
Andrea GalluzziIstituto Superiore di Sanità | ISS · Department of Technology and Health
Andrea Galluzzi
phd
About
15
Publications
1,927
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
303
Citations
Introduction
Publications
Publications (15)
Interactions between natives and foreign-born individuals may help to stimulate the development and the diversification of bilateral trade relationships. In fact, migrants act as trade facilitators reducing transaction costs in export activities and, consequently, more local firms are able to establish new trade relationships abroad. The pro-trade...
In this work we apply techniques and modus operandi typical of Statistical Mechanics to a large dataset about key social quantifiers and compare the resulting behaviors of five European nations, namely France, Germany, Italy, Spain and Switzerland. The social quantifiers considered are i. the evolution of the number of autochthonous marriages (i.e....
Hierarchical networks are attracting a renewal interest for modelling the
organization of a number of biological systems and for tackling the complexity
of statistical mechanical models beyond mean-field limitations. Here we
consider the Dyson hierarchical construction for ferromagnets, neural networks
and spin-glasses, recently analyzed from a sta...
We consider extensive data on Spanish international trades and population
composition and, through statistical-mechanics and graph-theory driven
analysis, we unveil that the social network made of native and foreign-born
individuals plays a role in the evolution and in the diversification of trades.
Indeed, migrants naturally provide key informatio...
Since its unification, more than a century ago, Italy has experienced strong
social and economical diversities between its southern and northern regions. In
the last decades, Italy has undergone a severe economical and political crisis
reflecting corruption at various levels of social stratification as well as a
poor involvement of its population i...
We consider statistical-mechanics models for spin systems built on hierarchical structures, which provide a simple example of non-mean-field framework. We show that the coupling decay with spin distance can give rise to peculiar features and phase diagrams much richer than their mean-field counterpart. In particular, we consider the Dyson model, mi...
In this work we study a Hebbian neural network, where neurons are arranged according to a hierarchical architecture such that their couplings scale with their reciprocal distance. As a full statistical mechanics solution is not yet available, after a streamlined introduction to the state of the art via that route, the problem is consistently approa...
Neural networks are nowadays both powerful operational tools (e.g., for pattern recognition, data mining, error correction codes) and complex theoretical models on the focus of scientific investigation. As for the research branch, neural networks are handled and studied by psychologists, neurobiologists, engineers, mathematicians and theoretical ph...
In this paper we introduce and investigate the statistical mechanics of
hierarchical neural networks: First, we approach these systems \`a la Mattis,
by thinking at the Dyson model as a single-pattern hierarchical neural network
and we discuss the stability of different retrievable states as predicted by
the related self-consistencies obtained from...
Inspired by a continuously increasing interest in modeling and framing
complex systems in a thermody- namic rationale, in this paper we continue our
investigation in adapting well known techniques (originally stemmed in fields
of physics and mathematics far from the present) for solving for the free
energy of mean field spin models in a statistical...
We consider the multitasking associative network in the low-storage limit and we study its phase diagram with respect to the noise level T and the degree d of dilution in pattern entries. We find that the system is characterized by a rich variety of stable states, including pure states, parallel retrieval states, hierarchically organized states and...
Ferromagnetic models are harmonic oscillators in statistical mechanics.
Beyond their original scope in tackling phase transition and symmetry breaking
in theoretical physics, they are nowadays experiencing a renewal applicative
interest as they capture the main features of disparate complex phenomena,
whose quantitative investigation in the past we...
In this work, we adopt a statistical-mechanics approach to investigate basic, systemic features exhibited by adaptive immune systems. The lymphocyte network made by B cells and T cells is modeled by a bipartite spin glass, where, following biological prescriptions, links connecting B cells and T cells are sparse. Interestingly, the dilution perform...
We introduce a bipartite, diluted and frustrated, network as a sparse restricted Boltzmann machine and we show its thermodynamical equivalence to an associative working memory able to retrieve several patterns in parallel without falling into spurious states typical of classical neural networks. We focus on systems processing in parallel a finite (...
In this work, we first revise some extensions of the standard Hopfield model in the low storage limit, namely the correlated attractor case and the multitasking case recently introduced by the authors. The former case is based on a modification of the Hebbian prescription, which induces a coupling between consecutive patterns and this effect is tun...