• Home
  • Andreas Faissner
Andreas Faissner

Andreas Faissner
Ruhr-Universität Bochum / Ruhr-University · Lehrstuhl für Zellmorphologie und molekulare Neurobiologie / Department of Cell Morphology & Molecular Neurobiology

Prof. Dr.

About

311
Publications
33,308
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
19,059
Citations
Introduction
Skills and Expertise
Additional affiliations
September 1997 - October 2000
University of Strasbourg
Position
  • Professeur de Neurobiologie cellulaire et moléculaire
July 1982 - September 1997
Heidelberg University
Position
  • Fiinal position: H.-L-Schilling-Professor
Description
  • Postdoctoral researcher (1982-1984), staff scientist (1985-1990), Privatdozent (Oberassistent, lecturer) (1991-1993), endowed Hermann-and-Lilly-Schilling Stiftungsprofessor for Neuroscience (1993-1998) and independent group leader (1991-1999).
October 1997 - September 2000
French National Centre for Scientific Research
Position
  • Directeur d'Unité, Professeur ULP
Description
  • I was founding director and head of an Unité Propre de Recherche du CNRS (UPR 1352, LNDR) at hte Centre de Neurochimie du CNRS in Strasbourg, France.

Publications

Publications (311)
Preprint
Full-text available
Spinal cord injury involves complex pathobiological mechanisms, necessitating a multidimensional approach for its cure. Previous studies have shown that α9-integrin expression and activation in mature dorsal root ganglion neurons enable the regeneration of injured axons within the spinal cord. However, tissue cavitation and fibrosis impede the rege...
Article
Full-text available
Introduction The lack of regenerative capacity of the central nervous system is one of the major challenges nowadays. The knowledge of guidance cues that trigger differentiation, proliferation, and migration of neural stem and progenitor cells is one key element in regenerative medicine. The extracellular matrix protein tenascin-C (Tnc) is a promis...
Article
Visual processing depends on sensitive and balanced synaptic neurotransmission. Extracellular matrix proteins in the environment of cells are key modulators in synaptogenesis and synaptic plasticity. In the present study, we provide evidence that the combined loss of the four extracellular matrix components, brevican, neurocan, tenascin-C, and tena...
Article
Full-text available
The low-density lipoprotein related protein receptor 1 (LRP1), also known as CD91 or α-Macroglobulin-receptor, is a transmembrane receptor that interacts with more than 40 known ligands. It plays an important biological role as receptor of morphogens, extracellular matrix molecules, cytokines, proteases, protease inhibitors and pathogens. In the CN...
Article
Full-text available
In the mammalian cortex a proper excitatory/inhibitory (E/I) balance is fundamental for cognitive functions. Especially γ-aminobutyric acid (GABA)-releasing interneurons regulate the activity of excitatory projection neurons which form the second main class of neurons in the cortex. During development, the maturation of fast-spiking parvalbumin-exp...
Preprint
Visual processing depends on sensitive and balanced synaptic neurotransmission. Extracellular matrix proteins in the environment of cells are key modulators in synaptogenesis and synaptic plasticity. In the present study, we provide evidence that the combined loss of the four extracellular matrix components brevican, neurocan, tenascin-C and tenasc...
Article
Full-text available
Cationic gels have seen increasing interest in recent years for 2D cell cultivation since they may represent an alternative to the well-known RGD-peptide motif functionalized gels. However, few hydrogel systems with adjustable cationic strength have been fabricated and investigated so far. In this work, eight gels with defined concentrations of cat...
Article
Full-text available
Oligodendrocyte precursor cells (OPCs) are the exclusive source of myelination in the central nervous system (CNS). Prior to myelination, OPCs migrate to target areas and mature into myelinating oligodendrocytes. This process is underpinned by drastic changes of the cytoskeleton and partially driven by pathways involving small GTPases of the Rho su...
Article
Full-text available
Fast-spiking parvalbumin interneurons are critical for the function of mature cortical inhibitory circuits. Most of these neurons are enwrapped by a specialized extracellular matrix (ECM) structure called perineuronal net (PNN), which can regulate their synaptic input. In this study, we investigated the relationship between PNNs, parvalbumin intern...
