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ABSTRACT 
Dry air-cooled heat exchangers (ACHE) form an integral part 

of refinery cooling systems of which the header boxes form an 

important component. It is commonly designed as an ASME 

Section VIII Division 1 pressure vessel, but unfortunately 

neither ASME nor the American Petroleum Institute (API) 

provide guidance regarding to the methodology which should 

be used in the assessment of nozzle loads on the header box 

design. Subsequently, the designer must rely either on empirical 

guidelines or Finite Element Analysis (FEA) in line with the 

requirements of ASME Section VIII U-2(g). The aim of this 

project therefore was to develop an analytical design 

methodology that accounts for the effects of these nozzle loads 

on the header box. A new mechanical model was derived by 

extending the existing ASME Section VIII rigid frame theory 

model and the result was tested against an FEA case study to 

determine whether the model was useable. It was found that the 

new model makes some useful qualitative statements but 

cannot be used for accurate stress analysis of the stresses near 

the base of the nozzle on the header box. The case study was 

also used to examine the effectiveness of a commonly used 

empirical guideline. 
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INTRODUCTION 
Dry ACHE are a critical part of refinery cooling systems, 

especially in arid environments where the amount of cooling 

water available is restricted. A typical refinery service ACHE, 

Fig. 1 [1], consists of the tube bank, the fan, motor and drive 

system, the plenum chamber and the header boxes. The header 

boxes distribute the inlet flow into the tube bank and collect the 

outlet flow. Plug-type header boxes are rectangular pressure 

vessels and are commonly designed according to ASME 

Section VIII Division 1 Appendix 13 [2] and API 661 [3]. 

Figure 2 shows the current Appendix 13 [2] model used for the 

design of unpartitioned, plug-type header boxes. API 661 

Section 7.1.10 [3] requires the designer to consider the effects 

of specified maximum nozzle forces and moments, Fig 3, on 

the stresses in both the header box and nozzle but gives no 

guidelines on how this should be done. This has resulted in the 

use of empirical guidelines or FEA to account for the effects of 

the nozzle loads. Both approaches have their limitations and the 

aim of this project was to develop an analytical design 

methodology that could be used to account for the nozzle loads 

and allow for a more accurate design without the use of a full 

FEA investigation. 

 

 
FIGURE 1: TYPICAL REFINERY SERVICE ACHE [1] 
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FIGURE 2: CURRENT ASME MODEL [2] 

 

 
 

FIGURE 3: DESIGN NOZZLE LOADS [3] 

CURRENT DESIGN PRACTICE 
Cylindrical and Spherical Vessels 

The design of spherical and cylindrical pressure vessels 

subject to external loading is a well-documented and trusted 

procedure. The vessel shell can be designed for internal 

pressure according to UG-27 [2] and the junction reinforcement 

requirements can be checked using the area method in UG-37 

[2] or the pressure-area method of Appendix 1-10 [2]. The 

stresses in the shell due to the external loadings can be obtained 

using WRC 107 [4] and the stresses in the nozzle using WRC 

297 [5]. The local stresses in both the shell and nozzle may be 

obtained using WRC 368 [6]. This procedure allows for the 

safe design of a large proportion of vessel to nozzle junctions 

that are subject to external loading. If the junction geometry or 

external loading magnitudes fall outside the applicability 

criteria of the relevant section then the junction can be designed 

using FEA and the Design by Analysis rules given in Part 5 of 

ASME Section VIII Division 2 [7].  

 
Rectangular Vessels 

The design of rectangular pressure vessels subject to 

nozzle loading is far more difficult due to the lack of design 

guidelines on how to account for these loads. The vessel itself 

can be designed according Appendix 13 [2] but the 

reinforcement requirements cannot easily be computed if it is 

required. This is because neither of the two existing methods 

for calculating reinforcement requirements in flat heads, UG-39 

[2] and Appendix 14 [2], is applicable. Appendix 14 [2] is 

applicable only to round, flat heads and UG-39 [2] is only 

applicable to openings which are smaller than half the shortest 

span, which significantly limits the allowable nozzle size. This 

is often undesirable in ACHE design as it would force the use 

of a large number of small nozzles. There is at present no 

equivalent for WRC 107, 297 and 368 for determining the 

stresses in rectangular vessels and their attached nozzles. This 

forces the designer to either use historically proven empirical 

guidelines or a FEA investigation in line with the requirements 

of Part 5 of ASME VIII Division 2 [7]. Both of these options 

have their limitations. The empirical guideline approach is 

quick to use but only useable for configurations with proven 

history, making innovation and optimisation very difficult. The 

FEA investigation route allows for very accurate analysis and 

complete optimisation but the process is often relatively 

expensive and lengthy as adequate investigations regarding 

suitable boundary conditions and loads need to be performed to 

obtain meaningful results. 

