
Automatic Generation of Effective Unit Tests based
on Code Behaviour

Andrea Fornaia, Alessandro Midolo, Giuseppe Pappalardo, Emiliano Tramontana
Dipartimento di Matematica e Informatica, University of Catania, Italy

Email: surname@dmi.unict.it

Abstract—A large amount of test cases is very useful to check
the correctness of a software system while it is developed. Often
a considerable time is dedicated by human programmers to
designing effective test cases. This paper proposes an approach
for automatically generating test cases tailored to the character-
istics of the code under test. For this, the classes of a software
system to be tested are characterised by a static code analysis
aiming at summarising and representing their behaviour. As test
cases check the behaviour of code, classes that exhibit a close
behaviour may be checked using similar test cases. Therefore,
in the approach proposed, for classes having a comparable
behaviour, test cases are generated by taking as a template the test
cases available for one of the classes among the similar ones. The
approach has been assessed on a few open source projects and
has proved to be viable for generating applicable and effective
test cases for the classes.

Index Terms—test case generation, static code analysis, test
templating, verification

I. INTRODUCTION

Producing test cases is an effective way to check the cor-
rectness of a software system, and to check that evolutionary
changes aiming at improving functionalities are not introduc-
ing defects to previously correct code [11], [26]. However,
developing tests is a time consuming activity. When designing
tests, a developer has to take into account the behaviour of
the component under test to determine the set of inputs and
expected output, which are essential to implement a test case.
Moreover, during implementation some boilerplate code needs
to be added to give the needed context to the test case.

The existing literature on tests suggests several approaches
for assisting the work of developers. Since one of the tasks
of the developers is the selection of input values to be given
to a method, combinatorial approaches for input values can
be very effective and many tools have been implemented
to find values among given validity ranges, as well as out-
side validity ranges [3], [25]. Another task developers have
to perform is implementing methods calls that check the
behaviour of a class, assistance for it has been given by
tools that e.g. randomly generate a sequence of calls [7],
[17], [23]. Moreover, for the task of finding expected output
values to check against the resulting execution behaviour, often
the solution is building a model of the system [4]. Other
approaches for producing tests and make them robust include
the generation of code variations to make sure that tests can
find the erroneous behaviour [12]. Moreover, some approaches
have been proposed to automatically generate code that passes
all tests [10].

Most of the approaches aim at having and executing as
many test cases as possible, which is worthy for checking
a large amount of execution scenarios. However, given the
large number of possible input data and execution paths
inside the software system under test, execution could take an
amount of time larger than the time frame available to have
a timely feedback. This is mainly relevant for agile practices,
which prescribe both as much tests as possible, as well as
developing components, integrating and testing the overall
system several times a day, to ensure minimal design and
correct execution [1], [8]. For this, during development, test
execution time is curbed, and test cases to be executed have
to be selected among available ones [13], [15], [21].

This paper aims at automatically generating test cases
tailored to the behaviour of the class under test. Our ap-
proach provides a class with a test by using static analysis
to determine its behaviour, then such a behaviour is checked
against the behaviour gathered for other classes, finally tests
are generated starting from previously known tests for classes
having a similar behaviour. Since generated tests are tailored to
the code to be tested, they are effective for code coverage and
for finding bugs. We have used our approach to generate tests
for several software systems, whose source code is available.
According to our experiments, the tests we have generated
manage to extend the amount of code coverage significantly,
both by executing new paths within classes that had some test
cases, and by generating tests for classes that had not been
previously tested.

The rest of the paper is organised as follows. Section II
describes how we perform the analysis of classes to gather
their behaviour. Section III reports our approach for generating
tests according to the knowledge on the behaviour of classes
and other tests used as samples. Section IV shows the results of
the analysis of several software systems. Section V compares
our approach with relevant related works. Finally, conclusions
are expressed in Section VI.

II. ANALYSIS OF SOFTWARE SYSTEMS

Generally, the developer creates a test case once he has
gathered some knowledge on the expected behaviour of the
class to be tested. Then, for each method of the class, he
determines a set of inputs, among valid or invalid ranges for
the needed parameters, and an expected output to be compared
with the output provided by the method execution.

software
system Class Analyser

Test Case Analysertest
cases

generated
test case

Comparator
class

summaries

Test Generator
test

templates

similar
classes

Fig. 1. Main components realised the proposed approach for generating test cases: analysing classes, analysing test cases, comparing classes, and generating
test cases.

