Hamiltonian properties and the bipartite independence number

Oscar Ordaza, Denise Amarb,*, André Raspaudb
aMathematics Department, Faculty of Science, Universidad Central de Venezuela, Ap. 47567, Caracas 1041-A, Venezuela
bLaBRI, Université de Bordeaux 1, 351, Cours de la Libération, 33405 Talence Cedex, France
Received 28 January 1993; revised 3 May 1995

Abstract

By using the notion of compatibility of subgraphs with a perfect matching developed for digraphs in [1], we show that if, in a balanced bipartite graph G of minimum degree δ, the maximum cardinality α_{bip} of a balanced independent subset satisfies $\alpha_{\text{bip}} \leq 2\delta - 4$, then G is hamiltonian-biconnected, and if $\alpha_{\text{bip}} \leq 2\delta - 2$, G contains a hamiltonian path. Moreover, we give some properties of balanced bipartite graphs which are not hamiltonian, and which satisfy $\alpha_{\text{bip}} \leq 2\delta - 2$.

1. Introduction

A simple bipartite graph with vertex set $V(G) = X \cup Y$ and edge set $E(G)$ is denoted by $G = (X, Y, E)$; X and Y are the partite sets.
If $|X| = |Y|$, the bipartite graph is said to be balanced.
The minimum degree of a graph G is denoted by $\delta(G)$.
Let $G = (X, Y, E)$ be a balanced bipartite graph of order $2n$, that is such that $|X| = |Y| = n$, with minimum degree $\delta(G) \geq 2$.
A bipartite independent set S is a balanced independent subset of $V(G)$ that is such that $|S \cap X| = |S \cap Y|$.
The bipartite independence number $\alpha_{\text{bip}}(G)$ of a balanced bipartite graph is the maximum cardinality of a balanced independent set of G.
This parameter has been introduced by Ash [2], Jackson and Ordaz [6]; its relation with hamiltonism has been studied by Fraisse [4], and Favaron et al. [3].

* Corresponding author.
If \(H \) is a subgraph of \(G \), we denote by \(N(H) \) the set of the neighbours of the vertices of \(H \) in \(G \). For any vertex \(x \in V(G) \), \(N_H(x) \) denotes the set of the neighbours of \(x \) which are in \(H \).

We denote by \(\langle G \setminus H \rangle \) the induced subgraph with vertex-set \(V(G) \setminus V(H) \).

If \(P = x_1y_1 \ldots x_py_p \) is a path in \(G \) joining two vertices \(b \in Y \) and \(a \in X \), we denote by \(bx_1y_1 \ldots x_py_a \) the path \(P^* = bx_1y_1 \ldots x_py_a \).

If \(u_i \in V(P) \), and \(v_j \in V(P) \), \(u_iPv_j \) denotes the segment of the path \(P \) with end-vertices \(u_i \) and \(v_j \).

We denote by \(N^+_P(x) \) (resp. \(N^-_P(x) \)) the set of the successors (resp. the predecessors) of the vertices of \(N_P(x) \) on \(P \), following a chosen direction.

If \(C \) is a cycle we choose arbitrarily an orientation on \(C \); if \(a \in V(C) \), and \(b \in V(C) \), \(aCb \) denotes the segment of \(C \) with end-vertices \(a \) and \(b \), following the chosen orientation, \(bCa \) the segment of \(C \) with end-vertices \(b \) and \(a \), following the opposite orientation.

We denote by \(N^+_C(x) \) (resp. \(N^-_C(x) \)) the set of the successors (resp. the predecessors) of the vertices of \(N_C(x) \) on \(C \), following the chosen orientation.

If \(G_1 = (X_1, Y_1, E_1) \) and \(G_2 = (X_2, Y_2, E_2) \) are two bipartite graphs, we denote by \(G_1 \oplus G_2 \) the bipartite graph \(G = (X, Y, E) \) where \(X = X_1 \cup X_2, Y = Y_1 \cup Y_2, \) and \(E = E_1 \cup E_2 \cup \{(a_1,b_2) \mid a_1 \in X_1, b_2 \in Y_2\} \cup \{(a_2,b_1) \mid a_2 \in X_2, b_1 \in Y_1\} \).

If \(p \in N^*_G \) and \(G \) is a graph, we use \(pG_1 \) to represent a set of \(p \) independent graphs isomorphic to \(G \).

