 cases would suffice.

An interesting feature of the results is where power dipped
below 5%, suggesting that, in this case, it is more likely that a
significant result was due to chance than an underlying effect. This
is particularly the case for small sample sizes. Note also the
apparent increase of power as reliability decreased in cases in

Table 4

which power was below 5%, which was due to the data becoming
more random; conversely, where reliability was good, the (genu-
inely) small effect was too small to be picked up by the test,
resulting in power well below 5%.

Application of the Slope Difference Test to Published Data

To test the utility of the slope difference test, we reanalyzed
three published articles that used alternative ways to probe signif-
icant three-way interactions in MMR. We aim to illustrate that (a)
the test provides the possibility to accurately test hypotheses that
are not testable with alternative methods and (b) the use of the test
may change results and conclusions relative to other probing
methods. Table 4 summarizes key features of this reanalysis.

Study 1

The first article (Kwong & Leung, 2002) hypothesized slope dif-
ferences and used subgroup analysis to probe the interaction. In a
sample of 199 undergraduate students, Kwong and Leung (2002,
Study 1) investigated the contingent effect of outcome favorableness
and closeness of interpersonal relationships on the impact of interac-
tional justice on happiness. The authors proposed that the tendency for
interactional justice to have a stronger and more positive effect on
happiness when outcome is unfavorable versus favorable should be

Reanalysis of Data from Kwong and Leung (2002), van Yperen and Janssen (2002), and Smither and Walker (2004)

Study and reanalysis

thereof Hypothesis

Method used for probing significant
three-way interaction

Results Implications

Kwong & Leung (2002)  Two slope difference
hypotheses

subgroup

Reanalysis of Kwong &
Leung (2002)

Two slope difference
hypotheses; further
exploration of
slope differences

post hoc)

Subgroup analysis; significance test
of two-way interactions per

Slope difference tests (a priori and

Two-way interactions are
significant for both
subgroups; effect of both
two-way interactions is
reversed in subgroups

The two pairs of slopes differ
significantly as expected;
additional revelation of two
significant slope differences

Hypotheses supported

Hypotheses supported;
possible refinement
of hypothesis
implied

van Yperen & Janssen
(2002)

Reanalysis of van
Yperen & Janssen
(2002)

Smither & Walker
(2004)

Reanalysis of Smither
& Walker (2004)

Slope difference
hypothesis
(implied)

Slope difference
hypothesis

No hypothesis
formulated

Exploration of slope
differences

Pick-a-point approach (Aiken &
West, 1991; Rogosa, 1980)

Slope difference test (a priori)

Subgroup analysis; use of effect
size measure mean standardized
difference (d)

Slope difference test (post hoc)

Only one of four simple
slopes predicted significant
variance in the outcome

No slope differences detected

Large difference between two
cells; small to medium
differences between others

No slopes differences
detected

Hypothesis supported

Hypothesis rejected;
the relation between
job demands and
job satisfaction
varies across the
range of both
moderators

The joint effect of
unfavorable,
behavior/task-
focused comments
on performance
ratings varies
depending on
number of
comments

Performance ratings
vary across the
range of the three
predictor variables
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more pronounced when the relationship between the disputants is
close rather than remote. In our terms, the authors proposed two slope
difference hypotheses: First, in the prediction of effects of interac-
tional justice on happiness, the slope of low favorableness and close
relationships should be greater than the slope of low favorableness
and remote relationships; second, the slope of high favorableness and
close relationships should be less positive than the slope of high
favorableness and remote relationships. To further examine the sig-
nificant three-way interaction term, the authors conducted subgroup
analyses by means of a median split on closeness and then ran
separate two-way interactions for both subgroups of close and remote
relationships. Both two-way interactions were significant, with ¢ val-
ues showing reversed signs. The authors then plotted the interactions
by subgroup and interpreted the plots. Using the slope difference test
in its a priori form, we arrive at partially the same conclusion as the
authors: Indeed, in the prediction of happiness by interactional justice,
the slope for unfavorable outcomes and close relationships differed
significantly from the slope for unfavorable outcomes and remote
relationships, #191) = —3.64, p < .001; similarly, the slopes for
favorable outcomes differed significantly, #(191) = —3.65, p < .001.
We then explored whether we could find additional slope differences
by applying the slope difference test as a post hoc test (we used a
Bonferroni-adjusted alpha value of .0125 for a significance level of
.05, as we made a total of four exploratory comparisons). Two of the
four remaining slope comparisons were significant; so did, for exam-
ple, the slope for high favorableness and close relationships differ
from the slope for low favorableness and remote relationships,
#(191) = —3.40, p = .001. Because of the use of subgroup analysis,
Kwong and Leung were unable to reveal such slope differences across
subgroups. Even though it was not hypothesized, this information
would have further clarified the nature of the three-way interaction
and might have led to a refinement of the hypothesis in the authors’
replication study (Study 2). Thus, even though we arrived at the same
conclusion as Kwong and Leung regarding the support for the hy-
pothesis, use of the slope difference test revealed additional slope
differences that were undetected by the authors.