 

 
FIGURE 4: VIERENDEEL FRAME 

NEW DESIGN METHODOLOGY 
Before a new design methodology could be derived, a 

thorough review of current literature was undertaken so that all 

possible methods were investigated. Only two possible 

analytical, closed form techniques were identified: Rigid frame 

theory, which is used in ASME VIII Division 1 Appendix 13 [2] 

and Division 2 Part 4.12 [7], and Plate bending theory. 
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Rigid Frame Theory 
Rigid frame theory is an extension of standard beam 

theory where several beams are rigidly connected together, i.e. 

there is moment transfer from one beam to another. The model 

present in Division 1 Appendix 13 [2], Fig. 2, is identical to that 

in Division 2 Part 4.12 [7] and both work on a unit length basis. 

This implies that the vessel is assumed to be infinitely long and 

then a unit section is taken as the basis of the analysis. The 

effect of this is that the end plates are neglected and only the 

four side walls remain. This results in a classic rigid frame 

model, known as the Vierendeel frame [8]. Each of the four 

walls is modelled as a beam which is rigidly connected to the 

adjacent sides. Figure 3 depicts the Vierendeel frame at the 

heart of the Appendix 13 [2] analysis. Furthermore since the 

only load considered in Appendix 13 [2] is internal pressure, 

the boundary conditions can be omitted and two axes of 

symmetry employed, resulting in the simple and easy to use 

bending and membrane stress equations presented in Appendix 

13 [2].This approach becomes increasingly conservative as the 

overall length of the vessel decreases. Various authors [9-11] 

have published results clearly indicating the strengthening 

effect of the end plates. Appendix 13 [2] states that if the ratio 

of the length to the larger of the width or height is smaller than 

4 the rigid frame approach becomes increasingly conservative 

and also publishes stress reduction factors for length ratios 

below 2. Zeng [10] claims convergence of the rigid frame 

approach to a more exact plate bending analysis with length 

ratios above 5.  

 

Plate Bending Theory 
An alternative method for the design of rectangular 

pressure vessels is to use plate bending theory. This approach 

was first put forward by Zeng [10] and then refined by Guo 

[11]. Zeng [10] begins with the same unit length assumption as 

the Appendix 13 [2] analysis. The double symmetry of the 

problem is then exploited and this reduces the six walls to two 

walls, which are then modelled as plates. Each plate is 

modelled as simply supported and subject to a uniform pressure 

load and uniformly distributed bending moments along edge 

where it would be joined to the other plate. The bending 

moment is there to enforce the condition that at the corners the 

walls remains perpendicular, i.e. zero relative rotation. The 

resulting equations are significantly more complex than the 

rigid frame approach but are still manageable. However for 

length ratios above 5 these results converge to the rigid frame 

approach [10]. Guo [11] then extends the approach by 

considering all six walls and then follows the same approach as 

before. The resulting system of equations is significantly more 

complicated than the method of Zeng [10] and offers more 

accurate results for rectangular vessels of finite length [11]. 

However these methods results are not exact [11] and do not 

offer a significant improvement in accuracy for length ratios 

above 5. The aim of this project is to account for nozzle loading 

and the application of these loads transforms the 4
th

 order 

partial differential equation from a linear equation with known 

solutions to a non-linear equation for which no known closed 

form solutions could be found [8]. Furthermore Timoshenko 

[12] states that the omission of these nozzle loads could 

significantly affect the solutions due to non-linear effects. 

Finally, the fact that the nozzle hole is usually at least 50% of 

the width of the top plate will significantly affect the accuracy 

of both the rigid frame and plate bending approaches. 

 

Extended Rigid Frame Theory 
Due to the fact that plate bending theory was not able to 

yield closed form solutions, rigid frame theory was the only 

viable method to use to account for the nozzle loading. The 

rigid frame approach is inherently two dimensional and 

assumes that the only significant stresses are the bending and 

membrane stresses in cross-section, as in Fig. 4. Only two of 

the forces in Fig. 3., Fx and Fy, and one of the moments, Mz, 

exist in the cross-section and will be considered. The other 

nozzle loads will be neglected. Since the loading is asymmetric 

the stress distribution will no longer be symmetric. This means 

that instead of a single corner point, Q in Fig. 2, and two mid-

side points, M and N in Fig. 2, as in the Appendix 13 [2] 

analysis, each corner and mid-side point will have a unique 

equation. The loads Fx, Fy and Mz were then applied by 

distributing them over the entire nozzle width, Nw, in Fig. 4. 