Definition 1. If \(M_0 \) is a perfect matching in \(G \), we say that a cycle \(C \) (resp. a subgraph \(H \)) in \(G \) is \(M_0 \)-compatible, if \(E(M_0) \cap E(C) \) (resp. \(E(M_0) \cap E(H) \)) is a perfect matching of \(C \) (resp. \(H \)).

Definition 2. We say that a cycle \(C \), subgraph \(H \) resp. in \(G \) is \(M \)-compatible if there exists a perfect matching \(M_0 \) in \(G \), for which \(C, H \), resp. is \(M_0 \)-compatible.

2. A condition for hamiltonicity

Theorem (Favaron et al. [3]). If \(G \) is a balanced bipartite graph such that

\[
\alpha_{\text{bip}}(G) \leq \delta(G)
\]

then \(G \) is hamiltonian, except in two cases: \(G = 3K_{1,1} \oplus K_{1,1} \) or \(G = 3K_{1,1} \oplus K_{1,1} \).

We prove the following result which, for \(\delta(G) \geq 3 \), is an improvement of the previous one.

Proposition 1. If \(G \) is a balanced bipartite graph such that

\[
\alpha_{\text{bip}}(G) \leq 2\delta(G) - 4
\]

then \(G \) is hamiltonian.
We give a proof of this theorem based on the techniques of perfect matchings and cycles or subgraphs which are M-compatible.

Lemma 1. If G is a balanced bipartite graph such that $\alpha_{\text{bip}}(G) \leq 2\delta(G)$, then there exists in G a perfect matching.

Proof. By a theorem of König-Hall, it suffices to prove that for every subset $A \subset X$, $|N(A)| \geq |A|$. Assume by contradiction that for some subset A of X, $|N(A)| < |A|$. Set $N(A) = B$. Since $|N(A)| \geq \delta$, then $|A| \geq \delta + 1$. Let $B' = Y \setminus B$ and $A' = X \setminus A$, then $N(B') \subset A'$, and we have $\delta \leq |A'| = n - |A| < n - |B| = |B'|$. This implies that $|B'| \geq \delta + 1$, and $A \cup B'$ is an independent bipartite set which contains a balanced independent set with $2\delta + 2$ vertices. □

Proof of Proposition 1. Assume by contradiction that $G = (X, Y, E)$ is a balanced bipartite graph of order $2n$, such that $\alpha_{\text{bip}}(G) \leq 2\delta(G) - 4$ and that G is not hamiltonian.

By Lemma 1, G admits a perfect matching M.

Let C be a longest M-compatible cycle of G. The cycle C is M-compatible; so there exists a perfect matching M_0 in G such that $E(C) \cap M_0$, resp. $E(G \setminus C) \cap M_0$ are perfect matchings in C, resp. $G \setminus C$. G being connected there exists a path P which satisfies the following three conditions:

(i) $V(P) \subset V(G) \setminus V(C)$, and one of its end-vertex is adjacent to C,
(ii) $C \cup P$ is M-compatible,
(iii) subject to (i) and (ii), P is as long as possible.

The cycle C and the path P are denoted by $a_1b_1a_2b_2 \ldots a_kb_k$, with $k < n$, and $x_1y_1x_2y_2 \ldots x_py_p$, respectively.

Without loss of generality, we can suppose that x_1 is adjacent to b_k.

We set $\delta = \delta(G)$.

Case 1: Suppose that for every cycle C and path P satisfying the conditions (i)–(iii), P has only one end-vertex which is adjacent to C.

Then $N(y_p) \subset V(P)$ and $p \geq \delta(G)$. Moreover, if $\{x_p, x_{i_2}, \ldots, x_{i_d}\} \subset N(y_p)$, with $p > iu_2 > \ldots > i_d$, the vertices $y_p, y_{i_2}, \ldots, y_{i_d}$ are not adjacent to any vertex of C, elsewhere one can find a path P' as long as P with both ends adjacent to C. It is easy to see that $C \cup P'$ is M-compatible:

By definition if $C \cup P$ is M-compatible, there exists a perfect matching M_0 in G such that:

$M_0 = \{(x_1, y_1) \cdots (x_p, y_p)\} \cup M'_0 \cup M''_0$, where M'_0 and M''_0 are perfect matchings of C and $\langle G \setminus (C \cup P) \rangle$, respectively.

