Andreas Dengel

Andreas Dengel
Deutsches Forschungszentrum für Künstliche Intelligenz | DFKI · Smart Data & Knowledge Services

Prof. Dr.

About

834
Publications
235,482
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
9,183
Citations
Additional affiliations
November 2009 - present
Osaka Prefecture University
Position
  • Professor (Kyakuin)
April 1993 - present
Technische Universität Kaiserslautern
Position
  • Professor (Full)
February 1993 - present
Deutsches Forschungszentrum für Künstliche Intelligenz
Position
  • Wissenschaftlicher Direktor, Standortleiter

Publications

Publications (834)
Article
Background and objective Interactions of long non-coding ribonucleic acids (lncRNAs) with micro-ribonucleic acids (miRNAs) play an essential role in gene regulation, cellular metabolic, and pathological processes. Existing purely sequence based computational approaches lack robustness and efficiency mainly due to the high length variability of lncR...
Article
Full-text available
Circular ribonucleic acids (circRNAs) are novel non-coding RNAs that emanate from alternative splicing of precursor mRNA in reversed order across exons. Despite the abundant presence of circRNAs in human genes and their involvement in diverse physiological processes, the functionality of most circRNAs remains a mystery. Like other non-coding RNAs,...
Preprint
Full-text available
Identifying cells in microscopic images is a crucial step toward studying image-based cell biology research. Cell instance segmentation provides an opportunity to study the shape, structure, form, and size of cells. Deep learning approaches for cell instance segmentation rely on the instance segmentation mask for each cell, which is a labor-intensi...
Article
Full-text available
Deep exploration of histone occupancy and covalent post-translational modifications (e.g., acetylation, methylation) is essential to decode gene expression regulation, chromosome packaging, DNA damage, and transcriptional activation. Existing computational approaches are unable to precisely predict histone occupancy and modifications mainly due to...
Article
Full-text available
Viral-host protein protein interaction (PPI) analysis is essential to decode the molecular mechanism of viral pathogen and host immunity processes which eventually help to control viral diseases and optimize therapeutics. The state-of-the-art viral-host PPI predictor leverages unsupervised embedding learning technique (doc2vec) to generate statisti...
Article
Full-text available
Discrimination of circular RNA from long non-coding RNA is important to understand its role in different biological processes, disease prediction and cure. Identifying circular RNA through manual laboratories work is expensive, time-consuming and prone to errors. Development of computational methodologies for identification of circular RNA is an ac...
Chapter
Citations are generally analyzed using only quantitative measures while excluding qualitative aspects such as sentiment and intent. However, qualitative aspects provide deeper insights into the impact of a scientific research artifact and make it possible to focus on relevant literature free from bias associated with quantitative aspects. Therefore...
Article
Subcellular localization of Ribonucleic Acid (RNA) molecules provide significant insights into the functionality of RNAs and helps to explore their association with various diseases. Predominantly developed single-compartment localization predictors (SCLPs) lack to demystify RNA association with diverse biochemical and pathological processes mainly...
Article
Data-to-text generation systems aim to generate text descriptions based on input data (often represented in the tabular form). A typical system uses huge training samples for learning the correspondence between tables and texts. However, large training sets are expensive to obtain, limiting the applicability of these approaches in real-world scenar...
Preprint
Full-text available
It is generally believed that the human visual system is biased towards the recognition of shapes rather than textures. This assumption has led to a growing body of work aiming to align deep models' decision-making processes with the fundamental properties of human vision. The reliance on shape features is primarily expected to improve the robustne...
Preprint
p>Convolutional Neural Networks (ConvNets) have been thoroughly researched for document image classification and are known for their exceptional performance in unimodal image-based document classification. Recently, however, there has been a sudden shift in the field towards multimodal approaches that simultaneously learn from the visual and textua...
Preprint
Deep neural networks have been extensively researched in the field of document image classification to improve classification performance and have shown excellent results. However, there is little research in this area that addresses the question of how well these models would perform in a real-world environment, where the data the models are confr...