The proposed automatic analysis tool aims at revealing the
behaviour of a class by extracting some characteristics of the
static code. Moreover, existing test cases, implemented by
developers, are analysed in order to be later used as templates
of test cases for some other classes. Figure 1 shows the
essential components implementing the stages of the proposed
approach: (i) the analysis of classes and the extraction of their
main characteristics; (ii) the computation of similarity scores
through comparison; (iii) the analysis of test cases aiming
at finding useful templates, mainly for untested classes; (iv)
the generation of the code implementing new test cases for
selected classes.

A. Revealing Class Behaviour

For a software system, all the classes are analysed to find
their behaviour, this is summarised starting from all the used
APIs (component Class Analyser in Figure 1). APIs are classes
and methods provided to the application by the underlying
platform. E.g. the standard library APIs of the Java platform
provides applications with useful classes and methods giving
many functionalities such as generating random numbers,
accessing the file system, etc. The methods of a class under
analysis will then be marked according to the APIs used. This
is a way to recognise that classes and methods of the APIs
are an indication of the intent of the calling code [5], [6],
[24]. E.g. a method using a variable having type List and
using methods isEmpty() and add() on such a variable
exhibits, at runtime, a behaviour comprising the update of the
elements on such a list (Java APIs include interface List,
which declares methods isEmpty() and add()).

Therefore, for each analysed class, all declared variables,
and method calls are searched, then a list is created that
holds all the APIs that have been found. Once classes have
been characterised by the list of used APIs, they will be
checked to find out whether they have a comparable behaviour
(component Comparator in Figure 1).

Figure 2 shows the listing of two classes found in the
RepoDriller software system1. Both classes use Java APIs
List and String, hence both have been characterised by
the list of APIs {List, String}.

B. Comparing Classes

In order to reveal whether a pair of classes have a compa-
rable behaviour, we measure similarity according to Jaccard

1https://github.com/mauricioaniche/repodriller

similarity coefficient. The latter, when measuring the similarity
of two sets is the ratio between the cardinality of the intersec-
tion and the cardinality of the union of the sets to be compared.

For a pair of classes A and B, we measure the cardinality
of the intersection of the two sets of APIs found in their code,
hence used inside the respective classes (given as AAPI and
BAPI , respectively), and the cardinality of the union of the
two API sets. Then, Jaccard similarity coefficient for the pair
of classes is the ratio of the latter cardinalities.

J(A,B) =
|AAPI

⋂
BAPI |

|AAPI

⋃
BAPI |

As such, our similarity measure finds whether a class pair
has many or few APIs in common, where 1 is the upper bound
and 0 is the lower bound for the measure.

Once a pair of classes has been found to have a high degree
of similarity (i.e. Jaccard similarity coefficient near to 1), a test
that could be available for one class will be used as a template
for the other one.

For the pair of classes shown in Figure 2, the similarity
measured is 1, as they both use the same Java APIs List
and String.

C. Analysing Test Cases

The code of test cases is analysed to find the class that
is the target of each test (component Test Case Analyser in
Figure 1). Moreover, for each tested class, we reveal the list
of the methods that are invoked by the test. Therefore, for a test
case T we will have the list of the tested classes, e.g. {A, B,
C} and the methods invoked on each class. Then, when a test
case uses several classes, in order to determine which class is
under test, we distinguish classes whose instances are used as
parameters of method calls, from classes whose methods are
invoked. We associate the test with the class whose methods
are called. Therefore, a test for class A is found when in the
test code there is at least one method called on an instance of
class A. As a result, the same test case could be associated
with more than one class, when its code calls methods on
instances of different classes.

D. Implementation Details

The JavaParser2 library has been used to perform code
inspection of classes and test cases, for generating tests [22].
JavaParser lets us navigate the source code as an Abstract

2https://javaparser.org/

package org.repodriller.filter.diff;

import java.util.List;
import org.repodriller.util.RDFileUtils;

/**
* Only process diffs on files with certain file extensions.