Article
Full-text available
Oligodendrocytes are the myelinating cells of the central nervous system. The physiological importance of oligodendrocytes is highlighted by diseases such as multiple sclerosis, in which the myelin sheaths are degraded and the axonal signal transmission is compromised. In a healthy brain, spontaneous remyelination is rare, and newly formed myelin s...
Article
Full-text available
Schizophrenia is a grave neuropsychiatric disease which frequently onsets between the end of adolescence and the beginning of adulthood. It is characterized by a variety of neuropsychiatric abnormalities which are categorized into positive, negative and cognitive symptoms. Most therapeutical strategies address the positive symptoms by antagonizing...
Article
Full-text available
Adult neurogenesis has been described in two canonical regions of the adult central nervous system (CNS) of rodents, the subgranular zone (SGZ) of the hippocampus and the subependymal zone (SEZ) of the lateral ventricles. The stem cell niche of the SEZ provides a privileged environment composed of a specialized extracellular matrix (ECM) that compr...
Article
Cellular responses in glia play a key role in regulating brain remodeling post-stroke. However, excessive glial reactivity impedes post-ischemic neuroplasticity and hampers neurological recovery. While damage-associated molecular patterns and activated microglia were shown to induce astrogliosis, the molecules that restrain astrogliosis are largely...
Article
Full-text available
Oligodendrocytes form myelin membranes and thereby secure the insulation of axons and the rapid conduction of action potentials. Diseases such as multiple sclerosis highlight the importance of this glial cell population for brain function. In the adult brain, efficient remyelination following the damage to oligodendrocytes is compromised. Myelinati...
Preprint
Fast-spiking parvalbumin interneurons are critical for the function of mature cortical inhibitory circuits. Most of these neurons are enwrapped by a specialized extracellular matrix structure (ECM) called perineuronal net (PNN), which can regulate their synaptic input. In this study, we investigated the relationship between PNNs, parvalbumin intern...
Article
Full-text available
During development, the nervous system with its highly specialized cell types forms from a pool of relatively uniform stem cells. This orchestrated process requires tight regulation. The extracellular matrix (ECM) is a complex network rich in signaling molecules, and therefore, of interest in this context. Distinct carbohydrate structures, bound to...
Article
Full-text available
Vav proteins belong to the class of guanine nucleotide exchange factors (GEFs) that catalyze the exchange of guanosine diphosphate (GDP) by guanosine triphosphate (GTP) on their target proteins. Here, especially the members of the small GTPase family, Ras homolog family member A (RhoA), Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell div...
Chapter
Induced pluripotent stem cells (iPSCs), derived from reprogrammed somatic cells, have revolutionized stem cell research. This chapter is dedicated to neural stem cells (NSCs) and their potential for basic research and clinical applications. After short introducing sections about neurogenesis in vivo and the extracellular matrix as important compart...
Article
Full-text available
Neural stem/progenitor cells (NSPCs) rely on internal and external cues determining their lineage decisions during brain development. The progenitor cells of the embryonic mammalian forebrain reside in the ventricular and subventricular zones of the lateral ventricles, where they proliferate, generate neurons and glial cells, and respond to externa...
Preprint
Full-text available
Adult neurogenesis has been described in two canonical regions of the adult central nervous system (CNS) of rodents, the subgranular zone (SGZ) of the hippocampus and the subependymal zone (SEZ) of the lateral ventricles. The stem cell niche of the SEZ provides a privileged environment composed of a specialized extracellular matrix (ECM) that compr...
Article
Full-text available
Inhibitory control is essential for the regulation of neuronal network activity, where excitatory and inhibitory synapses can act synergistically, reciprocally, and antagonistically. Sustained excitation-inhibition (E-I) balance, therefore, relies on the orchestrated adjustment of excitatory and inhibitory synaptic strength. While growing evidence...
Article
Full-text available
In the developing spinal cord neural stem and progenitor cells (NSPCs) secrete and are surrounded by extracellular matrix (ECM) molecules that influence their lineage decisions. The chondroitin sulfate proteoglycan (CSPG) DSD-1-PG is an isoform of receptor protein tyrosine phosphatase-beta/zeta (RPTPβ/ζ), a trans-membrane receptor expressed by NSPC...