Article
Full-text available
Deep neural networks are one of the most successful classifiers across different domains. However, their use is limited in safety-critical areas due to their limitations concerning interpretability. The research field of explainable artificial intelligence addresses this problem. However, most interpretability methods align to the imaging modality...
Article
Full-text available
The recent developments in the machine-learning domain have enabled the development of complex multivariate probabilistic forecasting models. To evaluate the predictive power of these complex methods, it is pivotal to have a precise evaluation method to gauge the performance and predictability power of these complex methods. To do so, several evalu...
Preprint
Full-text available
Health mention classification deals with the disease detection in a given text containing disease words. However, non-health and figurative use of disease words adds challenges to the task. Recently, adversarial training acting as a means of regularization has gained popularity in many NLP tasks. In this paper, we propose a novel approach to train...
Preprint
The increasing complexity of low-voltage networks poses a growing challenge for the reliable and fail-safe operation of electricity grids. The reasons for this include an increasingly decentralized energy generation (photovoltaic systems, wind power, etc.) and the emergence of new types of consumers (e-mobility, domestic electricity storage, etc.)....
Conference Paper
This paper presents the current research state and possible future developments of AI-based autocompletion of architectural floor plans and shows demand for its establishment in computer-aided architectural design. Foundations of data representations together with the autocompletion contexts are defined, existing methods described and evaluated in...
Conference Paper
Full-text available
Sketching is a craft supporting the development of ideas and design intentions, as well as an effective tool for communication during the early architectural design stages by making them tangible. Even though sketch-based interaction is a promising approach for Computer-Aided Architectural Design (CAAD) systems, it remains a challenge for computers...
Conference Paper
Full-text available
In the next thirty years, the world's population is expected to increase to ten billion people, posing major challenges for the construction industry. To meet the growing demands for residential housing in the future, architects need to work faster, more efficiently, and more sustainably, while increasing architectural quality. The hypothetical int...
Preprint
Full-text available
Despite astonishing progress, generating realistic images of complex scenes remains a challenging problem. Recently, layout-to-image synthesis approaches have attracted much interest by conditioning the generator on a list of bounding boxes and corresponding class labels. However, previous approaches are very restrictive because the set of labels i...
Article
Privacy-preservation is of key importance for the transition of modern deep learning algorithms into everyday applications dealing with sensitive data, such as healthcare, finance and several other domains of critical infrastructure. One major impediment of research in computer science is the considerable time investment required to set up experime...
Preprint
Full-text available
Neural Architecture Search (NAS) defines the design of Neural Networks as a search problem. Unfortunately, NAS is computationally intensive because of various possibilities depending on the number of elements in the design and the possible connections between them. In this work, we extensively analyze the role of the dataset size based on several s...
Preprint
Full-text available
Health mentioning classification (HMC) classifies an input text as health mention or not. Figurative and non-health mention of disease words makes the classification task challenging. Learning the context of the input text is the key to this problem. The idea is to learn word representation by its surrounding words and utilize emojis in the text to...
Preprint
div>Discrimination between cell types in the co-culture environment with multiple cell lines can assist in examining the interaction between different cell populations. Identifying different cell cultures along with segmentation in co-culture is essential for understanding the cellular mechanisms associated with disease states. Extracting the infor...
Preprint
Full-text available
Citations are generally analyzed using only quantitative measures while excluding qualitative aspects such as sentiment and intent. However, qualitative aspects provide deeper insights into the impact of a scientific research artifact and make it possible to focus on relevant literature free from bias associated with quantitative aspects. Therefore...
Preprint
Full-text available
Deep neural networks are one of the most successful classifiers across different domains. However, due to their limitations concerning interpretability their use is limited in safety critical context. The research field of explainable artificial intelligence addresses this problem. However, most of the interpretability methods are aligned to the im...
Preprint
Full-text available
Discrimination between cell types in the co-culture environment with multiple cell lines can assist in examining the interaction between different cell populations. Identifying different cell cultures along with segmentation in co-culture is essential for understanding the cellular mechanisms associated with disease states. Extracting the informati...
