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Abstract: This review is a survey of recent advances in environment related aspects of organic photochemistry. Besides presenting gen-

eral concepts, the manuscript is mainly focused on the photoreactivity of natural organic matter, and on the photochemistry of anthropo-

genic substances under natural light irradiation.  
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GENERAL ASPECTS OF ENVIRONMENTAL ORGANIC 

PHOTOCHEMISTRY 

By considering the general definition of the term “Photochemis-

try” internationally accepted by the chemists’ community [1], one 

might define “Environmental Organic Photochemistry” the branch 

of science concerned with both the environmental effects of organic 

photochemical reactions [1] and the study of molecular photochem-

istry occurring in the environment. This includes photocatalytic 

processes, as defined by the more recent glossary on photocatalytic 

terms [2], involving organic substrates and potentially applicable 

for environmental remediation. Additionally, a positive effect on 

the environment is gained whenever in-lab or industrial photo-

chemical synthesis of organic compounds are developed as a green 

chemistry approach [3]. In this context a major advance in prepara-

tive photochemistry has been achieved by Oelgemoeller’s group by 

taking advantage of the microflow technology applied to photo-

chemical reactions [4]. 

Although modern photochemistry was born in 1902 with the vi-

sionary perspective of Giacomo Ciamician [5], environmental as-

pects of organic photochemistry have been receiving increasing 

attention only in the last few decades. Indeed, in coincidence with 

major concerns about ozone layer reduction over the Antarctic 

zone, various studies have been devoted to assess the impact of 

Earth-reaching UV radiation on the ecosystems [6]. Indeed, these 

types of studies still represent a major challenge, especially consid-

ering the number of environmental parameters affecting the studied 

photochemical phenomenon. Therefore, the photochemical behav-

iour of organic substrates under natural or simulated environmental 

conditions are often presented either as peculiar reactivity of classes 

of compounds (e.g. halogenated aromatic compounds) or of gener-

ally defined mixtures such as natural organic matter (NOM), dis-

solved organic matter (DOM), or effluent organic nitrogen (EON). 

When accompained by a complete identification of photoproducts, 

mechanistic hypothesis can be generalized, particularly for homo-

geneous classes of compounds such as halogenated phenols [7]. On 

the other hand, many kinetic studies have been devoted to the  
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measurement of the degradation rate of particular substrates or ho-

mogeneous classes of pollutants. In this context, a very recent re-

view reports a list of photoreactivity constants for a series of envi-

ronmentally relevant micropollutants [8]. 

Besides cases where chromofore- or substituent-driven photore-

activity leads to stable photoproducts, the majority of reported stud-

ies normally concern the oxidative degradation of the substrate by 

means of photogenerated reactive oxygen species (ROS). Among 

ROS, singlet oxygen is probably the most studied from both the 

photophysical and photochemical reactivity aspects [9]. It can be 

easily formed in aqueous systems containing coloured substances as 

sensitizers, and its steady-state concentration, especially in surface 

waters, depends on several environmental parameters including 

temperature, depth, sunlight exposure, colored NOM’s concentra-

tion (acting as potential sensitizer), and total NOM’s concentration 

(acting as potential substrate/quencher). These aspects have been 

rationalized more than two decades ago concluding that for singlet 

oxygen’s concentrations found in surface waters, only substrates 

containing electron rich double bonds or easily oxidazable moieties 

would be selectively degraded [10]. 

Interestingly, photochemically stable organic compounds can 

be “indirectly” involved in environmental photochemical processes 

through complexation with metal ions typically found in surface 

waters. For instance, environmental aspects of a series of copper 

complexes have been rationalized considering their role in generat-

ing various ROS [11]. More generally, metal complexes can be 

involved in environmental photochemistry either through electron 

transfer processes where the substrate is directly involved as a do-

nor or acceptor, or through the generation of ROS in photo-fenton 

like processes [12]. 

As far as photobiological processes are concerned, photochemi-

cal aspects directly affecting the ecosystem have been rationalized, 

for example, for organisms such as phytoplankton, whose fate is 

strongly depending also on light exposure [13]. However, the ma-

jority of environmental photochemistry studies regards the impact 

of anthropogenic substances such as pesticides, drugs (and their 

metabolites), and cosmetics, associated with light exposure under 

natural or simulated environmental conditions. 

For pesticides, local and international legislation may regulate 

their use, therefore limiting their environmental concentration. 

Nevertheless, studies on their potential involvement in environ-
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mental photochemistry are still needed, together with the assess-

ment of new pesticides photodegradability [14, 15]. 