Suppose y_{i_u} is adjacent to a vertex $a_s \in V(C)$. Let $P' = x_1y_1 \cdots x_{i_u}y_px_py_{p-1} \cdots y_{i_u}$; we consider the perfect matching:

$M_1 = M'_0 \cup M''_0 \cup \{(x_1, y_1) \cdots (x_{i_{u-1}}, y_{i_{u-1}}), (x_{i_u}, y_p)(x_p, y_{p-1}) \cdots (x_{i_{u+1}}, y_{i_u})\}$.
$C \cup P'$ is M_1-compatible. Then it is M-compatible.

Then the set $S = \{a_1, a_2, \ldots, a_b, y_p, y_{i_2}, \ldots, y_{i_b}\}$ is a balanced independent set of cardinality 2δ, and thus we have a contradiction.

Case 2: Suppose that y_p is adjacent to C.

Remark. The set $N(x_1) \subset C \cup P$, elsewhere we could find a path P' longer than P which satisfies conditions (i)-(iii).

Let $a_1 b_1 \ldots a_b b_k a_1$ be an arbitrary orientation of C.

Let $N_p(y_p) = \{x_p, x_{i_2}, \ldots, x_{i_b}\}$.

$|N_c(y_p)| \geq \sup(1, \delta - |N_p(y_p)|) \Rightarrow |N_c(y_p)| \geq \delta - r$.

We can find $a_j \in N_c(y_p)$, such that

$$(N_c(x_1) \cup N_c(y_p)) \cap V(a_1, C, b_{j-1}) = \emptyset.$$

Then $2p \leq |V(a_1 C b_{j-1})| = 2(j - 1)$, and $r \leq p \leq j - 1$.

Claim. The set $S = (\{a_1, a_2, \ldots, a_p\} \cup N_c(x_1)^+) \cup (\{y_p, y_{i_2}, \ldots, y_{i_b}\} \cup N_c(y_p)^+)$ is an independent subset of G.

It is easy to see that every edge between vertices of S creates a cycle which is M-compatible and longer than C.

The set S contains a balanced independent set with at least $2(r + (\delta - r - 1)) = 2\delta - 2$ vertices, a contradiction. \square

Remark. Theorem 1 is the best possible, in the following sense:

Although the graphs $G = K_{p, p} \oplus K_{1, 1}$, or $G = 3K_{p, p} \oplus K_{1, 1}$ and the graphs $G = (2p + 1)K_{1, 1} \oplus \Gamma$, where Γ is a balanced bipartite graph with $2p$ vertices, are not hamiltonian, each of them satisfies:

$\alpha_{bip}(G) = 2p = 2\delta(G) - 2$.

3. Non-Hamiltonian bipartite graphs satisfying $\alpha_{bip}(G) = 2\delta(G) - 2$

We want to prove that bipartite graphs satisfying the condition $\alpha_{bip}(G) = 2\delta(G) - 2$ are hamiltonian except for some families of graphs we can describe and we obtain the following result.

Proposition 2. If G is a balanced bipartite graph such that $\alpha_{bip}(G) = 2\delta(G) - 2$, then G is hamiltonian or G contains a cycle C of length $2n - 2$, such that $\langle G \setminus C \rangle$ is an edge, or G is isomorphic to $3K_{p, p} \oplus K_{1, 1}$ or to $3K_{p, p} \oplus \bar{K}_{1, 1}$.

Let $G = (X, Y, E)$ be a balanced bipartite graph of order $2n$, such that $\alpha_{bip}(G) = 2\delta(G) - 2$.
By Lemma 1, we know that there exist perfect matchings in G.
We suppose that G is not hamiltonian and does not contain a cycle C such that $\langle G \backslash C \rangle$ is an edge.
We consider a longest M-compatible cycle C, and a path P, that satisfy the three conditions (i)-(iii) defined in the proof of the Theorem 1.
In order to prove the Proposition 2, we prove Claims 1–8.
In Section 2, we proved that if y_p is not adjacent to C, $\alpha_{bip}(G) \geq 2\delta(G)$.
Without loss of generality, we can suppose that x_1 is adjacent to b_k and that y_p is adjacent to a vertex a_j such that $(N_C(x_1) \cup N_C(y_p)) \cap V(a_1 C b_{j-1}) = \emptyset$.
Theorem 2. \[2p \leq |V((a_1 C b_{j-1}))| = 2(j - 1). \]

Claim 1. Under the previous hypothesis, $V(G) = V(C \cup P)$ and $p > 1$.