Study 2

The second article (van Yperen & Janssen, 2002) implies a slope
difference hypothesis, and the authors used the pick-a-point ap-
proach to probe the interaction. They investigated the contingent
effect of both performance orientation and mastery orientation on
the relation between job demands and job satisfaction, using a
sample of 322 university employees. The authors hypothesized
that job demands and job satisfaction are negatively related only
when an employee’s performance orientation is stronger and his or
her mastery orientation is weaker. As a test of their hypothesis, the
authors examined whether simple slopes were significant predic-
tors of the dependent variable, irrespective of differences among
slopes. Because only one of the four slopes, the slope for high
performance orientation and low mastery orientation, reached sta-
tistical significance, the authors concluded that their hypothesis
was supported. We argue that the hypothesis—that the relation
between job demands and satisfaction is negative only when an
employee’s performance orientation is stronger and his or her
mastery orientation is weaker—implies the use of a relational test
of slope differences. The hypothesis would receive stronger sup-

port if one could show that the slope for high performance orien-
tation and weak mastery orientation is more strongly negative than
any of the other slopes. Application of the slope difference test to
the data in its a priori form revealed that this slope did not differ
significantly from any other slope. There was nearly a significant
difference between the slopes for strong mastery orientation and
weak performance orientation versus strong mastery orientation
and strong performance orientation, #(284) = 191, p = .06;
however, the lack of difference between the slopes for strong
mastery orientation and weak performance orientation versus weak
mastery orientation and weak performance orientation, #(284) =
—0.56, p = .58, means that the level of mastery orientation when
performance orientation was weak was not shown to be important.
This result suggests that there is little support for the authors’
hypothesis. In sum, use of the slope difference test yielded differ-
ent conclusions compared with use of the pick-a-point approach.

Study 3

Smither and Walker (2004) did not formulate a hypothesis for the
found significant three-way interaction and probed the interaction in
an exploratory manner. The authors investigated the combined effect
of behavior- and task-focused feedback, number of comments, and
favorableness of feedback comments on improvement in the behavior
of feedback recipients (as reflected in subsequent ratings), using a
sample of 176 managers. The authors further examined a significant
three-way interaction by conducting a median split on each of the
three predictors and then comparing the mean change scores for the
resulting eight cells by using the effect size measure standardized
mean difference. The authors then compared the four cells with low
numbers of comments with the four cells with large numbers of
comments. Comparisons revealed one difference with a large effect size,
whereas the other three differences resulted in small to medium effect
sizes. Smither and Walker (2004) interpreted the results by stating,

When managers received a small number of unfavorable, behavior/
task-focused comments, their subsequent performance improved more
than that of managers in other conditions [italics added]. However,
when managers received a large number of unfavorable, behavior/
task-focused comments, their subsequent performance declined more
than that of managers in other conditions [italics added]. (p. 578)

The conclusions the authors drew, however, would have required
a test that compared effect size among all possible combinations of
predictor variables or, alternatively, a slope difference test. We
applied the slope difference test to the data as a post hoc test, as no
hypothesis was formulated (a total of six comparisons yielded a
Bonferroni-adjusted alpha of .0083 for a significance level of .05).
We did not find any significant differences among slopes, which
suggests the conclusion that performance ratings varied across the
range of the three predictor variables. The one large effect size
difference reported by the authors, however, showed the strongest
slope difference, #(144) = 1.95, p = .052. In sum, application of
the slope difference test suggests that a large effect size revealed
with effect size measures was actually nonsignificant—and would
not be significant even with a nonadjusted alpha value.
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Discussion
Summary of Key Results

In the course of this article, we first developed a test for slope
differences for three-way interaction effects, building on the work
of Aiken and West (1991). We proceeded to show how effect size
of slope differences, sample size, reliability, and data distribution
affect the power of this test and illustrated that test power is
especially restricted when samples are small and scales unreliable.
Finally, we demonstrated, by reanalyzing published data, that the
slope difference test can provide an accurate and useful tool that
allows researchers to test and explore slope differences that may
remain undetected by use of alternative probing techniques. Use of
the test can even result in changes to results and conclusions.

Applicability and Usefulness of the Test

Monte Carlo simulations and analysis of the results from these
showed that detection of moderate or large slope differences
should be possible with data conditions that are not at all unusual
for researchers who wish to test for three-way interactions: A
combination of highly reliable data and around 250 cases or
marginally reliable data and around 500 cases yields about 80%
power for a slope (correlation) difference of 0.30. To detect
smaller effect sizes, such as a slope difference of only 0.10, one
needs more stringent conditions, such as highly reliable data and
over 400 cases. Even these, however, are not beyond the realm of
possibility, and many researchers achieve such conditions. Of
course, some researchers may be interested in detecting even
smaller slope differences, and, in these cases, yet more stringent
conditions are needed. However, slope differences smaller than
this may be of little practical significance, and even when they are
of a meaningful nature, large sample sizes and highly reliable
variables are needed to detect the three-way interaction at all.