Bending moment and membrane force equations, Annex A, 

were then derived using Kleinlogel [13], a classic text on rigid 

frames. Please note that these equations are not per unit width 

and that the moment of inertia equations should therefore 

include vessel length as opposed to the traditional ASME [2] 

methodology. The stresses at a point can be determined by first 

following the Appendix 13 [2] approach and determining the 

pressure related bending and membrane stresses. The stresses 

induced by the nozzle loads can then be determined by 

computing the relevant bending moment and membrane force 

and using standard beam and membrane theory [12] to compute 

the stresses, which can be algebraically summed with the 

pressure induced stresses. Note that a positive membrane force 

is tensile and a positive bending moment causes tension on the 

internal fibres.   

 

Model Predictions and 2D Validation 
The extended rigid frame theory model equations in 

Annex A make two important predictions regarding the effects 

of the nozzle loads. Firstly, the nozzle loads will typically have 

the largest impact at the vessel corners and the smallest impact 

at the mid-sides. Secondly, the nozzle loads will typically 

induce stresses that negate the pressure induced stresses at 

corners A and C, Fig. 3, and induce stresses that sum with the 

pressure induced stresses at corners B and D. Corners B and D 

are therefore the critical locations as they will see the highest 

stress. These predictions were then tested in a series of two 

dimensional FEA studies. The modelling was done in line with 

the assumptions of Fig. 4, namely: a pinned joint at point A, a 

roller joint at point D and the loads distributed over the nozzle 

width, as shown in Fig. 5. A total of 36 different configurations 

were tested. In these studies the aspect ratio, α, thickness ratio, 

TR, and nozzle width ratio, NWR, were varied to ensure that a 
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large enough sample was taken to test the accuracy of the 

extended rigid frame model. All FEA studies were tested using 

2
nd

 order quadrilateral elements and underwent mesh 

refinement until the stress values converged to within 3% and 

the recovered bending moments to within 1%.  

 

 
FIGURE 5:2D VALIDATION MODEL SCHEMATIC 

 

Bending moments and tensile forces were recovered from 

the stress tensors using the method outlined in Annex 5-A in 

Division 2 [7]. Bending moments and membrane forces were 

recovered at all mid-side locations as well as points X1 and X2 

in Fig. 4, which signify the edges of the nozzle. Bending 

moments and membrane forces were not recovered at the 

corners, due to the stress concentration effects and a higher 

order corner effect which will be discussed later, but rather a 

small distance, 1% of h or H, as applicable, away so as to allow 

for a more meaningful comparison. These near corner values 

were then compared to a set of predictive equations designed to 

predict the values at these points [8].The recovered bending 

moments were on average within 9% of the values predicted at 

all locations. The recovered bending moments were also never 

more than 11.5% larger than the predicted values. The predicted 

stress values were on average within 13.1% of the FEA results 

near the corners and within 5.5% at the mid-sides. The larger 

difference is attributed both to the stress concentration at the 

corner and a discrepancy with standard beam theory. Based on 

standard beam theory [12] and the extended rigid frame model 

predictions the maximum stress should occur at the corners or 

the mid-sides, depending on vessel geometry. However it was 

found for all cases examined that near the corners, the 

maximum external stress was always found a small distance 

away from the corners and in a different cross-section to that 

containing the maximum internal stress. Figure 6 shows an 

enlarged section of corner A for a case where the maximum 

tensile stress occurs at the sharp corner and the maximum 

compressive stress occurs a small distance away, at the red line. 

It is thought that this effect can be attributed to a difference 

between the way the 2D FEA model, as per Fig. 2 and Fig. 5, 

and the extended rigid frame model handle the corner joint. 

Since rigid frame theory is essentially beam theory, the walls 

are modelled as their mid-planes, which creates an overlap 

region and a region with no material, while the 2D FEA models 

the corner completely. This difference in modelling is shown in 

Fig. 7. The results of the 2D comparison indicate that the 

extended rigid frame model does predict the 2D behaviour 

reasonably accurately and could possibly be used as a full 

design methodology.  