Chapter
Neural stem cells (NSCs) of the central nervous system (CNS) follow a precisely timed sequence of neurogenesis and gliogenesis, before they generally vanish after birth. In the adult CNS residual NSCs can be detected in two neurogenic regions, the subependymal zone (SEZ) of the lateral ventricle and the subgranular zone (SGZ) in the dentate gyrus o...
Article
Full-text available
Glaucoma is a neurodegenerative disease that is characterized by the loss of retinal ganglion cells (RGC) and optic nerve fibers. Increased age and intraocular pressure (IOP) elevation are the main risk factors for developing glaucoma. Mice that are heterozygous (HET) for the mega-karyocyte protein tyrosine phosphatase 2 (PTP-Meg2) show chronic and...
Article
Full-text available
Perineuronal nets (PNNs) are specialized, reticular structures of the extracellular matrix (ECM) that can be found covering the soma and proximal dendrites of a neuronal subpopulation. Recent studies have shown that PNNs can highly influence synaptic plasticity and are disrupted in different neuropsychiatric disorders like schizophrenia. Interestin...
Article
Full-text available
Astrocytes are the most abundant cell type within the central nervous system (CNS) with various functions. Furthermore, astrocytes show a regional and developmental heterogeneity traceable with specific markers. In this study, the influence of the low-density lipoprotein receptor-related protein 1 (LRP1) on astrocytic maturation within the hippocam...
Article
Full-text available
The low-density lipoprotein receptor-related protein 1 (LRP1) is a transmembrane receptor that binds over 40 potential ligands and is involved in processes such as cell differentiation, proliferation, and survival. LRP1 is ubiquitously expressed in the organism and enriched among others in blood vessels, liver, and the central nervous system (CNS)....
Article
Full-text available
As an endogenous activator of toll-like receptor-4 (Tlr4), the extracellular matrix glycoprotein tenascin-C (TnC) regulates chemotaxis, phagocytosis and proinflammatory cytokine production in microglia. The role of TnC for ischemic brain injury, post-ischemic immune responses and stroke recovery has still not been evaluated. By comparing wild type...
Article
Full-text available
Previous studies demonstrated that retinal damage correlates with a massive remodeling of extracellular matrix (ECM) molecules and reactive gliosis. However, the functional significance of the ECM in retinal neurodegeneration is still unknown. In the present study, we used an intraocular pressure (IOP) independent experimental autoimmune glaucoma (...
Article
Full-text available
Activation of the maternal immune system (MIA) during gestation is linked to neuropsychiatric diseases like schizophrenia. While many studies address behavioural aspects, less is known about underlying cellular mechanisms. In the following study, BALB/c mice received intraperitoneal injections of polyinosinic‐polycytidylic acid (Poly I:C) (20 µg/ml...
Preprint
Full-text available
Maintaining the balance between excitation and inhibition is essential for the appropriate control of neuronal network activity. Sustained excitation-inhibition (E-I) balance relies on the orchestrated adjustment of synaptic strength, neuronal activity and network circuitry. While growing evidence indicates that extracellular matrix (ECM) of the br...
Article
Full-text available
Retinoblastoma (RB) represents the most common malignant childhood eye tumor worldwide. Several studies indicate that the extracellular matrix (ECM) plays a crucial role in tumor growth and metastasis. Moreover, recent studies indicate that the ECM composition might influence the development of resistance to chemotherapy drugs. The objective of thi...
Article
Full-text available
The Alzheimer disease‐associated multifunctional low‐density lipoprotein receptor‐related protein‐1 is expressed in the brain. Recent studies uncovered a role of this receptor for the appropriate functioning of neural stem cells, oligodendrocytes, and neurons. The constitutive knock‐out (KO) of the receptor is embryonically lethal. To unravel the r...
Article
Full-text available
The increasing incidence of neurodegenerative diseases such as Alzheimer’s or Parkinson’s disease represents a significant burden for patients and national health systems. The conditions are primarily caused by the death of neurons and other neural cell types. One important aim of current stem cell research is to find a way to replace the lost cell...
Article
Full-text available
The mammalian central nervous system (CNS) is characterized by a severely limited regeneration capacity. Comparison with lower species like amphibians, which are able to restore even complex tissues after damage, indicates the presence of an inhibitory environment that restricts the cellular response in mammals. In this context, signals provided by...
