Andrea Tangherloni

Andrea Tangherloni
University of Bergamo | UNIBG · Department of Human and Social Sciences

PhD in Computer Science

About

51
Publications
8,537
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
700
Citations
Citations since 2016
51 Research Items
692 Citations
2016201720182019202020212022050100150200
2016201720182019202020212022050100150200
2016201720182019202020212022050100150200
2016201720182019202020212022050100150200
Additional affiliations
December 2020 - present
University of Bergamo
Position
  • PostDoc Position
November 2018 - November 2020
University of Cambridge
Position
  • Research Associate
November 2015 - November 2018
Università degli Studi di Milano-Bicocca
Position
  • PhD Student
Education
November 2015 - February 2019
Università degli Studi di Milano-Bicocca
Field of study
  • Computer Science
November 2013 - October 2015
Università degli Studi di Milano-Bicocca
Field of study
  • Computer Science
October 2010 - October 2013
Università degli Studi di Milano-Bicocca
Field of study
  • Computer Science

Publications

Publications (51)
Article
Full-text available
The Special Issue “Artificial Intelligence Applied to Medical Imaging and Computational Biology” of the Applied Sciences Journal has been curated from February 2021 to May 2022, which covered the state-of-the-art and novel algorithms and applications of Artificial Intelligence methods for biomedical data analysis, ranging from classic Machine Learn...
Article
Full-text available
Several software tools for the simulation and analysis of biochemical reaction networks have been developed in the last decades; however, assessing and comparing their computational performance in executing the typical tasks of computational systems biology can be limited by the lack of a standardized benchmarking approach. To overcome these limita...
Article
In the crowded environment of bio-inspired population-based metaheuristics, the Salp Swarm Optimization (SSO) algorithm recently appeared and immediately gained a lot of momentum. Inspired by the peculiar spatial arrangement of salp colonies, which are displaced in long chains following a leader, this algorithm seems to provide an interesting optim...
Article
Full-text available
Mathematical models of biochemical networks can largely facilitate the comprehension of the mechanisms at the basis of cellular processes, as well as the formulation of hypotheses that can be tested by means of targeted laboratory experiments. However, two issues might hamper the achievement of fruitful outcomes. On the one hand, detailed mechanist...
Article
Full-text available
Image texture extraction and analysis are fundamental steps in computer vision. In particular, considering the biomedical field, quantitative imaging methods are increasingly gaining importance because they convey scientifically and clinically relevant information for prediction, prognosis, and treatment response assessment. In this context, radiom...
Preprint
Full-text available
Several software tools for the simulation and analysis of biochemical reaction networks have been developed in the last decades; however, assessing and comparing their computational performance in executing the typical tasks of Computational Systems Biology can be limited by the lack of a standardized benchmarking approach. To overcome these limita...
Article
Full-text available
Background Single-cell RNA sequencing (scRNA-Seq) experiments are gaining ground to study the molecular processes that drive normal development as well as the onset of different pathologies. Finding an effective and efficient low-dimensional representation of the data is one of the most important steps in the downstream analysis of scRNA-Seq data,...
Preprint
Full-text available
In the crowded environment of bio-inspired population-based meta-heuristics, the Salp Swarm Optimization (SSO) algorithm recently appeared and immediately gained a lot of momentum. Inspired by the peculiar spatial arrangement of salp colonies, which are displaced in long chains following a leader, this algorithm seems to provide interesting optimiz...
Preprint
Full-text available
Mathematical models of biochemical networks can largely facilitate the comprehension of the mechanisms at the basis of cellular processes, as well as the formulation of hypotheses that can be tested by means of targeted laboratory experiments. However, two issues might hamper the achievement of fruitful outcomes. On the one hand, detailed mechanist...
Article
Full-text available
Regulation of hematopoiesis during human development remains poorly defined. Here we applied single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) to over 8,000 human immunophenotypic blood cells from fetal liver and bone marrow. We inferred their differentiation trajectory and ide...
Article
Full-text available
Advances in microscopy imaging technologies have enabled the visualization of live-cell dynamic processes using time-lapse microscopy imaging. However, modern methods exhibit several limitations related to the training phases and to time constraints, hindering their application in the laboratory practice. In this work, we present a novel method, na...
Preprint
Full-text available
Advances in microscopy imaging technologies have enabled the visualization of live-cell dynamic processes using time-lapse microscopy imaging. However, modern methods exhibit several limitations related to the training phases and to time constraints, hindering their application in the laboratory practice. In this work, we present a novel method, na...
Preprint
Full-text available
Regulation of human foetal haematopoiesis remains poorly defined. Here, we applied single-cell (sc)RNA-Seq and scATAC-Seq analysis to over 8,000 human immunophenotypic blood cells from liver and bone marrow from 18 foetuses. We inferred their differentiation trajectory and identified three highly proliferative oligopotent progenitor populations dow...
Chapter
Prostate cancer is the most common cancer among US men. However, prostate imaging is still challenging despite the advances in multi-parametric magnetic resonance imaging (MRI), which provides both morphologic and functional information pertaining to the pathological regions. Along with whole prostate gland segmentation, distinguishing between the...
Preprint
Full-text available
Background Single-cell RNA sequencing (scRNA-Seq) experiments are gaining ground to study the molecular processes that drive normal development as well as the onset of different pathologies. Finding an effective and efficient low-dimensional representation of the data is one of the most important steps in the downstream analysis of scRNA-Seq data,...