 

 
FIGURE 6: MAXIMUM COMPRESSIVE STRESS LOCATION 

 

 
FIGURE 7: COMPARISON OF CORNER MODELLING 

FEA CASE STUDY 
As a result of the relatively good results in the 2D 

comparisons it was decided to test the extended rigid frame 

model on a full 3D specimen using FEA. The specimen used is 

shown in Fig. 8 and was chosen to match an experimental 

specimen planned for a later investigation. The dimensions of 

the specimen were selected to be close to those found in 

industry and the major dimensions are given in Table 1. The 

vessel end plates were deliberately omitted as their effect is 

well known and documented and making the vessel sufficiently 
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long to remove the end effects leads to both a very large mesh 

and an expensive and unwieldy experimental specimen. 

Furthermore this approach is in line with the unit length 

assumption used in Appendix 13 [2]. For this specific geometry, 

loaded with the maximum nozzle loads as per API 661 [3], the 

extended rigid frame model makes two important predictions. 

Firstly, at corners B and D an external compressive stress is 

expected and an external tensile stress at corners A and C. 

Secondly, at the bases of the nozzles an external tensile stress is 

expected at X1, near corner B, and an external compressive 

stress at X2, near corner C. 

 

 
FIGURE 8: 3D FEA MODEL 

 
TABLE 1: 3D FEA MODEL DATA 

Aspect Ratio 1/3 

h 540 mm 

All Wall Thicknesses 25 mm 

Large Nozzle 2 ½” WN, at 75% Vessel Length 

Small Nozzle  1” LWN, at 25% Vessel Length 

Vessel Length 1.2 m 

 

This specimen allows for the effects of a single, externally 

loaded nozzle on the header box structure as well as the effects 

of interaction between different nozzles with different loads and 

sizes. Seven different load cases were considered and the 

details are given in Table 2. Each nozzle was loaded with the 

maximum nozzle loads as per API 661 [3] in either the positive 

direction as in Fig. 3, denoted (+), or the negative direction, (-). 

This would show how the effects of the nozzle loads interact. 

For the first five load cases both the full set of six loads and 

another case with only the planar loads were considered. This 

would highlight the effect of neglecting the out of plane loads. 

Load case 6 and 7 would give an indication of the pressure 

induced stresses and the comparative effect of the nozzle loads. 

The nozzle loads were applied as distributed pressure loads and 

surface tractions to the tops of the nozzles, in line with Fig. 3. 

This means the Mz used in the extended rigid frame model was 

increased to include the contribution of Fx and the nozzle 

height.  

TABLE 2: LOAD CASES 
Load Case Small Nozzle Large Nozzle Pressure 

1 1xAPI, (+) 1xAPI, (+) None 

2 1xAPI, (-) 1xAPI, (-) None 

3 1xAPI, (+) None None 

4 None 1xAPI, (+) None 

5 1xAPI, (-) 1xAPI, (+) None 

6 None None 250 kPa 

7 1xAPI, (+) 1xAPI, (+) 250 kPa 

 

The model was built in ABAQUS and meshed using 

second order hexahedral elements and convergence was 

achieved by examining three distinct mesh sizes at 64 points 

spaced throughout the model and comparing the entire stress 

tensor. At the finest mesh, 1.2 million elements, the 

convergence level was 2%. The bending moments and 

membrane forces at the nozzle bases, points X1 and X2 in Fig. 

4, were also tested for convergence and they were found to 

have converged within 1% at the finest mesh. The boundary 

conditions for the model were identical to the 2D model, corner 

edge A is free to rotate in the XY plane but not translate while 

corner edge D is allowed to rotate in the XY plane and translate 

in the X direction but not in the Y direction. The material has an 

Elasticity modulus of 200 GPa and a Poisson’s ratio of 0.3. An 

elastic-perfectly plastic model was used with a yield stress of 

260 MPa, however in none of the load cases was plasticity 

encountered. 

