Andrea Raponi

Andrea Raponi

About

146
Publications
12,182
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,945
Citations
Citations since 2017
79 Research Items
2629 Citations
20172018201920202021202220230100200300400
20172018201920202021202220230100200300400
20172018201920202021202220230100200300400
20172018201920202021202220230100200300400

Publications

Publications (146)
Article
The Rosetta mission escorted comet 67P/Churyumov-Gerasimenko for approximately two years including the perihelion passage (1.24 au, August 2015), allowing us to monitor the seasonal evolution of the water and carbon dioxide loss rates. Here, we model 67P/Churyumov-Gerasimenko water and carbon dioxide production as measured by the Rosina experiment...
Article
Among main belt asteroids, some have a spectrum similar to Vesta so they are taxonomically classified as V-type asteroids. Probably they were removed from Vesta and migrated to their current positions via some still unknown dynamical mechanisms. Several issues on the relationship between V-type asteroids, Howardite -Eucrite -Diogenite (HED) meteori...
Article
Full-text available
Pitted impact deposits (PIDs) on Vesta have been shown to exhibit distinct spectral characteristics with respect to their surrounding host deposits and other typical Vestan areas regarding the first major pyroxene absorption near 0.9 μ m. The PIDs, especially those in the ejecta blanket of the large crater Marcia, show higher reflectance and pyroxe...
Preprint
Full-text available
We analyzed the surface of Vesta at visible wavelengths, using the data of the Visible and InfraRed mapping spectrometer (VIR) on board the Dawn spacecraft. We mapped the variations of various spectral parameters on the entire surface of the asteroid, and also derived a map of the lithology. We took advantage of the recent corrected VIR visible dat...
Article
Aims. We analyzed the surface of Vesta at visible wavelengths, using the data of the Visible and InfraRed mapping spectrometer (VIR) on board the Dawn spacecraft. We mapped the variations of various spectral parameters on the entire surface of the asteroid, and also derived a map of the lithology. Methods. We took advantage of the recent corrected...
Article
Thermal inertia is a key information to quantify the physical status of a planetary surface; it can be retrieved by comparison between theoretical and observed temperature diurnal profiles. We have calculated the surface temperature for a set of locations on Ceres' surface with a thermophysical model that provides temperature as a function of therm...
Article
Full-text available
Ammonium phyllosilicates have been identified on the dwarf planet Ceres, thanks to infrared telescopic and orbital data from the Dawn mission, by means of the 3.06 μm spectral feature. Nevertheless, it is not known which ammonium‐bearing phyllosilicate species are present, nor the thermal processing they underwent throughout Ceres history. Identify...
Article
Full-text available
The Visible‐Infrared Mapping Spectrometer (VIR) on board the Dawn spacecraft revealed that aqueous secondary minerals—Mg‐phyllosilicates, NH4‐bearing phases, and Mg/Ca carbonates—are ubiquitous on Ceres. Ceres' low reflectance requires dark phases, which were assumed to be amorphous carbon and/or magnetite (∼80 wt.%). In contrast, the Gamma Ray and...
Article
Full-text available
This work describes the correction method applied to the dataset acquired at the asteroid (4) Vesta by the visible channel of the visible and infrared mapping spectrometer. The rising detector temperature during data acquisitions in the visible wavelengths leads to a spectral slope increase over the whole spectral range. This limits the accuracy of...
Article
The Visible‐Infrared Mapping Spectrometer (VIR) on board the Dawn spacecraft revealed that aqueous secondary minerals—Mg‐phyllosilicates, NH4‐bearing phases, and Mg/Ca carbonates—are ubiquitous on Ceres. Ceres' low reflectance requires dark phases, which were assumed to be amorphous carbon and/or magnetite (∼80 wt.%). In contrast, the Gamma Ray and...
Preprint
Full-text available
This work describes the correction method applied to the dataset acquired at the asteroid (4) Vesta by the visible channel of the visible and infrared mapping spectrometer. The rising detector temperature during data acquisitions in the visible wavelengths leads to a spectral slope increase over the whole spectral range. This limits the accuracy of...