For drugs and their metabolites, instead, concentrations reach-

ing surface waters strongly depend on each drug’s popularity and 

widespread use. Additionally, for years pharmaceutical companies 

have worked on improving their drug’s photostability in order to 

avoid short shelf-life of their products, thus obtaining compounds 

which are more environmentally persistant. For these reasons, the 

environmental fate of drugs have become more and more a priori-

tary issue, also considering the development of microbial resistance 

against widely used antibiotics. In a recent review on this aspect, 

also photochemical processes are taken into account as one of the 

major pathway of the environmental degradation of antibiotics [16]. 

Moreover, the toxicity of photoproducts generated by photolysis 

under natural conditions of widely used pharmaceuticals in surface 

waters is today an additional concern [17].  

Another major, but often underestimated threat, regards the 

photochemistry of cosmetics, including sunscreen and other per-

sonal care products, which easily and abundantly reach surface 

waters during bathing seasons coinciding with higher sunlight irra-

diation. In this context, valuable model for ecological risk assess-

ment related to sunscreen components, have been recently proposed 

by combining experimental data and theoretical photoreactivity 

studies [18].  

Environmental reaction media for the photochemistry of or-

ganic compounds strongly depend on organic compound/pollutants 

mobility [19]. Typical media are surface waters (lakes, rivers, ma-

rine environment, etc.) [10, 20-23] and atmosphere [24-26]. More 

recent studies regarded the photochemistry at the gas/liquid inter-

face, such as in aerosols in the Arctic haze [27] or from motor vehi-

cle and plants emissions [28], and gas/solid interface, such as the 

photochemistry in soils, which strongly depends on soil thickness 

and light penetration [13, 29]. Following the pioneering study on 

monochlorophenols [30], a more recent field of investigation con-

cerns environmental photochemistry in the ice matrix, which is at 

the borderline of solid phase and solution photochemistry, with the 

possible involvement of photoinduced proton transfer from the 

frozen solvation shell [30-32]. These aspects have been further 

investigated also by using computational data in the attempt of 

validating a model based on the photochemistry of organic mole-

cules in artificial snow grains [33]. 

In addition to the above issues, the recent development of 

nanotechnologies based on fullerenes, graphene, and carbon nano-

tubes (CNTs), raises questions about the environmental impact of 

these new photoactive materials, whose photoreactivity and role in 

generating ROS under natural environmental conditions needs still 

to be fully addressed [34-36]. 

Besides studying the effect of photochemical reactions in the 

environment, environmental photochemistry includes the develop-

ment of photochemical technologies for air or water remediation. 

A recent review about the exploitation of photochemical tech-

nologies for indoor air purification from VOCs has been recently 

published by Wang’s group [37]. Moreover, a plethora of articles 

reporting photocatalytic studies of potential environmental applica-

tion, mostly based on titania derived photocatalysts [38] and photo-

fenton processes [38], also coupled to biological degradation [39, 

40], have been published and recently reviewed. On the other hand, 

organic photocatalysis, which includes the use of covalently linked 

[41] or ionically exchanged [42] supported photosensitizers, has 

been very recently reviewed [43]. For these reasons, photocatalytic 

processes have been considered in this review only when crucial to 

explain photodegradation patterns of anthropogenic organic com-

pounds. 

PHOTOCHEMISTRY OF NATURAL OR DISSOLVED OR-

GANIC MATTER (NOM/DOM) UNDER NATURAL OR 

SIMULATED ENVIRONMENTAL CONDITIONS 

The photochemical behavior of chromophoric dissolved organic 

matter (CDOM) has been attentioned since mid 90’s [44] both in 

marine and riverine waters [45], and has been studied by following 

the decrease of UV absorption at 280-300 nm ascribed to the degra-

dation of chromophoric substances. Later on, the role of colored 

DOM in promoting the degradation of phenylurea-based herbicides 

1 (Scheme 1) in lakes has been rationalized in terms of an initial 

one-electron oxidation involving an excited triplet states of the 

chromophoric substances [46].  
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Scheme 1. 

Very recently, an interesting correlation between CDOM’s pho-

toactivity and lake’s surroundings was based upon a principal com-

ponents analysis of the reactivity of 2,4,6-trimethylphenol (TMP) 

used as molecular probe [47]. 