Preprint
End-to-end data-driven machine learning methods often have exuberant requirements in terms of quality and quantity of training data which are often impractical to fulfill in real-world applications. This is specifically true in time series domain where problems like disaster prediction, anomaly detection, and demand prediction often do not have a l...
Preprint
Full-text available
In the last decade neural network have made huge impact both in industry and research due to their ability to extract meaningful features from imprecise or complex data, and by achieving super human performance in several domains. However, due to the lack of transparency the use of these networks is hampered in the areas with safety critical areas....
Article
Full-text available
Water is a basic and primary resource which is required for sustenance of life on the Earth. The importance of water quality is increasing with the ascending water pollution owing to industrialization and depletion of fresh water sources. The countries having low control on reducing water pollution are likely to retain poor public health. Additiona...
Preprint
Full-text available
The recent developments in the machine learning domain have enabled the development of complex multivariate probabilistic forecasting models. Therefore, it is pivotal to have a precise evaluation method to gauge the performance and predictability power of these complex methods. To do so, several evaluation metrics have been proposed in the past (su...
Article
Full-text available
Background and objectives: One principal impediment in the successful deployment of Artificial Intelligence (AI) based Computer-Aided Diagnosis (CAD) systems in everyday clinical workflows is their lack of transparent decision-making. Although commonly used eXplainable AI (XAI) methods provide insights into these largely opaque algorithms, such ex...
Preprint
Full-text available
One principal impediment in the successful deployment of AI-based Computer-Aided Diagnosis (CAD) systems in clinical workflows is their lack of transparent decision making. Although commonly used eXplainable AI methods provide some insight into opaque algorithms, such explanations are usually convoluted and not readily comprehensible except by high...
Conference Paper
Full-text available
• We investigated the potential of GANs in the field of urban water management. • As proof of concept, GAN is used to generate synthetic time series to improve the accuracy of data-driven combined sewer flow prediction models • The time series generated by GAN look quite genuine even on the first try, and still, significant improvement can be achie...
Chapter
Identifying cells in microscopic images is a crucial step toward studying image-based cell biology research. Cell instance segmentation provides an opportunity to study the shape, structure, form, and size of cells. Deep learning approaches for cell instance segmentation rely on the instance segmentation mask for each cell, which is a labor-intensi...
Article
Full-text available
Supervised learning, despite being extremely effective, relies on expensive, time-consuming, and error-prone annotations. Self-supervised learning has recently emerged as a strong alternate to supervised learning in a range of different domains as collecting a large amount of unlabeled data can be achieved by simply crawling the internet. These sel...
Preprint
Full-text available
With the advent of machine learning in applications of critical infrastructure such as healthcare and energy, privacy is a growing concern in the minds of stakeholders. It is pivotal to ensure that neither the model nor the data can be used to extract sensitive information used by attackers against individuals or to harm whole societies through the...
Article
Full-text available
With the advent of machine learning in applications of critical infrastructure such as healthcare and energy, privacy is a growing concern in the minds of stakeholders. It is pivotal to ensure that neither the model nor the data can be used to extract sensitive information used by attackers against individuals or to harm whole societies through the...
Article
Full-text available
With the rise in the employment of deep learning methods in safety-critical scenarios, interpretability is more essential than ever before. Although many different directions regarding interpretability have been explored for visual modalities, time series data has been neglected, with only a handful of methods tested due to their poor intelligibili...
Preprint
The RDF Mapping Language (RML) allows to map semi-structured data to RDF knowledge graphs. Besides CSV, JSON and XML, this also includes the mapping of spreadsheet tables. Since spreadsheets have a complex data model and can become rather messy, their mapping creation tends to be very time consuming. In order to reduce such efforts, this paper pres...
Chapter
Transformer models have recently attracted much interest from computer vision researchers and have since been successfully employed for several problems traditionally addressed with convolutional neural networks. At the same time, image synthesis using generative adversarial networks (GANs) has drastically improved over the last few years. The rece...