Preprint
The Visible-Infrared Mapping Spectrometer (VIR) on board the Dawn spacecraft revealed that aqueous secondary minerals -- Mg-phyllosilicates, NH4-bearing phases, and Mg/Ca carbonates -- are ubiquitous on Ceres. Ceres' low reflectance requires dark phases, which were assumed to be amorphous carbon and/or magnetite (~80 wt.%). In contrast, the Gamma R...
Article
Full-text available
Aims. We study the surface of Ceres at visible wavelengths, as observed by the Visible and InfraRed mapping spectrometer (VIR) onboard the Dawn spacecraft, and analyze the variations of various spectral parameters across the whole surface. We also focus on several noteworthy areas of the surface of this dwarf planet. Methods. We made use of the new...
Preprint
Full-text available
We study the surface of Ceres at visible wavelengths, as observed by the Visible and InfraRed mapping spectrometer (VIR) onboard the Dawn spacecraft, and analyze the variations of various spectral parameters across the whole surface. We also focus on several noteworthy areas of the surface of this dwarf planet. We made use of the newly corrected VI...
Preprint
Full-text available
The ESA Rosetta mission has acquired unprecedented measurements of comet 67/P-Churyumov-Gerasimenko (hereafter 67P) nucleus surface, whose composition, as determined by in situ and remote sensing instruments including VIRTIS (Visible, InfraRed and Thermal Imaging Spectrometer) appears to be made by an assemblage of ices, minerals, and organic mater...
Conference Paper
We aim at retrieving physical and compositional surface properties of the nucleus of comet 67P/Churyumov-Gerasimenko (hereafter 67P) from VIS-IR hyperspectral images (‘cubes’). Here we report on our progress in the geometric modeling and spectral fitting.
Article
Full-text available
The surface and internal structure of Ceres show evidence of a global process of aqueous alteration, indicating the existence of an ocean in the past. However, it is not clear whether part of this ocean is still present and whether residual fluids are still circulating in the dwarf planet. These fluids may be exposed in a geologically young surface...
Article
Full-text available
The VIRTIS imaging spectrometer on board Rosetta has shown that the nucleus surface of comet 67P/Churyumov-Gerasimenko (67P/CG) is characterized by a broad absorption band at around 3.2 μm. The feature is ubiquitous across the surface and its attribution to (a) specific material(s) has been challenging. In the present Letter, we report an experimen...
Article
Full-text available
The European Space Agency’s Rosetta mission1 has acquired unprecedented measurements of the surface of the nucleus of comet 67P/Churyumov–Gerasimenko (hereafter, 67P), the composition of which, as determined by in situ and remote-sensing instruments, including the VIRTIS instrument2, seems to be an assemblage of ices, minerals and organic material3...
Preprint
Full-text available
The measured nitrogen-to-carbon ratio in comets is lower than for the Sun, a discrepancy which could be alleviated if there is an unknown reservoir of nitrogen in comets. The nucleus of comet 67P/Churyumov-Gerasimenko exhibits an unidentified broad spectral reflectance feature around 3.2 micrometers, which is ubiquitous across its surface. On the b...
Article
Full-text available
Thermal inertia is a key information to quantify the physical status of a planetary surface. We derive the thermal inertia of the surface of Ceres using spatially resolved data from the Dawn mission. For each location, this quantity can be constrained by comparing theoretical and observed diurnal temperature profiles from retrieved temperatures. We...
Article
Context. Particulate surfaces exhibit a surge of reflectance at low phase angles, a phenomenon referred to as the opposition effect (OE). Two mechanisms are recognized as responsible for the OE: shadow hiding (SH) and coherent backscattering. The latter is typically characterized by a small angular width of a few degrees at most and according to th...
Preprint
Full-text available
Data acquired at Ceres by the visible channel of the Visible and InfraRed mapping spectrometer (VIR) on board the NASA Dawn spacecraft are affected by the temperatures of both the visible (VIS) and the infrared (IR) sensors, which are respectively a CCD and a HgCdTe array. The variations of the visible channel temperatures measured during the sessi...