*
* @author Ayaan Kazerouni

*/
public class OnlyDiffsWithFileTypes implements DiffFilter {
private List<String> fileExtensions;

public OnlyDiffsWithFileTypes(List<String> fileExtensions){
this.fileExtensions = fileExtensions;

}

@Override
public boolean accept(String diffEntryPath) {
return RDFileUtils.fileNameHasIsOfType(diffEntryPath,

this.fileExtensions);
}

}

package org.repodriller.filter.diff;

import java.util.List;
import org.repodriller.util.RDFileUtils;

/**
* Only process diffs on files without certain file extensions.

*
* @author Ayaan Kazerouni

*/
public class OnlyDiffsWithoutFileTypes implements DiffFilter {
private List<String> fileExtensions;

public OnlyDiffsWithoutFileTypes(List<String> fileExtensions){
this.fileExtensions = fileExtensions;

}

@Override
public boolean accept(String diffEntryPath) {
return !RDFileUtils.fileNameHasIsOfType(diffEntryPath,

this.fileExtensions);
}

}

Fig. 2. Classes OnlyDiffsWithFileTypes and OnlyDiffsWithoutFileTypes implemented in RepoDriller software system, using the same Java
APIs, and having the same signature for their method.

Syntax Tree (AST) having a root representing the entire file,
to which all code elements are connected, in particular each
class declarations. From this, in turn, multiple nodes can be
reached, which represent the fields or methods of the class.

Code inspection has been performed by using JavaParser’s
class VoidVisitorAdapter, which lets us define a Visitor
class to search for a specific property. In the Visitor class, a
visit() method is implemented, which takes as parameters
the type of object being searched (class declaration, method
declaration, etc.) and the container where data are saved; the
method body will implement the operations to be carried out
each time the element specified in the parameter is found. The
Visitor class works within a CompilationUnit (represent-
ing a Java file), therefore it is necessary to associate the Visitor
with a CompilationUnit. This association was carried out
for all the files of the source code.

Additionally, code inspection was performed for each
CompilationUnit using method findAll(Class<T>
NodeType), which searches within a CompilationUnit
all the elements that match the NodeType passed as pa-
rameter. We searched e.g. MethodCallExpr that represents
method calls. For each expression found, some operations were
performed in order to resolve the type found so as to trace its
origin. This was useful to find all the APIs used within each
class.

III. TEST GENERATION

This section describes component Test Generator shown in
Figure 1.

Suppose that a pair of classes A and B has a high similarity:
the idea is to generate tests for class B by replacing all
occurrences of class A in the tests found for class A, with
occurrences of class B. Of course, a test for class A would
call methods implemented in class A. Hence, when using the
test for class A as a template for class B, all the methods
called have to be checked, and possibly changed.

Four possible cases have been identified to guide method re-
placement on a template test. Firstly, classes A and B have the
same method signatures, this is the case when e.g. they imple-
ment the same interface. Secondly, classes A and B have meth-
ods having the same name but a different signature, i.e. the
type and number of parameters differ. Thirdly, classes A and B
have methods having different names with some resemblance
to each other. Method names exhibiting some resemblance
are, e.g., like the following: getNumberOfValues() and
getNumberValues(); though these names differ, a human
reader can easily recognise that they could be used for the
same goal. Fourthly, methods having the same (or almost the
same) input parameters, as their expected types, have some
resemblance to each other.

To begin with, classes are automatically inspected to find
the list of all their methods, together with each associated
signature.

As for the first case, when the methods of the classes in
a pair of similar classes have the same signature, tests are
generated by simply replacing the name of the class A with
the name of the class B. This is also a necessary step for test
generation when the following second case occurs.

For the second case, the methods in the pair of classes
have the same name, however different parameters. Then,
parameters will be replaced as follows. When the parameters
used by the method call on the template test are a superset
of the needed parameters for generating the new test, then
the method call will be rewritten by reducing the number of
parameters and selecting those needed, in the proper position.
When new parameters are needed for the method to be called,
i.e. they are not contained within the parameters of the original
method call, then a method call is written that generates new
parameters with default values, in order for the test code to
be syntactically correct.