A strong advantage of this test is that it is applicable whatever the
form of the interaction. Because the test is based on the calculated
difference between a pair of slopes, it does not matter whether both
slopes are positive, both are negative, or there is a crossover effect:
Only the magnitude of the difference is important. Additional Monte
Carlo simulations confirmed that such a difference in form did not
affect the power of the test (details are available from Jeremy F.
Dawson on request). We stress that, irrespective of statistical condi-
tions, a strong theoretical basis for proposing slope differences, in
combination with attempts to replicate the findings, is strongly ad-
vised to make this test a powerful tool.

Limitations and Future Perspectives

It is important to note that a researcher may well have a situation in
which a three-way interaction is significant but significant slope
differences are not detected. We offer two potential explanations for
this: First, one or more of the three study characteristics described in
this article has restricted test power. Second, the significance of the
three-way interaction is a function of a complex interaction of more
than one pair of slopes rather than a single pair of slopes (see the
reanalysis of the Smither & Walker, 2004 data). Given either of these
cases, we suggest that the researcher revert to explaining those three-
way interactions by restricting the interpretation that the effect of a

variable X on a dependent variable Y varies as a function of the
combined effect of the two moderators W and Z. Additional research
would be necessary how to further probe these interactions.

Finally, although we studied the effects of four key factors on
the power of the test, in the future, researchers should examine
several other factors that may affect test power (see Aguinis, 1995,
2004, for reviews). Also, the test could be extended to probe the
nature of three-way interaction effects including categorical mod-
erator variables.
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Appendix

Derivation of Standard Errors of Slope Differences

To determine whether a difference in slopes is significant, it is necessary
to compare the difference with its standard error. As the standard error of
an estimate is the square root of its variance, to determine the standard error
of these slope differences, we need to know the variances and covariances
of the regression estimates b,, bs, and b, (Note that as by, b,, bs, and by
only form part of the intercept section of the equation and b, cancels out
when we calculate slope differences, it is not necessary to consider these
parameters here.)

For Slope Difference a, we can calculate the standard error—using the
statistical identity var(aX + bY) = a” var(X) + b var(Y) + 2ab cov(X,
Y)—for any two variables X and Y and constants a and b as

SE, = \,Vﬁr[bs(WH = Wo) + by Zy(Wy — W)

(Wy — Wy)Pvar(bs) + (Wy — WL)ZZIZ_Ivar(b7)
+ 2(Wy — WL)ZZH cov(bs,bq)

(Wy — W) \var(bs) + Zivar(by) + 2Zycov(bs,by) .

If we use the notation proposed by Aiken and West (1991), where the
variance—covariance matrix of regression parameter estimates is given by

—where, for example, s,, is the variance of parameter estimate b, (the
coefficient of X) and s,5 is the covariance of parameter estimates b, and
bs—this gives us the following formula for the standard error of Slope
Difference a:

SE, = (Wy — Wp) \Sss + le-1~?77 + 2Zyss; .

In a similar way, the standard errors of Slope Differences b, ¢, and d can
be calculated by

SEb = (ZH - ZL) 544 + W]2.1S77 + ZWHS47 5

SEc = (ZH - ZL) 544 + WiS77 + ZWLS47 s

and

SE; = (Wi — Wy) \sss + Zisyy + 271857 .

Note that if variables Z and W had been standardized prior to the
analysis, these (simplified) formulas would be

SE, = 2\/sss + 577 + 2557,
SEy = 2\sas + 577 + 2547,
SE. = 2/S4s + 577 — 2547,

and

SEq = 2[ss5 + 577 = 2557

In the case of Slope Differences e and f, the formula is more compli-
cated. Using the same principle, we get

SE. = \Var[bA(ZH = Zy) + bs(Wy — W) + by(ZyWy — ZLW)]

(Zy — ZL)2S44 + Wy — WL)ZSSS + (ZuWy — ZLWL)ZSW
= F2[(Zy — ZWy — Wo)sas + (Zy — Z)(ZuWy — ZLWL) sy .
+ Wy — W(ZuWy — ZLW1)ss7]

and, similarly,

SE; = \/Var[b4(ZH = Zy) + bs(W — Wy) + by(ZyWy — ZLWy)]

(Zy — ZL)2544 + (WL — WH)2555 + (ZyWL — ZLWH)2577
= F2[(Zy — ZOWL — W)sys + (Zy — ZO)(ZuWL — ZLWy)sy .
+ (WL — W) (ZuWL — Z Wh)ssi]

Again, note that for standardized Z and W, these become
SE. =2 \[sy + 555 + 255
and
SEq = 2\[sus + 555 — 2545,
which makes standardization of the variables highly desirable!
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