Conference Paper
Full-text available
In cognitive psychology, attention and distraction are two phenomena that do not always harmonize well with each other. Nowadays, with the vast amount of information potentially available to us, it has become challenging to avoid being distracted and remain attentive when involved in an activity. In this work, we describe a way to control distracti...
Conference Paper
Full-text available
This paper presents an extended evaluation of tensor-based representations of graph-based architectural room configurations. This experiment is a continuation of examination of recognition of semantic architectural features by contemporary standard deep learning methods. The main aim of this evaluation is to investigate how the deep learning models...
Conference Paper
Full-text available
The gradual rise of artificial intelligence (AI) and its increasing visibility among many research disciplines affected Computer-Aided Architectural Design (CAAD). Architectural deep learning (DL) approaches are being developed and published on a regular basis, such as retrieval (Sharma et al. 2017) or design style manipulation (Newton 2019; Silves...
Chapter
The development of digitization methods for line drawings – especially in the area of electrical engineering – relies on the availability of publicly available training and evaluation data. This paper presents such an image set along with annotations. The dataset consists of \(1152\) images of \(144\) circuits by \(12\) drafters and \(48\,539\) ann...
Chapter
The identification of graphic symbols and interconnections is a primary task in the digitization of symbolic engineering diagram images like circuit diagrams. Recent approaches propose the use of Convolutional Neural Networks to the identification of symbols in engineering diagrams. Although recall and precision from CNN based object recognition al...
Article
Full-text available
In recent years, there has been an increasing demand to digitize and electronically access historical records. Optical character recognition (OCR) is typically applied to scanned historical archives to transcribe them from document images into machine-readable texts. Many libraries offer special stationary equipment for scanning historical document...
Chapter
Document image classification is one of the most important components in business automation workflow. Therefore, a range of different supervised image classification methods have been proposed, which rely on a large amount of labeled data, which is rarely available in practice. Furthermore, retraining of these models is necessary upon the introduc...
Chapter
Compression of neural networks has become a common norm in industrial settings to reduce the cost of inference and deployment. As document classification is a common process in business workflows, there is a dire need of analyzing the potential of compressed models for the task of document image classification. Surprisingly, no such analysis has be...
Article
Full-text available
Light microscopy combined with well-established protocols of two-dimensional cell culture facilitates high-throughput quantitative imaging to study biological phenomena. Accurate segmentation of individual cells in images enables exploration of complex biological questions, but can require sophisticated imaging processing pipelines in cases of low...
Conference Paper
Full-text available
During the last decades, recommender systems have played a remarkable role in putting one step further toward making content platforms more intelligent in a wide variety of domains ranging from music and movies to books and documents. Notwithstanding the various applications of recommender systems, not many contributions have been made regarding th...
Article
Full-text available
The emergence of various types of commercial cameras (compact, high resolution, high angle of view, high speed, and high dynamic range, etc.) has contributed significantly to the understanding of human activities. By taking advantage of the characteristic of a high angle of view, this paper demonstrates a system that recognizes micro-behaviors and...
Preprint
Full-text available
Curriculum learning is a bio-inspired training technique that is widely adopted to machine learning for improved optimization and better training of neural networks regarding the convergence rate or obtained accuracy. The main concept in curriculum learning is to start the training with simpler tasks and gradually increase the level of difficulty....
Article
Full-text available
Apart from protein-coding Ribonucleic acids (RNAs), there exists a variety of non-coding RNAs (ncRNAs) which regulate complex cellular and molecular processes. High-throughput sequencing technologies and bioinformatics approaches have largely promoted the exploration of ncRNAs which revealed their crucial roles in gene regulation, miRNA binding, pr...
Article
With the advent of generative adversarial networks, synthesizing images from text descriptions has recently become an active research area. It is a flexible and intuitive way for conditional image generation with significant progress in the last years regarding visual realism, diversity, and semantic alignment. However, the field still faces severa...
Conference Paper
Accurate cell segmentation in microscopic images is a useful tool to analyze individual cell behavior, which helps to diagnose human diseases and development of new treatments. Cell segmentation of individual cells in a microscopic image with many cells in view allows quantification of single cellular features, such as shape or movement patterns, p...