Proof. If (x, β) is an edge of a matching in $\langle G \backslash (C \cup P) \rangle$, we consider the set $(\{a_1, \ldots, a_p\} \cup N_C^+(x_1) \cup \{x\}) \cup (N_C^+(y_p) \cup N_C^+(y_p))$; if it is independent, it contains a balanced independent set of cardinality $2\delta(G)$, a contradiction.
We can suppose that x is adjacent to a vertex of the set $N_C^+(y_p)$.
Then, we consider vertices $a_i \in V(C) \cap X$, and $b_s \in V(C) \cap Y$, such that $j < l < s < k$,
$$(a_i, y_p) \in E(G), (x_1, b_s) \in E(G) \quad \text{and} \quad (N_C(x_1) \cup N_C(y_p)) \cap V(b_l, C, a_s) = \emptyset.$$\\
The set $(\{b_l, b_{l+1}, \ldots, b_{l+p-1}\} \cup N_C^+(y_p) \cup \{\beta\}) \cup (N_C^+(x_1) \cup N_C^+(x_1))$ is then independent, and it contains a balanced independent set of cardinality $2\delta(G)$, a contradiction. Then $V(G) = V(C) \cup V(P)$.
Theorem 2. If G is not hamiltonian, and satisfies the condition $\alpha_{bip}(G) \leq 2\delta(G) - 2$, the vertices x_1 and y_p satisfy:

$$|N_p(x_1)| = p = |N_p(y_p)|; d(x_1) = \delta(G) = d(y_p).$$\\

Proof. The set $I = (\{a_1, \ldots, a_p\} \cup N_C^+(x_1)) \cup (N_C^+(y_p) \cup N_C^+(y_p))$ is independent, then:
The equality holds, and we can complete the proof of Claim 2.

Claim 3. (1) $\{x_1, x_2, \ldots, x_p, y_1, y_2, \ldots, y_p\}$ induces a complete bipartite graph.
(2) For $1 \leq i \leq p, d(x_i) = d(y_i) = \delta$, and $N(x_i) = N(x_1)$, and $N(y_i) = N(y_p)$.
Proof. If \(|\bigcup_{i=1}^{p} N_c(x_i)| > \delta - p \), \(|\bigcup_{i=1}^{p} N_c^+(x_i) \cup \{a_1, \ldots, a_p\}| \geq \delta \), and \(S = (\bigcup_{i=1}^{p} N_c^+(x_i) \cup \{a_1, \ldots, a_p\}) \cup (N_c^+(y_p)) \cup N_c^+(y_p) \) contains a balanced independent set of cardinality \(2\delta \).

As in Claim 1 we consider vertices \(a_i \in V(C) \cap X \), and \(b_i \in V(C) \cap Y \), such that \(j < l < s < k \), \((a_i, y_p) \in E(G), (x_i, b_s) \in E(G)\), and \((N_c(x_i) \cup N_c(y_p)) \cap V(b_t C a_s) = \emptyset\). □

Claim 4. The vertex \(a_{p+1} \) is adjacent to the set \(\{y_1, \ldots, y_p\} \cup N_c^+(y_p) \).

Proof. The set \(\{\{a_1, \ldots, a_p, a_{p+1}\} \cup N_c^+(x_1)\} \cup \{\{y_1, \ldots, y_p\} \cup N_c^+(y_p)\} \) is a balanced set of cardinality \(2\delta \), then it is not independent; the only edges that are not excluded are between \(a_{p+1} \) and \(\{y_1, \ldots, y_p\} \cup N_c^+(y_p) \). □

Claim 5. The set \(\{a_1, \ldots, a_p, b_1, \ldots, b_p\} \) induces a complete bipartite graph such that for \(1 \leq i \leq p \), \(d(a_i) = d(b_i) = \delta \) and \(N(a_i) = N(b_1) \) and \(N(b_1) = N(b_1) \).