Chapter
Image texture extraction and analysis are fundamental steps in Computer Vision. In particular, considering the biomedical field, quantitative imaging methods are increasingly gaining importance since they convey scientifically and clinically relevant information for prediction, prognosis, and treatment response assessment. In this context, radiomic...
Article
Computational Intelligence methods, which include Evolutionary Computation and Swarm Intelligence, can efficiently and effectively identify optimal solutions to complex optimization problems by exploiting the cooperative and competitive interplay among their individuals. The exploration and exploitation capabilities of these meta-heuristics are typ...
Article
Full-text available
Background In order to fully characterize the genome of an individual, the reconstruction of the two distinct copies of each chromosome, called haplotypes, is essential. The computational problem of inferring the full haplotype of a cell starting from read sequencing data is known as haplotype assembly, and consists in assigning all heterozygous Si...
Preprint
Full-text available
Prostate cancer is the most common malignant tumors in men but prostate Magnetic Resonance Imaging (MRI) analysis remains challenging. Besides whole prostate gland segmentation, the capability to differentiate between the blurry boundary of the Central Gland (CG) and Peripheral Zone (PZ) can lead to differential diagnosis, since tumor's frequency a...
Article
Background and objectives: Image segmentation represents one of the most challenging issues in medical image analysis to distinguish among different adjacent tissues in a body part. In this context, appropriate image pre-processing tools can improve the result accuracy achieved by computer-assisted segmentation methods. Taking into consideration i...
Preprint
Prostate cancer is the most common cancer among US men. However, prostate imaging is still challenging despite the advances in multi-parametric Magnetic Resonance Imaging (MRI), which provides both morphologic and functional information pertaining to the pathological regions. Along with whole prostate gland segmentation, distinguishing between the...
Chapter
Nowadays, uterine fibroids can be treated using Magnetic Resonance guided Focused Ultrasound Surgery (MRgFUS), which is a non-invasive therapy exploiting thermal ablation. In order to measure the Non-Perfused Volume (NPV) for treatment response assessment, the ablated fibroid areas (i.e., Region of Treatment, ROT) are manually contoured by a radiol...
Chapter
The computational analysis of complex biological systems can be hindered by two main factors. First, modeling the system so that it can be easily understood and analyzed by non-expert users is not always possible, especially when dealing with systems of Ordinary Differential Equations. Second, when the system is composed of hundreds or thousands of...
Chapter
The reconstruction of the haplotype pair for each chromosome is a hot topic in Bioinformatics and Genome Analysis. In Haplotype Assembly (HA), all heterozygous Single Nucleotide Polymorphisms (SNPs) have to be assigned to exactly one of the two chromosomes. In this work, we outline the state-of-the-art on HA approaches and present an in-depth analy...
Preprint
Full-text available
The process of inferring a full haplotype of a cell is known as haplotyping, which consists in assigning all heterozygous Single Nucleotide Polymorphisms (SNPs) to exactly one of the two chromosomes. In this work, we propose a novel computational method for haplotype assembly based on Genetic Algorithms (GAs), named GenHap. Our approach could effic...
Article
Medical imaging systems often require the application of image enhancement techniques to help physicians in anomaly/abnormality detection and diagnosis, as well as to improve the quality of images that undergo automated image processing. In this work we introduce MedGA, a novel image enhancement method based on Genetic Algorithms that is able to im...
Conference Paper
In the field of Systems Biology, simulating the dynamics of biochemical models represents one of the most effective methodologies to understand the functioning of cellular processes in normal or altered conditions. However, the lack of kinetic rates, necessary to perform accurate simulations, strongly limits the scope of these analyses. Parameter E...
Article
Stereotactic neuro-radiosurgery is a well-established therapy for intracranial diseases, especially brain metastases and highly invasive cancers that are difficult to treat with conventional surgery or radiotherapy. Nowadays, magnetic resonance imaging (MRI) is the most used modality in radiation therapy for soft-tissue anatomical districts, allowi...
Preprint
Full-text available
The process of inferring a full haplotype of a cell is known as haplotyping, which consists in assigning all heterozygous Single Nucleotide Polymorphisms (SNPs) to exactly one of the two chromosomes. In this work, we propose a novel computational method for haplotype assembly based on Genetic Algorithms (GAs), named GenHap. Our approach could effic...
Article
Full-text available
Background Mathematical modeling and in silico analysis are widely acknowledged as complementary tools to biological laboratory methods, to achieve a thorough understanding of emergent behaviors of cellular processes in both physiological and perturbed conditions. Though, the simulation of large-scale models—consisting in hundreds or thousands of r...
Article
Full-text available
To investigate the behavior of biochemical systems, many runs of Gillespie’s Stochastic Simulation Algorithm (SSA) are generally needed, causing excessive computational costs on Central Processing Units (CPUs). Since all SSA runs are independent, the Intel Xeon Phi coprocessors based on the Many Integrated Core (MIC) architecture can be exploited t...
Article
Full-text available
Several studies in Bioinformatics, Computational Biology and Systems Biology rely on the definition of physico-chemical or mathematical models of biological systems at different scales and levels of complexity, ranging from the interaction of atoms in single molecules up to genome-wide interaction networks. Traditional computational methods and sof...

Network

Cited By

Projects

Projects (2)
Project
Generally, cellular processes are characterized by a huge amount of molecular species and biochemical reactions, so that even a single simulation of detailed reaction-based models of such systems can be unfeasible on conventional architectures. Modern GPUs can be used to strongly overcome the computational burden of these simulations.