The photocatalytic activity of NOM, was recently evaluated by 

measuring the rate of production of various ROS, from irradiated 

suspended compost under simulated solar light. Hydroxyl radical 

production was measured by monitoring the reactivity of terephtalic 

acid 2, whilet the production of singlet oxygen was monitored by 

using furfuryl alcohol 4 as a probe. Both series of data were then 

compared with the activity of irradiated compost in promoting the 

degradation of pesticide micropollutants such as mesotrione 8, etho-

fumesate 9, and epoxiconazole 10 (Scheme 2) [48]. 

In many cases, humic acids (HA) have played their role in af-

fecting the photoreactivity of natural organic matter under envi-

ronmental conditions, for instance by acting as sensitizers for sin-

glet oxygen production. Due to the complexity of their composition, 

it is difficult to identify specific components of HA as being re-

sponsible for the observed photoreactivity. Nevertheless, studies 

aiming at identifying the role of specific components of HA such as 

phtalocyanine-like substances, are starting to appear in recent litera-

ture [49]. 

Very recently, the involvement of NOM in the photochemical 

generation of organomercurial species has been claimed to occurr 

through an initial Hg(II) complex formation with typical oxygen-

ated organic compounds (alcohols and carbonyl compounds), fol-

lowed by a methyl transfer/photo-alkylation process [50]. Other 

recent photoreactivity studies of naturally occurring substances 

have regarded the degradation kinetics of a series of isoflavone 

phytoestrogens [51] and the impressive identification of hydroxyl 

radical promoted photodegradation products of cylindrospermopsin 

(Scheme 3) [52]. 

On the other hand, studies aimed at forcing the degradation of 

NOM by using high-energy UV radiation, also in combination with 

hydrogen peroxide [53]. However, while these studies complete the 



Advances in Environmental Organic Photochemistry Current Organic Chemistry, 2013, Vol. 17, No. 24    3 

 

frame of NOM’s photodegradability approaches, the feasibility of 

such procedure for practical water treatment is technologically 

questionable.  

PHOTOCHEMISTRY OF ANTHROPOGENIC ORGANIC 

COMPOUNDS UNDER NATURAL OR SIMULATED ENVI-

RONMENTAL CONDITIONS 

The production and disposal of environmentally persistant 

compounds has been, and likely will continue to be, one of the ma-

jor threat for the ecosystem. In this context, the research towards 

photostable bioactive molecules and the social need for 

bio/photodegradable materials/substances represents one of the 

modern “environmental photochemistry conundrum”. In this con-

text, several studies have been devoted to enhance the photodegra-

dation kinetics of potentially harmful substances, however only a 

limited amount of investigations report a complete identification of 

photoproducts and their toxicity. For example, polychlorinated 

benzenes (PCBs) and nitrobenzenes (PCNBs) remained unchanged 

under sunlight irradiation, but were photochemically degraded un-

der reductive conditions [54]. 
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On the other hand, while ideally the oxidative photodegradation 

of organic compounds should lead to complete mineralization into 

carbon dioxide and water, in the worst case scenario, photoactive 

compounds will be transformed, under natural environmental irra-

diation conditions, into more persistent and stable harmful com-

pounds. The latter case is for example represented by the oxidative 

phototransformation of polybrominated diphenylethers leading to 

the corresponding dioxins (Scheme 4) [55-59].  
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Scheme 4. 

As for the degradation of pesticide compounds, the photopro-

ducts resulting from the irradiation of mesotrione 8 in acqueous 

media have been identified by HPLC-ESI-MS [60]. 

Similarly, the degradation of urea-based pesticide MBTU 23 

has been investigated in one of the pioneering studies about the 

coupling of biotransformation with photochemical remediation 

(Scheme 6) [61]. 

Interestingly, a recent investigation on the photoreactivity of 

two-component herbicide mixtures, containing nicosulfuron and 

mesotrione 8, showed the mixture having an accelerating effect on 

both herbicide decay rates [62]. Other recent kinetic studies have 

regarded the photooxidative degradation of thiachloprid insecticide 

26 [63], of the DEET (N,N-diethyl-m-toluamide) mosquito repel-

lant 27, whose oxidative degradation mostly involves the raromatic 

ring opening leaving the amido moiety intact [64], and of the new 

herbicide HW-02, whose photofragmentation pattern was however 

studied in organic solvents (Scheme 7) [65]. 