 

The results of the first five load cases showed the same 

general trend. The extended rigid frame model was able to 

qualitatively predict important trends in the results but was not 

able to accurately predict the stresses close to the nozzle or 

away from it. Figure 9 shows the global σxx contours for load 

case 1. The σxx stress component contains the bending and 

membrane stresses for the top and bottom plate while the σyy 

component contains the bending and membrane stresses for the 

tubesheet and plugsheet. It is important to realise that the 

Appendix 13 [2] methodology predicts the σxx and σyy 

components in the respective walls and all predictions should 

be compared to these components as well as the Von Mises 

stress to determine their accuracy. A close examination of Fig. 9 

shows the two main extended rigid frame models predictions 

for this geometry are present. There are external compressive 

stress bands at corners B and D and external tensile bands at 

corners A and C. Furthermore the stresses at X1 are tensile and 

compressive at X2 for both nozzles. Figure 10 shows an 

enlarged section of the nozzle base and highlights how quickly 

the stresses dissipate on either side of the nozzle. The results 

from all load cases showed the local high stresses at the nozzle 

base dissipate within one nozzle diameter on either side of the 

nozzle base. However, in contrast to the predictions of the 

extended rigid frame model, the stress bands at the corners 

exhibit significant variation along the vessel length. 

Furthermore the predictions of the extended rigid frame model 

compare poorly against the FEA results, especially near the 

nozzle bases. The recovered bending moments and membrane 
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forces and linearised σxx and σyy components for the first five 

load cases often differed from the predicted values by more 

than ±800%. The stress linearisation was done using the 

approach of Annex 5-A in Division 2 [7] and was used to 

remove the peak stress components, present around structural 

discontinuities such as the nozzle and corner welds, and leave 

the membrane and bending stress components, which can be 

compared to predicted values. It is also worth noting that rigid 

frame theory predicts a uniform membrane force throughout a 

wall but the FEA results for all five load cases indicate 

membrane forces which vary not only with vessel length but 

throughout the wall. These results indicate that while the 

extended rigid frame model can make useful qualitative 

statements about the effects of the nozzle loads, the model is 

not suitable to accurately predict the resulting stress field. One 

reason for the poor quality of the predictions lies with the 

inherent 2D assumption of the extended rigid frame model. The 

model assumes the nozzle loads are applied via a rectangular 

area that is Nw wide along the entire length of the vessel. In 

reality the loads are applied to the header box via the relatively 

small areas of the nozzle bases, which not constant along vessel 

length. To accurately capture this, the design methodology 

would have to be 3D and no suitable 3D, analytical, closed 

form solution methodology was identified. 

 

 
FIGURE 9: GLOBAL σxx CONTOURS (LC 1) 

 
The next step was to add the effects of internal pressure. 

Load cases 6 and 7 investigate the effects of internal pressure 

with and without nozzle loads. Figure 11 and 12 show the 

global Von Mises contours with 250 kPa internal pressure and 

250 kPa and nozzle loads respectively. Both figures show 

results that are more in line with the rigid frame model 

predictions and show far less variation along the vessel’s 

length. It is also immediately apparent that the contribution of 

the nozzle loads is very small compared to that of the internal 

pressure. Figure 13 and 14 show enlarged sections of the large 

nozzle base and while the nozzles show differing Von Mises 

contours, the header boxes themselves show very similar Von 

Mises contours. The same trends are apparent in Fig. 15 and 16 

which show the σxx contours at the large nozzle bases. It is 

important to note that in contrast to Fig. 10 the external surface 

of the top plate in Fig. 16 is entirely in compression, 

highlighting that the internal pressure creates far larger stresses 

than the nozzle loads and that the important locations for this 

geometry will be those where the nozzle loads cause external 

compressive stresses which will sum with the pressure induced 

stresses. The predicted stresses also compared far more 

accurately for both load cases 6 and 7. For load case 6 the 

predicted stress was on average 8.5% lower than the linearised 

FEA σxx and σyy components and 1% higher than the linearised 

Von Mises stress at the measured locations. The results for load 

case 7 show that the percentage difference between the 

predicted stress and the linearised FEA σxx and σyy components 

decreased to 7.3% while the percentage difference with the 

linearised Von Mises stresses increased to 1.8%. These results 

indicate that while the extended rigid frame model cannot be 

used to make accurate statements about the effects of nozzle 

loads, the Appendix 13 [2] approach can be used to account for 

the effects of pressure with good accuracy within the limits 

presented in Appendix 13 [2]. The results also indicate how 

small the effects of the maximum API 661 [3] nozzle loads for 

this geometry’s nozzle sizes are compared to the effects of a 

relatively low internal pressure. In industry header boxes are 

often designed to withstand internal pressures of 5 MPa. The 

reason the pressure predictions of the rigid frame model are 

more accurate is that the pressure loading is constant along the 

vessel length and as such fits the 2D assumption implicit in the 

method. 