The third case involves a different analysis, it consists in
having to call a method on the generated test that is not in the

package org.repodriller.filter.diff;

import java.util.Arrays;
import org.junit.Assert;
import org.junit.Test;

public class OnlyDiffsWithFileTypesTest {

@Test
public void shouldAcceptIfFileHasExtensionWithDot() {
Assert.assertTrue(new OnlyDiffsWithFileTypes(
Arrays.asList("cpp", ".java")).accept("/dir/File.java"));

}

@Test
public void shouldAcceptIfFileHasExtensionWithoutDot() {
Assert.assertTrue(new OnlyDiffsWithFileTypes(
Arrays.asList(".cpp", "java")).accept("/dir/File.java"));

}

@Test
public void shouldRejectIfFileDoesNotMatchExtensions() {
Assert.assertFalse(new OnlyDiffsWithFileTypes(
Arrays.asList("cpp", ".java")).accept("/dir/File.css"));

}
}

package org.repodriller.filter.diff;

import java.util.Arrays;
import org.junit.Assert;
import org.junit.Test;

public class GenOnlyDiffsWithFileTypesTest {

@Test
public void shouldAcceptIfFileHasExtensionWithDot() {
Assert.assertTrue(new OnlyDiffsWithoutFileTypes(
Arrays.asList("cpp", ".java")).accept("/dir/File.java"));

}

@Test
public void shouldAcceptIfFileHasExtensionWithoutDot() {
Assert.assertTrue(new OnlyDiffsWithoutFileTypes(
Arrays.asList(".cpp", "java")).accept("/dir/File.java"));

}

@Test
public void shouldRejectIfFileDoesNotMatchExtensions() {
Assert.assertFalse(new OnlyDiffsWithoutFileTypes(
Arrays.asList("cpp", ".java")).accept("/dir/File.css"));

}
}

Fig. 3. Test case OnlyDiffsWithFileTypesTest for class OnlyDiffsWithFileTypes and generated test case GenOnlyDiffsWithFile-
TypesTest for class OnlyDiffsWithoutFileTypes, for RepoDriller software system.

original template test. In order to find the method that will re-
place that occurring in the original method call, a method with
a similar name will be selected. As a general rule, each method
name will be decomposed into its constituting words, accord-
ing to conventions on the use of upper cases, to form a bag of
words. Hence, e.g. a method getNumberOfValues() will
produce a bag of words consisting of {get, number, of, values}.
Then, set comparisons will be made to find the possible
substitution method, selected among the most similar ones,
on the basis of the Jaccard similarity index for the bag of
words of each method. When computing similarity between
the above method and method getNumberValues(), the
intersection set will have cardinality 3 and the union set will
have cardinality 4, hence similarity among methods will be
determined as 3/4 = 0.75. In this example, the two methods
are highly similar, and can be interchanged for the sake of test
generation.

The fourth case consists in finding which pair of methods
from two different classes have a similar set of input param-
eters according to their type. Here, we list for each method
of the pair the types of its parameters and find the Jaccard
similarity index among the two sets of types.

For the purpose of generating a new test starting
from a template test, the replacements of class and
method names were performed by means of the JavaParser
LexicalPreservingPrinter class, which yields Java
code that is formatted correctly and in a standard style.

When writing code, some elements not meaningful for the
compiler are however important to humans, such as. e.g.,
indentation and comments, and should be preserved. The
above class provides method setup(Node node), which
prepares the node to be printed. The node that is passed
represents the CompilationUnit, it is therefore possible to
make changes to the nodes (e.g. change the name of the class,

change the name of the methods, insert comments, etc.), hence
transforming the original code. Method setup() indicates
the point from which all the changes will be made, which
will then result in an output using method print(Node
node). Printing generates a new Java file containing the
transformed code. Code writing was used for the generation
of tests according to the substitutions described above (see
Section III).

IV. EXPERIMENTS AND RESULTS

For the analysed software system RepoDriller, and for
the classes shown in Figure 2, unit test GenOnlyDiffs-
WithFileTypesTest was generated by taking as a
template the existing unit test OnlyDiffsWithFile-
TypesTest. Figure 3 shows the code of existing
and generated unit tests. Following the above consider-
ations on the similarity of classes and methods, gen-
erated test case GenOnlyDiffsWithFileTypesTest
has been produced by substituting occurrences of class
OnlyDiffsWithFileTypes into occurrences of class
OnlyDiffsWithoutFileTypes.