Article
Full-text available
Data acquired at Ceres by the visible channel of the Visible and InfraRed mapping spectrometer (VIR) on board the NASA Dawn spacecraft are affected by the temperatures of both the visible (VIS) and the infrared (IR) sensors, which are, respectively, a charged coupled device and a HgCdTe array. The variations of the visible channel temperatures meas...
Article
On 2015 July 18, near perihelion at a heliocentric distance of 1.28 au, the Visible InfraRed Thermal Imaging Spectrometer (VIRTIS-M) on board the Rosetta spacecraft had the opportunity of observing dust activity in the inner coma with a view of the night side (shadowed side) of comet 67P/Churyumov-Gerasimenko. At the time of the measurements we pre...
Article
On 2015 July 18, near perihelion at a heliocentric distance of 1.28 au, the Visible InfraRed Thermal Imaging Spectrometer (VIRTIS-M) on board the Rosetta spacecraft had the opportunity of observing dust activity in the inner coma with a view of the night side (shadowed side) of comet 67P/Churyumov-Gerasimenko. At the time of the measurements we pre...
Article
Full-text available
Knowledge of the surface temperature distribution on a comet’s nucleus and its temporal evolution at different timescales is key to constraining its thermophysical properties and understanding the physical processes that take place at and below the surface. Here we report on time-resolved maps of comet 67P/Churyumov–Gerasimenko retrieved on the bas...
Article
We characterized 67P/Churyumov–Gerasimenko's cometary activity during its inbound arc before perihelion (2014 August–2015 January). We focused on the geomorphological regions of the Northern hemisphere observed by the ESA/Rosetta space probe during this time period. The GIADA dust detector characterized the physical properties of the fluffy and com...
Article
Full-text available
The surface mineralogy of dwarf planet Ceres appears to be dominated by products of rock–fluid interactions, such as phyllosilicates—some of which are NH4-bearing—and carbonates1–3. Elemental concentrations derived from the inferred mineral mixing fractions, however, do not match measurements of H, C, K and Fe on Ceres4. A complicating factor in as...
Article
Ceres is the largest object in the main belt and is a wet body with a complex geological and chemical history. Its surface is composed of opaque materials, phyllosilicates, ammoniated-bearing minerals, carbonates, water ice, and salts. Recently, aliphatic organics, whose origin is still uncertain, have also been detected on the Ceres surface by the...
Article
Full-text available
Dwarf planet Ceres is characterized by several sites hosting (or have hosted) ice-rich patches as revealed by the Dawn's Visible and InfraRed spectrometer. The study of the illumination conditions including the effects of the local topography become critical in the estimation of the ice lifetime as well as the water vapor production rate. In this w...
Article
H2O-rich materials are locally exposed at the surface of Ceres as discovered from infrared reflectance spectra of the Visible and InfraRed mapping spectrometer (VIR) of the Dawn mission. Nine locations on Ceres exhibit diagnostic absorption bands of the H2O molecule at 2.00, 1.65 and 1.28 µm. The detections are all consistent with H2O ice mixed wit...
Article
We studied the distribution in the Urvara–Yalode region of Ceres (latitudes 21–66°S, longitudes 180–360°E) of main spectral parameters derived from the VIR imaging spectrometer onboard the NASA/Dawn spacecraft, as an overall study of Ceres mineralogy reported in this special issue. In particular, we analyzed the distribution of reflectance at 1.2 µ...
Article
Full-text available
We present an analysis of transient events observed by the Visible InfraRed Thermal Imaging Spectrometer, instrument aboard Rosetta, for the dates of 2015 August 10, September 13 and 14, during the two months surrounding the comet perihelion passage of the Rosetta spacecraft. We detected and characterized events with life-times ranging from 26 min...
Conference Paper
Knowledge of surface temperature and its variations as function of illumination conditions is key for understanding the thermodynamical properties, the chemical properties and the physical structure of the regolith (porosity, roughness) of planets and small bodies in the solar system. The surface temperature can be retrieved from near-infrared spec...