 

 
FIGURE 10: σxx CONTOURS AT LARGE NOZZLE BASE     

(LC 1) 
 

Finally, a commonly used empirical guideline was tested 

to see how conservatively it accounted for the effects of nozzle 

loads. The guideline is to use the standard Appendix 13 [2] 

design calculations but use a ligament efficiency of 0.5 when 

calculating the stresses in the top and bottom plate. This 

effectively doubles the stresses in these plates compared to the 

case where they have no openings. The nozzle loads transferred 
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to the header box are then allowed to increase to twice the API 

661 [3] maximum nozzle loads. This effectively means that the 

nozzle loads are allowed to induce maximum stresses as large 

as those induced by pressure before the vessel will see higher 

stresses than those it was designed for. This guideline was 

tested on this geometry by examining the stresses at three 

points of failure. These locations were the X2 points at the bases 

of the large and small nozzle and the highest stress point along 

corner B. These locations were selected as they represent points 

where the nozzle loads induce stresses which will sum with 

those induced by the internal pressure. The nozzle loads were 

increased until the induced, linearised stresses equal to those 

induced by the internal pressure at the same location. The 

nozzle loads were then rounded down to the nearest integer 

multiple of the API 661 [3] maximum loads. The results 

indicated that three times the API 661 [3] nozzle loads are 

required to exceed the stress reserve created by the 0.5 ligament 

efficiency at the X2 point of the large nozzle base. Six times the 

API 661 [3] loads were required at the small nozzle base while 

13 times the API 661 [3] loads were required along corner B. 

 

FIGURE 11: GLOBAL VON MISES CONTOURS (LC 6) 
 

 
FIGURE 12: GLOBAL VON MISES CONTOURS (LC 7) 

 

 
FIGURE 13: VON MISES CONTOURS AT LARGE 

NOZZLE BASE (LC 6) 

 
FIGURE 14: VON MISES CONTOURS AT LARGE 

NOZZLE BASE (LC 7) 
 

The results show that for this geometry the use of the 0.5 

ligament efficiency guideline will allow three times the 

maximum API 661 [3] nozzle loads to be applied to the header 

box before exceeding the stress reserve. This result is not true 

in general as it depends on the size of the nozzle and header 

box as well as the internal pressure. However, while the model 

header box is fairly representative of the size industrial units, 

they are subjected to significantly higher internal pressures, and 

as a result it is thought that the 0.5 ligament efficiency rule will 

be more conservative as the stress reserve it creates scales 

linearly with pressure, however more research is required to 

verify this. Finally the nozzle loads should induce failure at the 

nozzle to header box junction before failure in the header box 

itself due to the large stress concentration at the nozzle bases. 
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FIGURE 15: σxx CONTOURS AT LARGE NOZZLE BASE 

(LC 6) 
 

 
FIGURE 16: σxx CONTOURS AT LARGE NOZZLE BASE 

(LC 7) 

CONCLUSION 
In conclusion the effects of API 661 [3] nozzle loads on 

unpartitioned, plug type header boxes cannot be accurately 

predicted by extending the current ASME Section VIII Division 

1 Appendix 13 [2] rigid frame theory approach. The existing 

Appendix 13 [2] closed form methodology can accurately 

predict the effects of internal pressure, within the limits of 

Appendix 13 [2], as it does not vary with length and therefore 

matches the inherent 2D assumptions of the rigid frame model. 

The nozzle loads however are applied locally and induce 

stresses which vary significantly along the vessel’s length and 

these effects cannot be accurately predicted using the extended 

rigid frame model. The extended model can however make 

some useful qualitative statements about the resulting stress 

field and where these stresses will sum with those induced by 

internal pressure. The reported FEA case study examined the 

conservative nature of a common empirical design guideline, a 

ligament efficiency of 0.5 for the design of the top and bottom 

plate, and found it allowed for significantly higher loads than 

the maximum API 661 [3] to be applied to the header box 

without causing the vessel to be overstressed. The results 

further indicate that the guideline could also be conservative for 

many industrial units although more research will be required 

to verify this. 