The set \(\{a_s, \ldots, a_{s-1}, b_{s-1}, \ldots, b_{s-p}\} \) induces a complete bipartite graph such that for \(s - p + 1 \leq i \leq s \), \(d(a_i) = d(a_i) = \delta \) and \(N(a_i) = N(a_i) \), and for \(s - p < i \leq s - 1 \), \(d(b_i) = d(b_{s-1}) = \delta \) and \(N(b_i) = N(b_{s-1}) \).

Proof. By Claim 4, \(a_{p+1} \) is adjacent to a vertex of the set \(\{y_1, \ldots, y_p\} \cup N_c^+(y_p) \).

If \((a_{p+1}, y_i) \in E(G) \), the cycle \(C' = x_1 \ldots y_i a_{p+1} C b_i x_1 \) is as long as \(C \) and \(M \)-compatible (between \(x_1 \) and \(y_i \), there are all the vertices of \(P \)), while if \((a_{p+1}, b_i) \in E(G) \), with \(a_i \in N_c(y_p) \), the cycle \(C' = x_1 P y_p a_i C a_{p+1} b_i C b_i x_1 \) is as long as \(C \) and \(M \)-compatible.

In both cases, we can consider the cycle \(C' \) and the path \(P' = a_1 b_1 \ldots a_p b_p \) and apply Claim 3.

The proof for the set \(\{a_s, \ldots, a_{s-1}, b_{s-1}, \ldots, b_{s-p}\} \) is similar. □

Claim 6. We have: \(N_c(x_1) = \{b_i, s \leq i \leq k\} \) and \(N_c(y_p) = \{a_i, j \leq i \leq l\} \).

Proof. If we suppose that \(s < k \), and that there exists \(i, s \leq i < i + 1 < k \), such that \((x_1, b_i) \in E(G) \) and \((x_i, b_{i+1}) \notin E(G) \); then \(\{a_1, \ldots, a_p\} \cup N_c^+(x_1) \cup \{a_{i+2}\} \cup \{y_1, \ldots, y_p\} \cup N_c^+(y_p) \) is a bipartite independent set of cardinality \(2\delta \). (Any edge between \(a_{i+2} \) and \(\{y_1, \ldots, y_p\} \cup N_c^+(y_p) \) creates a \(M \)-compatible cycle of length \(2n - 2 \).

If we suppose that \(y_p \) is adjacent to \(a_i \) with \(s + 1 \leq i \leq k \), \(x_1 \) being adjacent to \(b_i \), the graph would be hamiltonian. □

Claim 7. The vertex \(y_p \) is adjacent to \(a_{p+1} \), (then \(j = p + 1 \)), and to \(a_{s-p} \), (then \(l = s - p \)),

\(a_1 \) is adjacent to \(b_s \), and \(b_p \) is adjacent to \(a_t = a_{s-p} \),
\(a_s \) is adjacent to \(b_k \), and \(b_{s-p} \) is adjacent to \(a_{p+1} \).

Proof. We suppose \((a_{p+1}, y_p) \notin E(G) \).

By Claim 4, there exists an edge \((a_{p+1}, b_r) \) with \(a_r \in N_c(y_p) \).

\[|N_c^+(y_p) \cup \{b_1, b_2, \ldots, b_p\}| = \delta, (b_p \notin N_c^-(y_p)), |N_c^+(x_1) \cup \{x_1, x_2, \ldots, x_p\}| = \delta. \]
If \((N_c^{-}(x_1) \cup \{x_1, \ldots, x_p\}) \cup (N_c^{-}(y_p) \cup \{b_1, \ldots, b_p\})\) is not independent, the only edges that are not yet been excluded are between \(N_c^{-}(x_1)\) and \(\{b_1, \ldots, b_p\}\). If \((a_h, b_i) \in E(G)\), with \((x_1, b_i) \in E(G)\), by Claim 6, \(r \leq l \leq s \leq h\).

The cycle \(x_1 P y_p a_r C a_{p+1} b_r C a_b b_l C b_1 x_1\) is an \(M\)-compatible cycle which is longer than \(C\).

Then \((N_c^{-}(x_1) \cup \{x_1, \ldots, x_p\}) \cup (N_c^{-}(y_p) \cup \{b_1, \ldots, b_p\})\) is a bipartite independent set of cardinality \(2\delta\), a contradiction.