Preprint
Previous studies demonstrated that retinal damage correlates with a massive remodeling of extracellular matrix (ECM) molecules and reactive gliosis. However, the functional significance of the ECM in retinal neurodegeneration is still unknown. In the present study, we used an intraocular pressure (IOP) independent experimental autoimmune glaucoma (...
Article
Short-chain fatty acids are processed from indigestible dietary fibers by gut bacteria and have immunomodulatory properties. Here, we investigate propionic acid (PA) in multiple sclerosis (MS), an autoimmune and neurodegenerative disease. Serum and feces of subjects with MS exhibited significantly reduced PA amounts compared with controls, particul...
Article
Full-text available
Vav proteins activate GTPases of the RhoA subfamily that regulate the cytoskeleton and are involved in adhesion, migration, differentiation, polarity and the cell cycle. While the importance of RhoA GTPases for neuronal morphology is undisputed, their regulation is less well understood. In this perspective, we studied the consequences of the deleti...
Chapter
The central nervous system (CNS) consists of the brain and spinal cord. These structures arise from neural stem cells (NSCs), which undergo specific maturation steps, lineage decisions and commitment during development. They generate all major cell types of the CNS, neurons and glial cells, in a timely and spatially ordered fashion. NSCs show diffe...
Article
The extracellular matrix (ECM) consists of a dynamic network of various macromolecules that are synthesized and released by surrounding cells into the intercellular space. Glycoproteins, proteoglycans and fibrillar proteins are main components of the ECM. In addition to general functions such as structure and stability, the ECM controls several cel...
Article
Full-text available
The low-density lipoprotein receptor-related protein 1 (LRP1) is a transmembrane receptor, mediating endocytosis and activating intracellular signaling cascades. LRP1 is highly expressed in the central nervous system (CNS), especially in oligodendrocyte precursor cells (OPCs). Previous studies have suggested LRP1 as a regulator in early oligodendro...
Article
Full-text available
Acoustic trauma, aging, genetic defects or ototoxic drugs are causes for sensorineural hearing loss involving sensory hair cell death and secondary degeneration of spiral ganglion neurons. Auditory implants are the only available therapy for severe to profound sensorineural hearing loss when hearing aids do not provide a sufficient speech discrimin...
Article
Full-text available
The synaptic transmission in the mammalian brain is not limited to the interplay between the pre- and the postsynapse of neurons, but involves also astrocytes as well as extracellular matrix (ECM) molecules. Glycoproteins, proteoglycans and hyaluronic acid of the ECM pervade the pericellular environment and condense to special superstructures terme...
Article
Tenascin C (Tnc) is an extracellular matrix glycoprotein, expressed in the CNS during development, as well as in the setting of inflammation, fibrosis and cancer, which operates as an activator of Toll-like receptor 4 (TLR4). Although TLR4 is highly expressed in microglia, the effect of Tnc on microglia has not been elucidated to date. Herein, we d...
Article
Full-text available
Glaucomatous neurodegeneration represents one of the major causes of irreversible blindness worldwide. Yet, the detailed molecular mechanisms that initiate optic nerve damage and retinal ganglion cell (RGC) loss are not fully understood. Members of the protein tyrosine phosphatase (PTP) superfamily are key players in numerous neurodegenerative dise...
Article
Full-text available
The extracellular matrix (ECM) is a biological substrate composed of collagens, proteoglycans and glycoproteins that ensures proper cell migration and adhesion and keeps the cell architecture intact. The regulation of the ECM composition is a vital process strictly controlled by, among others, proteases, growth factors and adhesion receptors. As it...
Article
Full-text available
The central nervous system (CNS) of mammals has a limited regeneration capacity after traumatic events, which causes chronic functional disability. The development of biomaterials aims at providing support for the regeneration process. One strategy integrates peptides that mimic functional domains of extracellular matrix (ECM) or cell adhesion mole...
Chapter
Astrocytes are heterogeneous cells of the central nervous system whose uptake of neurotransmitters and neuromodulators can influence synaptic signaling. Any malfunction in this process can lead to serious defects in synaptic transmission found in, for example, neurodegenerative diseases like Alzheimer's or epilepsy.Here we describe how to visualize...