Article
Ice thermal stability on the surface of the dwarf planet Ceres is an important issue linked to the Herschel observations of water vapor around Ceres. One of these surficial ice deposits is located within the 20-km crater Juling (35°S, 168°E). The study of water ice exposure in this specific crater is particularly interesting because it has been obs...
Article
This paper focuses on the identification and distribution of compositional units and their stratigraphic relationships in the Fejokoo quadrangle of Ceres (Ac-5) located between 21–66°N and 270–360°E and named after one of its prominent and well-preserved impact craters, Fejokoo (centered at 26°N and 312°E). In this quadrangle, we observed that hydr...
Article
Quadrangle Ac-H-08 Nawish is located in the equatorial region of Ceres (Lat 22°S-22°N, Lon 144°E- 216°E), and it has variable mineralogy and geology. Here, we report on the mineralogy using spectra from the Visible and InfraRed (VIR) mapping spectrometer onboard the NASA Dawn mission. This quadrangle has two generally different regions: the cratere...
Conference Paper
ESA's Rosetta spacecraft had the unique opportunity to be in the vicinity of comet 67P/Churyumov-Gerasimenko for 2.5 years, observing the regions of the coma within a few km of the surface and to study the dynamical and physical properties of the emitted dust. In this work, we will present a summary of the dust coma investigations during the pre-pe...
Article
The dwarf planet Ceres is a heavily cratered rocky body, and complex craters with a central peak are widely observed on its surface. These types of craters form when a large body impacts the surface, generating extreme temperatures and pressures. During the impact event a large volume of rock is raised from the subsurface and a central uplift is fo...
Article
We investigate the region of crater Haulani on Ceres with an emphasis on mineralogy as inferred from data obtained by Dawn's Visible InfraRed mapping spectrometer (VIR), combined with multispectral image products from the Dawn Framing Camera (FC) so as to enable a clear correlation with specific geologic features. Haulani, which is one of the young...
Article
This article presents the spectral parameter maps used in this Surface Composition of Ceres Special Issue. The definition and use of spectral parameters has always played a fundamental role in understanding the properties and composition of a planetary surface. Mapping proper spectral parameters, shows the global mineralogical diversity across Cere...
Conference Paper
Full-text available
Nitrogen is a fundamental constituent of many biological compounds, thus being an essential element for life. On Earth, nitrogen is present in any geological environment containing organic matter (e.g., oil shale, coal, marine sediments etc.), but, although in a few ppm, it is present also in igneous and metamorphic rocks as ammonium ion. The prese...
Conference Paper
Full-text available
The surface composition of (1) Ceres has been revealed with great detail by VIR spectrometer high resolution observations on board Dawn spacecraft. Spectroscopic observations in the infrared range 1-5 micron have showed an average surface composition consisting of a mixture of Mg-phyllosilicate, (Mg,Ca)-carbonate, a dark absorbing phase and NH4- ph...
Article
Occator Crater on dwarf planet Ceres hosts the so-called faculae, several areas with material 5 to 10 times the albedo of the average Ceres surface: Cerealia Facula, the brightest and largest, and several smaller faculae, Vinalia Faculae, located on the crater floor. The mineralogy of the whole crater is analyzed in this work. Spectral analysis is...
Article
Spectral parameters of Ceres measured by the Dawn/VIR imaging spectrometer are studied as a function of illumination angles, by applying a semi-empirical method based on a statistical analysis of the VIR dataset acquired up to September 2016. The study also focuses on the photometry of the Occator faculae, i.e. the brightest spots of the Ceres surf...
Article
We studied the distribution in the Urvara–Yalode region of Ceres (latitudes 21–66°S, longitudes 180–360°E) of main spectral parameters derived from the VIR imaging spectrometer onboard the NASA/Dawn spacecraft, as an overall study of Ceres mineralogy reported in this special issue. In particular, we analyzed the distribution of reflectance at 1.2 µ...
Article
Full-text available
Laboratory spectral measurements of relevant analogue materials were performed in the framework of the Rosetta mission in order to explain the surface spectral properties of comet 67P. Fine powders of coal, iron sulphides, silicates and their mixtures were prepared and their spectra measured in the Vis-IR range. These spectra are compared to a refe...