NOMENCLATURE 
Fx External Force – X Direction [N] 

Fy External Force – Y Direction [N] 

Fz External Force – Z Direction [N] 

H Vessel Width [m] 

I1 Moment of Inertia – Horizontal Walls [m
4
] 

I2 Moment of Inertia – Vertical Walls [m
4
] 

M Bending Moment [Nm] 

Mx External Moment – About X Axis [Nm] 

My External Moment – About Y Axis [Nm] 

Mz External Moment – About Z Axis [Nm] 

Nw Nozzle Width [m] 

h Vessel Height [m] 

t Vessel Wall Thickness  [m] 

σ Stress [Pa] 

 

Subscripts 
A At Location A in Fig. 4  

B At Location B in Fig. 4  

C At Location C in Fig. 4  

D At Location D in Fig. 4  

E At Location E in Fig. 4  

F At Location F in Fig. 4  

G At Location G in Fig. 4  

H At Location H in Fig. 4  

X1 At Location X1 in Fig. 4  

X2 At Location X2 in Fig. 4  

xx XX or 11 Component of Stress Tensor  

yy YY or 22 Component of Stress Tensor  

 

Dimensionless Ratios   
   

NWR Nozzle Width Ratio, = Nw/H  

TR Thickness Ratio, = tab/tbc = t2/t1  

α Aspect Ratio, = H/h  
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ANNEX A 

BENDING MOMENT AND MEMBRANE FORCE EQUATIONS 
 

𝑀𝐴 = − 
𝐹𝑥ℎ

4
− 

𝐹𝑦ℎ(3𝐻
2 −𝑁𝑤

2)𝐼1

8𝐻2𝐼2 ((
2𝐼 ℎ

𝐼 𝐻
+ 3)

2

− (
𝐼 ℎ

𝐼 𝐻
)
2

)

+ 
𝑀𝑧𝐼2(2𝐻

2 − 𝑁𝑤
2)

16𝐻(3ℎ𝐼1 +  𝐻𝐼2)
 

(1) 

𝑀𝐵 =  
𝐹𝑥ℎ

4
+ 

𝐹𝑦(3𝐻
2 − 𝑁𝑤

2) (
2𝐼 ℎ

𝐼 𝐻
+ 3)

8𝐻 ((
2𝐼 ℎ

𝐼 𝐻
+ 3)

2

− (
𝐼 ℎ

𝐼 𝐻
)
2

)

+ 
𝑀𝑧𝐼2(2𝐻

2 − 𝑁𝑤
2)

16𝐻(3ℎ𝐼1 +  𝐻𝐼2)
 

(2) 

𝑀𝐶 = − 
𝐹𝑥ℎ

4
+ 

𝐹𝑦(3𝐻
2 − 𝑁𝑤

2) (
2𝐼 ℎ

𝐼 𝐻
+ 3)

8𝐻 ((
2𝐼 ℎ

𝐼 𝐻
+ 3)

2

− (
𝐼 ℎ

𝐼 𝐻
)
2

)

− 
𝑀𝑧𝐼2(2𝐻

2 − 𝑁𝑤
2)

16𝐻(3ℎ𝐼1 +  𝐻𝐼2)
 

(3) 

𝑀𝐷 =  
𝐹𝑥ℎ

4
− 

𝐹𝑦ℎ(3𝐻
2 − 𝑁𝑤

2)𝐼1

8𝐻2𝐼2 ((
2𝐼 ℎ

𝐼 𝐻
+ 3)

2

− (
𝐼 ℎ

𝐼 𝐻
)
2

)

− 
𝑀𝑧𝐼2(2𝐻

2 − 𝑁𝑤
2)

16𝐻(3ℎ𝐼1 +  𝐻𝐼2)
 

(4) 

𝑀𝐸 = − 
𝐹𝑦ℎ(3𝐻

2 −𝑁𝑤
2)𝐼1

16𝐻2𝐼2 ((
2𝐼 ℎ

𝐼 𝐻
+ 3)

2

− (
𝐼 ℎ

𝐼 𝐻
)
2

)

+ 
𝐹𝑦(3𝐻

2 − 𝑁𝑤
2) (

2𝐼 ℎ

𝐼 𝐻
+ 3)

16𝐻 ((
2𝐼 ℎ

𝐼 𝐻
+ 3)

2

− (
𝐼 ℎ

𝐼 𝐻
)
2

)

+ 
𝑀𝑧𝐼2(2𝐻

2 − 𝑁𝑤
2)

16𝐻(3ℎ𝐼1 +  𝐻𝐼2)
 

(5) 

𝑀𝐹 = − 
𝐹𝑦(2𝐻 − 𝑁𝑤)

8
+ 

𝐹𝑦(3𝐻
2 −𝑁𝑤

2) (
2𝐼 ℎ

𝐼 𝐻
+ 3)

