About
32
Publications
5,496
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
858
Citations
Introduction
I am a computational chemist with a Physical Chemistry background and expertise in performing all atom and coarse grained Molecular Dynamics simulations of biologically relevant molecules using different MD software packages, such as NAMD, GROMACS and AMBER. I have an extensive knowledge of widely used Molecular Modeling software packages, such as VMD, Chimera and PyMol. I have gained experience in the use of Tcl and Python programming languages.
Skills and Expertise
Publications
Publications (32)
Predicting EPR spectra from large-scale all-atom MD simulations of POPC lipid bilayers with α-helical transmembrane peptides (LA) 12 tests current models and reveals new insights into peptide effects on bilayer structures and dynamics.
Bacterial resistance to antibiotics has been long recognized as a priority to address for human health. Among all micro-organisms, the so-called multi-drug resistant (MDR) bacteria, which are resistant to most, if not all drugs in our current arsenal, are particularly worrisome. The World Health Organization has prioritized the ESKAPE (Enterococcus...
The secondary transporters of the resistance-nodulation-cell division (RND) superfamily mediate multidrug resistance in Gram-negative bacteria like Pseudomonas aeruginosa. Among these RND transporters, MexB, MexF, and MexY, with partly overlapping specificities, have been implicated in pathogenicity. Only the structure of the former has been resolv...
The increasing interest in the molecular mechanism of the binding of different agonists and antagonists to β2-adrenergic receptor (β2AR) inactive and active states has led us to investigate protein–ligand interactions using molecular docking calculations. To perform this study, the 3.2 Å X-ray crystal structure of the active conformation of human β...
An integrated theoretical/experimental strategy has been applied to the study of environmental effects on the spectroscopic parameters of 4-(diphenylamino)phtalonitrile (DPAP), a fluorescent molecular rotor. The computational part starts from the development of an effective force field for the first excited electronic state of DPAP and proceeds thr...
Over the last two decades, an increasing number of studies has been devoted to a deeper understanding of the molecular process involved in the binding of various agonists and antagonists to active and inactive conformations of β2-adrenergic receptor (β2AR). The 3.2 Å x-ray crystal structure of human β2AR active state in combination with the endogen...
The voltage-gated potassium channel Kv4.3 plays a vital role in shaping the timing, frequency, and backpropagation of electrical signals in the brain and heart by generating fast transient currents at subthreshold membrane potentials in repetitive firing neurons. To achieve its physiological function, Kv4.3 is assisted by auxiliary -subunits which...
Fluorescent probes are widely employed to label lipids for the investigation of structural and dynamic properties of model and cell membranes through optical microscopy techniques. Although the effect of tagging a lipid with an organic dye is generally assumed to be negligible, optically modified lipids can nonetheless affect the local lipid struct...
Lipid lateral diffusion in membrane bilayers is a fundamental process exploited by cells to enable complex protein structural and dynamic reorganizations. For its importance, lipid mobility in both cellular and model bilayers has been extensively investigated in recent years, especially through the application of time-resolved, fluorescence-based,...
Of the many biophysical techniques now being brought to bear on studies of membranes, Electron Paramagnetic Resonance (EPR) of nitroxide spin probes was the first to provide information about both mobility and ordering in lipid membranes. Here, we report the first prediction of variable temperature EPR spectra of model lipid bilayers in the presenc...
Antimicrobial peptides (AMPs) are small cationic proteins that are able to destabilize a lipid bilayer structure through one or more modes of action. In this study, we investigate the processes of peptide aggregation and pore formation in lipid bilayers and vesicles by the highly cationic AMP, Chrysophsin-3 (chrys-3), using coarse-grained molecular...
Despite the vast amount of experimental and theoretical studies on the binding affinity of cations - especially the biologically relevant Na(+) and Ca(2+) - for phospholipid bilayers, there is no consensus in the literature. Here we show that by interpreting changes in the choline headgroup order parameters according to the 'molecular electrometer'...
Biogenesis of high-density lipoproteins (HDL) is coupled to the transmembrane protein, ATP-binding cassette transporter A1 (ABCA1), which transports phospholipid (PL) from the inner to the outer membrane monolayer. Using a combination of computational and experimental approaches, we show that increased outer lipid monolayer surface density, driven...
LCAT is activated by apo A-I to form cholesteryl ester. We combined two structures-phospholipase A2 (PLA2), that hydrolyzes the ester bond at the sn-2 position of oxidized (short) acyl chains of phospholipid, and a bacteriophage, tubulin PhuZ-as C- and N-terminal templates, respectively, to create a novel homology model for human LCAT. The juxtapos...