A recent study by Vione, Minero and coworkers, showed that 

the presence of competing dissolved organic compounds (DOC) 

negatively affects the photodegradation of 4-chloro-2-

methylphenoxy- acetic acid (MCPA) through its direct photolysis, 

thus increasing the relevance of alternative photodegradation path-

ways involving hydroxyl radical as reactive species [66]. Several 

other studies from the same group aimed at modeling the photode-

gradation of pollutants in surface waters by using variously substi-

tuted nitrophenolic compounds 29-31 as model substrate (Scheme 

8) [20-22]. 

A classes of compounds whose photochemical behavior in open 

water has been almost neglected is that of antifouling agents. In one 

of the very few studies in this field, the photoreactivity of Sea-Nine 
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211 32 (Scheme 9) was investigated in different types of water, and 

the relative photodegradation kinetic parameters were showing a 

higher photodegradability in naturally occurring acqueous envi-

ronment than in distilled water [67]. The observed photoreactivity 

involved also a Ring Contraction – Ring Expansion (RCRE) rear-

rangement into the corresponding thiadiazole system 34, a typical 

rearrangement of five-membered heterocyclic compounds possess-

ing a weak O-N or S-N photolabile bond (Scheme 9) [68]. 

Besides agrochemicals, pharmaceuticals are the other major 

class of synthesized organic compounds whose photochemical be-

havior in the environment has been increasingly attentioned. Earlier 

studies regarded their presence in sewage treatment plants and their 

resistance to abiotic photodegradation [69]. Subsequent studies 

regarded widespread classes of drugs such as the non-steroidal anti-

inflammatory mefenamic acid 35 [70], and steroidal derivative 

prednisolone 36, whose photochemical reactivity involves a di- -

methane rearrangement into zwitterionic intermediate 37 as initial 

step (Scheme 10) [71]. 

“Once popular” antimicrobials such as triclosan (5-chloro-2-

(2,4-dichlorophenoxy)phenol) 38 have shown a relevant photoreac-

tivity, with formation of even more harmful dioxin compounds, 

similarly to the previously mentioned reactivity of polybrominated 

phenylethers [72, 73]. 

Also sulfa drugs, such as representative sulfamethazine 40, 

have been investigated as photochemically degradable pollutants 

undergoing loss of sulfur dioxide, a major photodegradation path-

way which was enhanced in natural waters due to triplet sensitiza-

tion by colored DOM (Scheme 12) [74]. 
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Advances in the qualitative determination of photoproduct mix-

tures in complex environmental matrices have been accomplished 

also with the development of more performing analytical instru-

ments, such as high resolution mass spectrometry coupled with 

chromatographic separation. By taking advantage of these techniq-

ues, the simulated environmental photodegradation pathway of enala-

pril 42 and its metabolite enalaprilat 43 could be elucidated [75]. 

Studies on the photoinduced degradation of other pharmaceuti-

cals include an investigation on the photochemical behavior of sal-

butamol 44 which, regardless of medium’s acidity, undergoes pho-

tochemical transformation under irradiation in the solar spectrum 

[76]. More recently, the photodegradation pathway of the popular 

and worldwide used antiinflammatory ibuprofen 45, has been inves-

tigated evidencing the formation of reduced and decarboxylated 
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products, although contrasting results about the preferred pathways 

needs to be more accurately assessed (Scheme 14) [77]. 

The final part of this section is dedicated to the recently 

emerged question of antimicrobial’s use and  misuse and their envi-

ronmental impact in terms of multidrug resistance development. In 

fact, the raise of the so-called superbugs, i.e. bacteria which are 

resistant to a variety of clinically used antibiotics, can be contrasted 

by developing new antimicrobials that overcome multi-drug resis-

tance [78]. Nevertheless, resistance towards these new drugs will 

eventually occurr in time. Release in the environment of such drugs 

or their metabolites increases the risk of developing multidrug resis-

tance by selecting sensitive strains. Therefore a fast removal, i.e. 

degradation, of these stable pharmaceuticals from surface waters is 

still envisaged as a major challenge. Besides classical beta lactams 

such as amoxicillin 49 [79], these aspects involve particularly new 

classes of antibiotics such as the bacteriostatic antibiotic 

trimethoprim 50 (Scheme 15) [80, 81], macrolides [82, 83], fluoro-

quinolones (representatively illustrated by enrofloxacin 57 in 

Scheme 16) [84-87], and oxazolidinones (Scheme 17) [88], includ-

ing their newly developed derivatives [89]. 
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Interestingly, linezolid-like derivatives 63, react through a pho-

togenerated triplet phenyl cation, which can follow either a sol-

volytic or a reductive pathway towards derivative 65 or 66, respec-

tively. 
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