The proposed approach has been employed for analysing
several Java software systems found on repositories. Since
we exploit existing tests as templates for the generation
of new tests, we have taken software systems from Maven
Repository3, which lets us quickly check the existence of tests.

Table I shows a summary of the metrics related to our test
generation solution and produced for the software systems
under analysis. For each analysed system, column classes
shows the number of classes; column tests gives the number
of existing tests; column tested gives the number of classes for
which at least a test has been found in the repository; column

3https://mvnrepository.com

TABLE I
METRICS ON THE ANALYSED SOFTWARE SYSTEMS, INCLUDING THE NUMBER OF GENERATED TESTS (COLUMN gen), AND THE NUMBER OF CLASSES

PREVIOUSLY NOT TESTED AND COVERED BY GENERATED TESTS (COLUMN cover).

system classes tests tested single gen incr cover max min t > 0.5
argparse4j 60 29 31 3 21 72% 7 1 0.05 23
jnr-unixsocket 17 15 9 0 2 13% 0 0.8 0.06 2
junit4 180 228 94 9 61 27% 19 1 0.03 106
mybatis3 279 572 129 9 402 70% 63 1 0.03 495
plexus-io 50 14 18 2 6 43% 6 1 0.06 20
repodriller 57 33 32 3 26 79% 6 1 0.05 29
vertx-mail-client 38 54 18 8 10 19% 0 1 0.05 11

single gives the number of tests found in the repository that
execute a single class; column gen gives the number of newly
generated tests, thanks to our approach; column incr gives
the percentage increment of available tests accruing from our
test generation; column cover gives the number of classes for
which a test has been generated that were not previously tested,
hence increasing code coverage. Moreover, columns max and
min give the maximum and minimum values of similarity
found among a pair of classes on the project, respectively.
Finally, column t > 0.5 gives the number of class pairs found
to have a similarity greater than the threshold set as 0.5.

For the experiments, the minimum similarity threshold
among classes has been set at 0.5, in order to select pairs of
classes comparable enough to each other, and make the test
generation effective. Among all software systems, similarity
between pairs of classes was between 0.03 and 1. By setting
the similarity threshold to 0.5, we have found a relatively
low number of pairs (typically a bit less than 1%, 0, 9% for
RepoDriller) compared to the total number of possible pairs.
Still, for the analysed systems many classes have a comparable
behaviour, i.e. between 2 and 495 pairs for the smallest and
largest software system, respectively (see column t>0.5 in
Table I).

For each pair of classes whose similarity is greater than
the predetermined threshold, test generation was performed
according to the four previously defined cases. The number
of test cases generated ranged from 2 to 402 (see column gen
in Table I). The percentage increment for tests was between
13% and 72%. Moreover, column cover shows that between
6 and 63 additional classes were tested. In our approach,
classes that have no test cases in the repository are selected as
candidates for the following analysis finding class similarity
and applicable test cases to be used as templates. Hence, when
it is possible to generate tests, code coverage is also improved.

For test generation, the number of class pairs that matched
our third method substitutions strategy (i.e. method name
similarity) were greater than the other cases (up to 245 for
the largest software system). However, sometimes it was not
possible to employ the third method substitution strategy or the
fourth (i.e. input parameter similarity) either. Several methods
(up to 80) were substituted by means of the first and the
second cases. For such matchings a number of new tests were
generated.

Summing up, obviously, the tests that can be generated for
a software system depend both on the amount of classes that

are found to have a similar behaviour and the existing tests
that can be taken as a template.

V. RELATED WORK

Randoop [17] produces test cases by generating random
sequence of method calls after inspecting the class to be
tested, unaware of the resulting code coverage. Our proposed
approach aims at generating tests that execute class code as if
tests were tailored to the code of classes.

EvoSuite [7] uses symbolic execution of the code to be
tested to generate test cases containing sequences of method
calls. Sequences of possible method calls are selected using
an evolutionary approach to take the most fit over code
coverage. Hence, it needs executing the software system under
test several times, in order to check the fitness of each
sequence of method calls. In our approach, the static analysis
of given tests let us recognise whether some classes have no
corresponding unit tests, and such classes will be considered
for test generation.