Since spheroidal HDL particles (sHDL) are highly dynamic, molecular dynamics (MD) simulations are useful for obtaining structural models. Here we use MD to simulate sHDL with stoichiometries of reconstituted and circulating particles. The hydrophobic effect during simulations rapidly remodels discoidal HDL containing mixed lipids to sHDL containing...
HDL is a population of apoA-I-containing particles inversely correlated with heart disease. Because HDL is a soft form of matter deformable by thermal fluctuations, structure determination has been difficult. Here, we compare the recently published crystal structure of lipid-free (Δ185-243)apoA-I with apoA-I structure from models and molecular dyna...
Apolipoprotein (apo) A-I-containing lipoproteins in the form of high-density lipoproteins (HDL) are inversely correlated with atherosclerosis. Because HDL is a soft form of condensed matter easily deformable by thermal fluctuations, the molecular mechanisms for HDL remodeling are not well understood. A promising approach to understanding HDL struct...
For several decades, the standard model for high density lipoprotein (HDL) particles reconstituted from apolipoprotein A-I
(apoA-I) and phospholipid (apoA-I/HDL) has been a discoidal particle ∼100 Å in diameter and the thickness of a phospholipid
bilayer. Recently, Wu et al. (Wu, Z., Gogonea, V., Lee, X., Wagner, M. A., Li, X. M., Huang, Y., Undurt...
For several decades, the standard model for high density lipoprotein (HDL) particles reconstituted from apolipoprotein A-I (apoA-I) and phospholipid (apoA-I/HDL) has been a discoidal particle ∼100 Å in diameter and the thickness of a phospholipid bilayer. Recently, Wu et al. (Wu, Z., Gogonea, V., Lee, X., Wagner, M. A., Li, X. M., Huang, Y., Undurt...
We study the structure and dynamics of spherical high density lipoprotein (HDL) particles through coarse-grained multi-microsecond molecular dynamics simulations. We simulate both a lipid droplet without the apolipoprotein A-I (apoA-I) and the full HDL particle including two apoA-I molecules surrounding the lipid compartment. The present models are...
Conversion of discoidal phospholipid (PL)-rich high density lipoprotein (HDL) to spheroidal cholesteryl ester-rich HDL is
a central step in reverse cholesterol transport. A detailed understanding of this process and the atheroprotective role of
apolipoprotein A-I (apoA-I) requires knowledge of the structure and dynamics of these various particles....
The product of transesterification of phospholipid acyl chains and unesterified cholesterol (UC) by the enzyme lecithin:cholesterol acyltransferase (LCAT) is cholesteryl ester (CE). Activation of LCAT by apolipoprotein (apo) A-I on nascent (discoidal) high-density lipoproteins (HDL) is essential for formation of mature (spheroidal) HDL during the a...
Conversion of discoidal phospholipid (PL)-rich high density lipoprotein (HDL) to spheroidal cholesteryl ester-rich HDL is a central step in reverse cholesterol transport. A detailed understanding of this process and the atheroprotective role of apolipoprotein A-I (apoA-I) requires knowledge of the structure and dynamics of these various particles....
Apolipoprotein (apo) A-I is an unusually flexible protein whose lipid-associated structure is poorly understood. Thermal denaturation, which is used to measure the global helix stability of high-density lipoprotein (HDL)-associated apoA-I, provides no information about local helix stability. Here we report the use of temperature jump molecular dyna...
Spheroidal high-density lipoprotein (HDL) particles circulating in the blood are formed through an enzymatic process activated by apoA-I, leading to the esterification of cholesterol, which creates a hydrophobic core of cholesteryl ester molecules in the middle of the discoidal phospholipid bilayer. In this study, we investigated the conformation o...
ApoA-I is a uniquely flexible lipid-scavenging protein capable of incorporating phospholipids into stable particles. Here we report molecular dynamics simulations on a series of progressively smaller discoidal high density lipoprotein particles produced by incremental removal of palmitoyloleoylphosphatidylcholine via four different pathways. The st...
The interaction of the divalent metal ions Mg(2+), Cd(2+), and Ni(2+) with liquid crystalline NaDNA solutions (molar ratios Me(2+)/DNA-phosphate </=0.050) was investigated by polarized light microscopy and multinuclear (31)P, (2)H, and (23)Na NMR. Our findings show that the state of the cholesteric NaDNA phase at equal MgCl(2), CdCl(2), or NiCl(2)...
A combined use of (31)P, (23)Na, (2)H and (17)O NMR spectroscopies and polarized light microscopy has been employed to investigate the effect of the ethidium bromide (EB) binding on the liquid crystalline phase of concentrated double stranded DNA solutions. The optical textures and the (31)P and (23)Na NMR spectra of the DNA anisotropic solutions s...