A similar proof applies for the other cases. \(\square\)

Let \(T\) be the union of the two segments \(a_l C a_l\) and \(b_l C b_k\) of \(C\).

Claim 8. We have: \(N_T(a_1) = N_T(x_1) = N_T(a_1)\) and \(N_T(b_p) = N_T(y_p) = N_T(b_1)\).

Proof. It is an immediate consequence of Claims 6 and 7. \(\square\)

Proof of Proposition 2. We suppose that \(s < k\); let \(i, s + 1 \leq i \leq k\), then, by Claim 6, \(a_i \in N_c(x_1)\).

The vertex \(a_i\) is independent of any vertex of \(N_c^{-}(y_p) \cup \{y_1, \ldots, y_p\} \cup \{b_1, \ldots, b_p\} \cup \{b_{s-p}, \ldots, b_{s-1}\}\); by Claim 8, \(a_i\) is independent of \(\{y_1, \ldots, y_p\} \cup \{b_1, \ldots, b_{s-1}\}\), and \(N(a_i) \subseteq \{b_s, \ldots, b_k\}\).

Then \(|\{b_s, \ldots, b_k\}| \geq \delta\); that implies \(|N(x_1)| \geq \delta + p\), a contradiction with Claim 2; we can conclude that \(s = k\); by a similar proof, we can conclude that \(j = l\). \(\square\)

As a corollary of the previous result, we can obtain the following result.

Corollary. If \(G\) is a balanced bipartite graph such that

\[
\alpha_{bip} \leq 2\delta(G) - 2
\]

then \(G\) has a hamiltonian path.

4. A condition to be hamilton-biconnected

Theorem 1. Let \(G\) be a balanced bipartite graph such that \(\alpha_{bip}(G) \leq 2\delta(G) - 4\). Then \(G\) is hamiltonian-biconnected.

Proof. Let \(G\) be a balanced bipartite graph such that \(\alpha_{bip}(G) \leq 2\delta(G) - 4\).

We suppose that it is not hamilton-biconnected. Then, there exist \(u \in X, v \in Y\), such that there is no hamiltonian path in \(G\) with end-vertices \(u\) and \(v\).

Let \(\Gamma = \langle G \setminus \{u, v\} \rangle\); we have: \(\delta(\Gamma) \geq \delta(G) - 1\), \(\alpha_{bip}(\Gamma) \leq \alpha_{bip}(G) = 2\delta(G) - 4\).
Claim. The graph Γ is not hamiltonian, and then $\alpha_{bip}(\Gamma) = \alpha_{bip}(G) \leq 2\delta(G) - 4$ and $\delta(\Gamma) = \delta(G) - 1$.

Proof. If Γ is hamiltonian, let K be an hamiltonian cycle in Γ; we give it an arbitrary orientation;

$N^+_K(u) \cup N^+_K(v)$ contains a balanced subset of cardinality $2\delta(G) - 2$ vertices. Then it is not independent, and any edge between $N^+_K(u)$ and $N^+_K(v)$ creates an hamiltonian path with end-vertices u and v.

Then $\alpha_{bip}(\Gamma) \geq 2\delta(\Gamma) - 2$.

We have:

$$2\delta(G) - 2 \leq \alpha_{bip}(\Gamma) \leq \alpha_{bip}(G) \leq 2\delta(G) - 4 \leq 2(\delta(\Gamma) + 1) - 4 = 2\delta(\Gamma) - 2.$$

Then $\alpha_{bip}(G) = \alpha_{bip}(\Gamma) = 2\delta(\Gamma) - 2$, and $\delta(G) = \delta(\Gamma) + 1$. □

Proof of Theorem 1. The graph Γ satisfies the hypothesis of Proposition 1.

If Γ is isomorphic to $3K_{p,p} \oplus K$ with $K = K_{1,1}$ or $K = K_{1,1}$, the degrees of the vertices of the subgraphs $K_{p,p}$ are $\delta(\Gamma) = \delta(G) - 1$, then u and v are adjacent to every vertex of the subgraphs $K_{p,p}$, not belonging to the same partite set. It is then easy to find an hamiltonian path in G joining u and v.