With DynaMOSA [20], which is an extension of previous
work MOSA [19], the authors model the coverage maximisa-
tion for test case generation as a many-objective optimisation
problem. In this type of search problems, more than one
fitness function has to be optimised; in this case, one for
each target (e.g. statement) to be covered in the class under
test. Traditional many-objective optimisation algorithms can
deal with a relatively small number of objectives (up to
50 [14]), which is too low when compared with the number
of coverage targets to be considered, even for a small class.
The authors propose two selection strategies to overcome this
limitation, making the multi-objective algorithm suitable for
test case generation. Such strategies have been implemented
by extending EvoSuite, implying, in this case too, the need
to execute the system under test several times to check the
fitness of each test sequence. In contrast, we only rely on
static analysis to generate tests for new classes.

COFFEe [2] is a comprehensive framework for Combina-
torial Interaction Testing (CIT) and Fault Characterisation
(FC). The authors provide a tool based on JUnit5 integrating
several stages: input parameter modelling, test generation, test
execution, and fault characterisation. The tester will still have
to provide both the model for generating the combinations
of input parameters and a unit test describing the test steps
to be performed with every given parameter combination.
Our approach can be used together with this framework, as

it automatically generates unit tests for previously untested
classes and avoids the manual preparation of such an artifact
needed as input for COFFEe.

In [16], test cases are generated in order to cover as many
paths as possible. Moreover, the number of test cases are
reduced by finding paths covered by more than one test
case. Their approach is computationally expensive, compared
to ours, since it requires the execution of each test case.
Moreover, it could be advantageously complemented by ours,
in order to reduce computation time: along the lines we
introduced, one could select pairs of classes with similar
behaviour, pass only one class of the pair to the tool of [16]
to generate tests cases, and then enlarge these.

Other approaches have been proposed to reduce the number
of test cases, e.g. once they have been generated automatically,
in order to reduce execution time, or when considering that
code coverage has not been increased [9], [12], [18]. In our
approach, by analysing the test code and the application code,
we can reveal which classes have not been tested and generate
proper test cases selectively.

VI. CONCLUSIONS

This paper has proposed a novel and effective approach
capable of generating test cases which takes advantage of
the knowledge gathered from the static code of classes to
be tested and from the static code of existing test cases. As
such, computation time for generating test cases is limited
(depending on the amount of code to be analysed, and not on
its execution time).

We have shown that the devised strategies for comparing
classes and finding the pairs with similar behaviour, in order to
reveal which test templates are applicable, are effective, since
many analysed software systems have exhibited numerous
enough pair of classes with similarities higher than 0.5 (the
mid value was chosen as a threshold). Moreover, generated
test cases were a significant number for the analysed software
systems, showing that the proposed substitutions of class
and method names performed on existing test cases (taken
as templates) are a viable solution. Test cases generation
managed to include also classes that had not been previously
tested, hence increasing code coverage and enhancing the
effectiveness of tests.

REFERENCES

[1] K. Beck and E. Gamma. Extreme programming explained: embrace
change. Addison-Wesley Professional, 2000.

[2] J. Bonn, K. Foegen, and H. Lichter. A framework for automated
combinatorial test generation, execution, and fault characterization. In
Proceedings of IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), pages 224–233, 2019.

[3] A. Calvagna, A. Fornaia, and E. Tramontana. Random versus combi-
natorial effectiveness in software conformance testing: A case study. In
Proceedings of ACM Symposium on Applied Computing, pages 1797–
1802, 2015.

[4] A. Calvagna and E. Tramontana. Automated conformance testing of java
virtual machines. In Proc. of IEEE Conference on Complex, Intelligent,
and Software Intensive Systems (CISIS), Taichung, Taiwan, 2013.

[5] A. Fornaia and E. Tramontana. Deduct: a data dependence based concern
tagger for modularity analysis. In Proceedings of IEEE Computer
Software and Applications Conference (COMPSAC), volume 2, pages
463–468, 2017.