8𝐻 ((
2𝐼 ℎ

𝐼 𝐻
+ 3)

2

− (
𝐼 ℎ

𝐼 𝐻
)
2

)

− 
𝑀𝑧𝐼2(2𝐻

2 − 𝑁𝑤
2)

16𝐻(3ℎ𝐼1 +  𝐻𝐼2)
 

 

(6) 

𝑀𝐺 = − 
𝐹𝑦ℎ(3𝐻

2 − 𝑁𝑤
2)𝐼1

16𝐻2𝐼2 ((
2𝐼 ℎ

𝐼 𝐻
+ 3)

2

− (
𝐼 ℎ

𝐼 𝐻
)
2

)

+ 
𝐹𝑦(3𝐻

2 − 𝑁𝑤
2) (

2𝐼 ℎ

𝐼 𝐻
+ 3)

16𝐻 ((
2𝐼 ℎ

𝐼 𝐻
+ 3)

2

− (
𝐼 ℎ

𝐼 𝐻
)
2

)

− 
𝑀𝑧𝐼2(2𝐻

2 − 𝑁𝑤
2)

16𝐻(3ℎ𝐼1 +  𝐻𝐼2)
 

 

(7) 

𝑀𝐻 = − 
𝐹𝑦ℎ(3𝐻

2 − 𝑁𝑤
2)𝐼1

8𝐻2𝐼2 ((
2𝐼 ℎ

𝐼 𝐻
+ 3)

2

− (
𝐼 ℎ

𝐼 𝐻
)
2

)
 

(8) 

𝑀𝑋1
=  

𝐹𝑥ℎ𝑁𝑤
4𝐻

− 
𝐹𝑦(𝐻−𝑁𝑤)

4

+ 
𝐹𝑦(3𝐻

2 − 𝑁𝑤
2) (

2𝐼 ℎ

𝐼 𝐻
+ 3)

8𝐻 ((
2𝐼 ℎ

𝐼 𝐻
+ 3)

2

− (
𝐼 ℎ

𝐼 𝐻
)
2

)

− 
𝑀𝑧(𝐻−𝑁𝑤)

2𝐻
+
𝑀𝑧𝐼2(2𝐻

2 − 𝑁𝑤
2)

16𝐻(3ℎ𝐼1 +  𝐻𝐼2)
 

(9) 

𝑀𝑋2
= − 

𝐹𝑥ℎ𝑁𝑤
4𝐻

− 
𝐹𝑦(𝐻−𝑁𝑤)

4

+ 
𝐹𝑦(3𝐻

2 − 𝑁𝑤
2) (

2𝐼 ℎ

𝐼 𝐻
+ 3)

8𝐻 ((
2𝐼 ℎ

𝐼 𝐻
+ 3)

2

− (
𝐼 ℎ

𝐼 𝐻
)
2

)

+ 
𝑀𝑧(𝐻−𝑁𝑤)

2𝐻
−
𝑀𝑧𝐼2(2𝐻

2 − 𝑁𝑤
2)

16𝐻(3ℎ𝐼1 +  𝐻𝐼2)
 

(10) 

𝑁𝐴𝐷 = 
𝐹𝑥
2
+ 

𝐹𝑦𝐼2(𝑁𝑤
2 − 3𝐻2)

8ℎ(𝐼1ℎ + 3𝐼2𝐻)
 

(11) 

𝑁𝐴𝐵 = 
𝐹𝑦

2
+
𝐹𝑥ℎ

2𝐻
 + 

𝑀𝑧(10𝐼2𝐻
2 +  24ℎ𝐻𝐼1 − 𝐼2𝑁𝑤

2)

8𝐻2(𝐼2𝐻 + 3𝐼1ℎ)
 

(12) 

𝑁𝐵𝐶 = 
−𝐹𝑥
2

− 
𝐹𝑦𝐼2(𝑁𝑤

2 − 3𝐻2)

8ℎ(𝐼1ℎ + 3𝐼2𝐻)
 

(13) 

𝑁𝐶𝐷 = 
𝐹𝑦

2
−
𝐹𝑥ℎ

2𝐻
− 

𝑀𝑧(10𝐼2𝐻
2 +  24ℎ𝐻𝐼1 − 𝐼2𝑁𝑤

2)

8𝐻2(𝐼2𝐻 + 3𝐼1ℎ)
 

(14) 

 

 