If Γ contains a cycle C of length $2|V(\Gamma)| - 2$, such that $\langle G \setminus C \rangle$ is an edge (x_1, y_1), by Claim 5, $d(x_1) = d(y_1) = \delta(\Gamma) = \delta(G) - 1$, and with the same notations than in the proof of Proposition 1, $d(a_1) = \delta(G) - 1$; then $(u, y_1) \in E(G)$ and $(a_1, v) \in E(G)$; the path $u y_1 x_1 a_1 v$ is an hamiltonian path joining u and v. □

5. Cycles through specified paths

In [5] Häggkvist and Thomassen proved the following theorem in general graphs:

Theorem (Häggkvist, and Thomassen [5]). Let α be the stability number of a graph G. If G is $(\alpha + k)$-connected, then any system of disjoint paths in G of total length at most k can be extended into a hamiltonian cycle.

We have an analogous result for bipartite graphs to the Theorem of Häggkvist and Thomassen.

If G is a bipartite graph, we consider disjoint paths P_i, $1 \leq i \leq s$ in G, of odd length (then $|V(P_i)|$ is an even integer, and the end-vertices of the different paths are in distinct partite sets).

Let $x_i \in X$ and $y_i \in Y$ be the end-vertices of P_i.

We can suppose that the end-vertices of different paths (P_i) are independent: if P_i and P_j have adjacent end-vertices, for example if $(y_i, x_j) \in E(G)$, we can replace $P_i \cup P_j$ by the path $x_i P_i y_i x_j P_j y_j$.

Theorem 2. If \(P_i, 1 \leq i \leq s \), is a system of disjoint paths of odd lengths, with independent end-vertices, such that \(\sum_{1 \leq i \leq s} |V(P_i)| = 2t \), and \(G \) satisfies the relation:

\[
\alpha_{\text{bip}}(G) \leq 2\delta(G) - 2t - 4
\]

then, there exists in \(G \) a hamiltonian cycle which contains every path \(P_i \).

Proof. We can suppose \(\alpha_{\text{bip}}(G) \geq 2 \), then \(\delta(G) - t \geq 3 \).

Let \(G' \) be the induced subgraph \(G' = (G\setminus(\bigcup_{1 \leq i \leq s} P_i)) \).

\(G' \) is a balanced bipartite graph; its minimum degree satisfies \(\delta(G') \geq \delta(G) - t \); its independence bipartite number satisfies \(\alpha_{\text{bip}}(G') \leq \alpha_{\text{bip}}(G) \).

Then \(\alpha_{\text{bip}}(G') \leq 2\delta(G') - 4 \), and \(G' \) is hamiltonian.

Let \(C = a_1b_1 \ldots a_nb_a \) be a hamiltonian cycle in \(G' \).

We choose an orientation on \(C \).

If \(P_1 \) is one of the paths, \(|N_C(x_1)| \geq \delta(G) - t \) and \(|N_C(y_1)| \geq \delta(G) - t \).

Let \(S_1 = N_C(x_1) + N_C(y_1) \); \(S_1 \) contains a balanced set of cardinality \(2(\delta(G) - t) \).

As \(\alpha_{\text{bip}}(G') < 2(\delta(G) - t) \), \(S_1 \) is not independent:

\[\exists b \in N_C(x_1) \text{ and } \exists a \in N_C(y_1) \text{ such that } (a^+,b^+) \in E(G). \]

The cycle \(C_1 = x_1P_1y_1aCb+a^+Cbx_1 \) is a cycle in \(G \) containing the path \(P_1 \).

If we suppose that \(C_h \) is a cycle in \(G \) which contains the paths \(P_i \), for \(1 \leq i \leq h \leq s \).

If \(h = s \), the theorem is proved.

If \(h < s \), we choose an orientation on \(C_h \), and if \(P_{h+1} \) is a path with end-vertices \(x_{h+1} \) and \(y_{h+1} \), we consider \(S_{h+1} = N_C(x_{h+1})^+ \cup N_C(y_{h+1}^+) \).

The set \(S_{h+1} \) is not independent and, as in the previous case, with an edge between a vertex of \(N_C(x_{h+1})^+ \) and a vertex of \(N_C(y_{h+1}^+) \), we create a new cycle \(C_{h+1} \) which contains the paths \(P_i \) for \(1 \leq i \leq h + 1 \). \(\square \)

References