Article
Full-text available
Neuroinflammation is one of the key components contributing to the devastating outcome of ischemic stroke. Starting with stroke onset, inflammatory processes contribute both to cell damage and tissue remodeling. The early release of alarmins triggers the upregulation of multiple proinflammatory cytokines, resulting in the compromised integrity of t...
Article
The tightly controlled processes of myelination and remyelination require the participation of the cytoskeleton. The reorganization of the cytoskeleton is controlled by small GTPases of the RhoA family. Here, we report that Vav3, a Rho GTPase regulating guanine nucleotide exchange factor (GEF) is involved in oligodendrocyte maturation, myelination...
Article
The tenascin family of glycoproteins comprises four members in vertebrates, of which tenascin-C (Tnc) and tenascin-R (Tnr) are particularly important in the context of lesions in the central nervous system (CNS). Tnc is expressed in the developing CNS, before it is down-regulated and mainly restricted to the adult neural stem cell niches. It regula...
Article
Full-text available
The dismal prognosis of glioblastoma is attributed in part to the existence of stem-like brain tumor-initiating cells (BTICs) that are highly radio- and chemo-resistant. New approaches such as therapies that reprogram compromised immune cells against BTICs are needed. Effective immunotherapies in glioblastoma, however, remain elusive unless the mec...
Article
Full-text available
Despite the crucial role of perineuronal nets (PNNs) in neural plasticity and neurological disorders, their ultrastructural organization remains largely unresolved. We have developed a novel approach combining superresolution structured illumination microscopy (SR-SIM) and mathematical reconstruction that allows for quantitative analysis of PNN top...
Article
Full-text available
Generation of astrocytes during the development of the mammalian spinal cord is poorly understood. Previously, we have shown that the glycoprotein of the extracellular matrix (ECM) tenascin-C (Tnc) modulates the expression territories of the patterning genes Nkx6.1 and Nkx2.2 in the developing ventral spinal cord, tunes the responsiveness of neural...
Article
Full-text available
In glaucoma, latest studies revealed an involvement of the complement system with and without an elevated intraocular pressure. In the experimental autoimmune glaucoma model, immunization with antigens, such as S100B, lead to retinal ganglion cell (RGC) loss and optic nerve degeneration after 28 days. Here, we investigated the timeline of progressi...
Article
Full-text available
Impaired neural synchronization is a hallmark of psychotic conditions such as schizophrenia. It has been proposed that schizophrenia-related cognitive deficits are caused by an unbalance of reciprocal inhibitory and stimulatory signaling. This supposedly leads to decreased power of induced gamma oscillations during the performance of cognitive task...
Article
Improved knowledge of retinoblastoma chemotherapy resistance is needed to raise treatment efficiency. The objective of this study was to test whether etoposide alters glucosyl-ceramide, ceramide, sphingosine, and sphingosine-1-phosphate (sphingosine-1-P) levels in parental retinoblastoma cells (WERI Rb1) or their etoposide-resistant subclones (WERI...
Article
The dismal prognosis of glioblastoma is contributed in part by the existence of stem-like brain tumor-initiating cells (BTICs) that are more radio- and chemo-resistant than their differentiated transformed progenies. This emphasizes the need for new approaches, particularly on therapies that instruct immune cells against BTICs. However, effective i...
Article
Full-text available
Tenascins represent key constituents of the extracellular matrix (ECM) with major impact on central nervous system (CNS) development. In this regard, several studies indicate that they play a crucial role in axonal growth and guidance, synaptogenesis and boundary formation. These functions are not only important during development, but also for reg...
Article
Full-text available
Retinal ischemia is common in eye disorders, like diabetic retinopathy or retinal vascular occlusion. The goal of this study was to evaluate the potential protective effects of an intravitreally injected vascular endothelial growth factor (VEGF) inhibitor (ranibizumab) on retinal cells in an ischemia animal model via immunohistochemistry (IF) and q...
Article
Full-text available
Retinal ischemia is a common pathomechanism in many ocular disorders such as age-related macular degeneration (AMD), diabetic retinopathy, glaucoma or retinal vascular occlusion. Several studies demonstrated that ischemia/reperfusion (I/R) leads to morphological and functional changes of different retinal cell types. However, little is known about...