Article
Ceres has been explored by NASA/Dawn spacecraft, which allowed for the discovery of the main mineralogical and compositional characteristics of Ceres' surface. Here, we use mainly data from the Visible and InfraRed imaging spectrometer (VIR) in order to investigate the main spectral characteristics of the quadrangle Ac-H-2 Coniraya, one of the 15 q...
Article
NASA's Dawn spacecraft acquired images and hyperspectral data of Ceres by means of FC and VIR instruments, and identified some widespread bright areas or bright spots (BS). The most peculiar BS is inside Occator crater and it is characterized by spectral properties very dissimilar from the rest of Ceres' surface. To perform a mineralogical analysis...
Conference Paper
Full-text available
The Rosetta spacecraft has been orbiting the comet 67P from August 2014 to September 2016 with the aim to understand better the activity, the evolution and the surface processes of the nucleus. The VIRTIS spectrometer [1] has acquired reflectance spectra from two channels: VIRTIS-M, an imaging-spectrometer, ranging from 0.25 μm to 5.1 μm with ~2 nm...
Article
At the beginning of the Ceres investigation, the Dawn-NASA mission discovered a large bright spot (BS) in the Occator crater floor. Several other smaller bright spots were discovered during the following phases of the mission. In this paper, a complete survey for the detection of BS on the Ceres surface have been made by using the hyperspectral dat...
Article
We present an analysis of the areal distribution of spectral parameters derived from the VIR imaging spectrometer on board NASA/Dawn spacecraft. Specifically we studied the Occator quadrangle of Ceres, which is bounded by latitudes 22°S to 22°N and longitudes 214°E to 288°E, as part of the overall study of Ceres’ surface composition reported in thi...
Article
Quadrangle Ac-H-10 'Rongo' (Lat 22°S to 22°N, Lon 288°-360°E) shows a fairly homogeneous topography, with the presence of notable elevations such as Ahuna Mons, Liberalia Mons, and part of Samhain and Uhola Catenae. The deepest areas correspond to the Rongo crater region, the areas between Samhain and Uhola catenae, and the region of the quadrangle...
Article
Ac-H-6 'Haulani' is one of five quadrangles that cover the equatorial region of the dwarf planet Ceres. This quadrangle is notable for the broad, spectrally distinct ejecta that originate from the crater Haulani, which gives the name to the quadrangle. These ejecta exhibit one of the most negative ('bluest') visible to near infrared spectral slope...
Article
Mineralogical maps of the Ac-H-11 Sintana and the Ac-H-12 Toharu quadrangles of the dwarf planet Ceres were produced in order to access the composition of this planetary body. We used data from NASA's Dawn spacecraft, in particular the spectra returned by VIR, the imaging spectrometer on board. Different spectral parameters in the infrared range ha...
Article
Mapping Ceres’ surface composition in the Dantu region, located between 21° - 66°N and 90° - 180°E, offers the unique possibility to investigate changes in the surface composition related to different stratigraphic levels of Ceres’ crust. Dantu is located in a huge depression named Vendimia Planitia, which possibly represents a completely degraded...
Article
The Ceres surface is globally composed of Mg-phyllosilicates, ammoniated clays, carbonates and dark components. To obtain a more detailed mineralogical and geological investigation, the dwarf planet surface has been divided into fifteen quadrangles. The aim of this work is to investigate the abundance of phyllosilicates and ammoniated clays in the...
Conference Paper
Full-text available
The Visible and Infrared Thermal Imaging Spectrometer on board the Rosetta spacecraft acquired disk-resolved images of the nucleus of comet 67P/Churyumov-Gerasimenko for more than two years from August 2014 to September 2016. The observation campaigns have been carried out using both the visible (VIS) and infrared (IR) channels of the instrument co...
Article
The Visible and Infrared Spectrometer (VIR) instrument on the Dawn mission observed Ceres’s surface at different spatial resolutions, revealing a nearly uniform global distribution of surface mineralogy. Clearly, Ceres experienced extensive water‐related processes and chemical differentiation. The surface is mainly composed of a dark component (car...