[6] A. Fornaia and E. Tramontana. Is my code easy to port? using taint
analysis to evaluate and assist code portability. In Proceedings of IEEE
International Conference on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE), pages 269–274, 2017.

[7] G. Fraser and A. Arcuri. Evosuite: automatic test suite generation for
object-oriented software. In Proc. of ACM SIGSOFT Symposium and
European conference on Foundations of software engineering, 2011.

[8] D. Fucci, H. Erdogmus, B. Turhan, M. Oivo, and N. Juristo. A dissection
of the test-driven development process: does it really matter to test-first
or to test-last? IEEE Transactions on Software Engineering, 43(7):597–
614, 2016.

[9] A. Gotlieb and D. Marijan. Flower: optimal test suite reduction as a
network maximum flow. In Proc. of ACM International Symposium on
Software Testing and Analysis, 2014.

[10] Y. Higo, S. Matsumoto, R. Arima, A. Tanikado, K. Naitou, J. Mat-
sumoto, Y. Tomida, and S. Kusumoto. kgenprog: A high-performance,
high-extensibility and high-portability apr system. In Proceedings of
IEEE Asia-Pacific Software Engineering Conference (APSEC), pages
697–698, 2018.

[11] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig. Usage,
costs, and benefits of continuous integration in open-source projects. In
2016 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 426–437. IEEE, 2016.

[12] N. Jatana, B. Suri, P. Kumar, and B. Wadhwa. Test suite reduction by
mutation testing mapped to set cover problem. In Proc. of ACM In-
ternational Conference on Information and Communication Technology
for Competitive Strategies, 2016.

[13] O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov. An
extensive study of static regression test selection in modern software
evolution. In Proc. of ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 583–594, 2016.

[14] B. Li, J. Li, K. Tang, and X. Yao. Many-objective evolutionary
algorithms: A survey. ACM Computing Surveys (CSUR), 48(1):1–35,
2015.

[15] M. Mongiovì, A. Fornaia, and E. Tramontana. A network-based
approach for reducing test suites while maintaining code coverage. In
Proceedings of International Conference on Complex Networks and
Their Applications, pages 164–176. Springer, 2019.

[16] C. Murphy, Z. Zoomkawalla, and K. Narita. Automatic test case
generation and test suite reduction for closed-loop controller software.
Technical report, University of Pennsylvania, Department of Computer
and Information Science, 2013.

[17] C. Pacheco and M. D. Ernst. Randoop: feedback-directed random testing
for java. In Proc. of OOPSLA Companion, 2007.

[18] S. Panda and D. P. Mohapatra. Regression test suite minimization using
integer linear programming model. Software: Practice and Experience,
47(11):1539–1560, 2017.

[19] A. Panichella, F. M. Kifetew, and P. Tonella. Reformulating branch
coverage as a many-objective optimization problem. In Proceedings
of IEEE international conference on software testing, verification and
validation (ICST), pages 1–10, 2015.

[20] A. Panichella, F. M. Kifetew, and P. Tonella. Automated test case
generation as a many-objective optimisation problem with dynamic
selection of the targets. IEEE Transactions on Software Engineering,
44(2):122–158, 2017.

[21] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Prioritizing test
cases for regression testing. IEEE Transactions on software engineering,
27(10):929–948, 2001.

[22] N. Smith, D. van Bruggen, and F. Tomassetti. JavaParser: Visited–
Analyse, transform and generate your Java Code Base. Leanpub, 2018.

[23] S. Thummalapenta, T. Xie, N. Tillmann, J. De Halleux, and Z. Su. Syn-
thesizing method sequences for high-coverage testing. ACM SIGPLAN
Notices, 46(10):189–206, 2011.

[24] E. Tramontana. Automatically characterising components with concerns
and reducing tangling. In Proceedings of IEEE Computer Software and
Applications Conference (COMPSAC), pages 499–504, 2013.

[25] S. Xu, H. Miao, and H. Gao. Test suite reduction using weighted set cov-
ering techniques. In Proc. of IEEE International Conference on Software
Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing, 2012.

[26] S. Yoo and M. Harman. Regression testing minimization, selection and
prioritization: a survey. Software testing, verification and reliability,
22(2):67–120, 2012.

