
Programming Assistance Software Tools to Support the

Teaching of Introductory Programming
Melisa Koorsse

Nelson Mandela Metropolitan
University

P.O. Box 77000
Port Elizabeth, 6031

+27 41 372 2193
Melisa.Koorsse@nmmu.ac.za

André P. Calitz
Nelson Mandela Metropolitan

University
P.O. Box 77000

Port Elizabeth, 6031
+27 41 504 2639

Andre.Calitz@nmmu.ac.za

Charmain B. Cilliers
Nelson Mandela Metropolitan

University
P.O. Box 77000

Port Elizabeth, 6031
+27 41 504 2235

Charmain.Cilliers@nmmu.ac.za

ABSTRACT

Novice programmers find learning to program difficult and

debugging has also been identified as a difficult task for novice

programmers. Novice programmers struggle to develop accurate

mental models of programming concepts and processes, have

difficulty understanding how a computer executes instructions and

struggle to apply the syntax rules of high-level programming

languages. Different programming assistance software tools have

been developed to assist novice programmers with their

understanding of programming concepts. Programming assistance

tools use different techniques to assist novice programmers,

including visualisation and animation techniques, and drag and

drop interfaces. A number of programming assistance tools has

shortcomings, for example, not supporting all introductory

programming concepts.

This paper identifies several different programming assistance

software tools that are freely available for use by novice

programmers. The programming assistance tools are evaluated

using selection criteria that can be used to select programming

assistance software tools for use in introductory programming

courses. The selection criteria are formulated from a literature

review of introductory programming as well as research

conducted with Information Technology (IT) learners in South

African secondary schools. The research presented in this paper

aims to provide IT teachers and introductory programming

lecturers with a list of programming assistance software tools that

are freely available for introductory programming courses and

subjects, selection criteria that can be used to evaluate the

programming assistance tools and a discussion of some of the

shortcomings of programming assistance tools that need to be

considered when selecting tools for introductory programming

courses.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and Information

Science Education – Computer Science education, Curriculum.

General Terms

Performance, Human Factors, Languages.

Keywords

Introductory Programming, Novice Programmers, Information

Technology, Programming Assistance Tools.

1. INTRODUCTION
Expert or professional programmers possess problem solving

abilities [1, 2] that are essential for developing software that is fast

and scalable. These abilities are developed from programming

experience gained over an average of 10 years [30].

Novice programmers, including Information Technology learners

at South African secondary schools, find learning to program to

be a difficult task [32]. The reason for this is that novice

programmers need to learn how to understand and solve a

problem, formulate a solution in a structured form (algorithm) and

then write the algorithm in a specific programming language [34].

Programming can be a difficult task if programmers are unable to

plan solutions [31], lack understanding of programming concepts

due to the abstract nature of these concepts [23] and lack

understanding of how a computer executes code [5].

The teaching and learning of programming concepts can be

supported with programming assistance tools. Research in novice

programming has suggested and developed programming tools

[26] to enhance comprehension of algorithms and computer

programs, assist with code debugging and assess programming

knowledge and skills. The programming assistance tools use

different techniques such as visualisation, animation or drag-and-

drop interfaces to improve the conceptual understanding of

programming concepts [2].

Educators and students may be unaware of the different

programming assistance tools that can be used to support

understanding of programming concepts. Certain tools have

educational deficiencies and do not support all of the content

presented in an introductory programming course.

This paper discusses the difficulties novice programmers

experience when learning to program (Section 2). Criteria that can

be used to select programming assistance tools to support novice

programmers are formulated (Section 3) and used to evaluate

several programming assistance tools freely available for use by

novice programmers (Sections 4 and 5). The paper is concluded

and future work is presented in Section 6.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’10, Month 1–2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

2. PROGRAMMING DIFFICULTIES
Programming is a complex activity that requires a novice to learn

non-trivial facts, skills and concepts that are new to them [2].

Figure 1. Knowledge and skills required by programmers.

Figure 1 summarises the relationship between code

comprehension and generation and the different types of

knowledge a novice programmer requires.

Code generation involves 3 main steps (Figure 1):

1. A given problem statement or requirements set must be

considered in order to decide upon the programming

strategy to use.

2. An algorithm to solve the problem should be

formulated, often using pseudocode.

3. The algorithm is translated into the code of the

programming language being used. The program is

tested and changed as necessary until the original set of

requirements to solve the problem, are met.

The three steps outlined above can only be achieved by a

programmer who is able to apply programming knowledge and

strategies and who has the ability to comprehend as well as

generate code [8, 30].

2.1 Programming Knowledge
Programming knowledge includes knowledge of programming

concepts and principles, knowledge of computers and knowledge

of programming language syntax (Figure 1) [26]. Knowledge of

programming concepts and principles is an understanding of how

different concepts are implemented and why. For example, how a

for-loop works or the purpose of a variable. Knowledge of

computers includes an understanding of how computer events

occur and can be handled by the code (for example a mouse-click

or button press). Knowledge of syntax is required in order to

implement a solution in a particular programming language.

All three of the above knowledge areas are important for code

generation. If a programmer is unaware of the different

programming concepts it would be difficult to plan a suitable

solution. A well designed solution will not run successfully if the

syntax used is incorrect. Code not executed in the correct order or

when certain events occur will result in an incorrect program

solution, regardless of whether there are no syntax errors or if the

correct programming concepts have been implemented.

2.2 Programming Strategies
A programming strategy is the way in which programming

knowledge is applied to solve a particular problem [8, 30]. A

suitable programming strategy is required for the first step of code

generation (Figure 1). A programmer who has an understanding

of programming knowledge, but who is unable to use their

knowledge to solve or transfer solutions from simple problems to

more complex problems, lacks an understanding of programming

strategies [8, 23]. Similarly, a programmer lacks programming

strategy or problem solving ability if the programs compile and

run yet do not solve the problem due to logic errors [1].

In general, more time is spent teaching programming language

knowledge than programming strategy [1, 26]. Novice

programmers tend to combine the steps of the code generation

process (Figure 1) as they attempt to write the algorithm in a

particular programming language [11, 31].

2.3 Code Comprehension and Generation
A novice programmer should have adequate knowledge in all

three programming knowledge areas (Section 2.1) to be able to

comprehend and generate code successfully (Figure 1). A novice

programmer that lacks ability in one or more of the knowledge

areas will struggle to generate a code solution.

Program comprehension is described as a “cognitively complex

skill” [3, 24]. Novice programmers reading code should be able

to identify the knowledge such as concepts used in the solution

and the strategy applied to produce the solution [8].

A correlation has been shown to exist between code

comprehension and code generation [8, 25]. Code comprehension

is regarded as an important skill required for successful

programming [3]. Novice programmers that are not able to read

and understand code are unable to write similar code [25]. This

can be a problem as new concepts are explained to novice

programmers using practical examples. If a novice programmer is

unable to read and understand code solutions, they will be unable

to build their knowledge of programming concepts and strategies

to solve real-world problems [24, 25]. The ability to read and

understand code is moreover an important skill required for

finding logical errors in code [25].

2.4 Other Contributing Factors
Other factors that can contribute to make learning to program

difficult include the teaching approach used, the programming

language and environment and specific programming concepts

that are difficult to understand.

2.4.1 Teaching Approach
A novice programming student is guided by the teacher presenting

the programming course when learning to program. Teachers

need to present the course with a balance between the “how to”

and “why” explanations. Overemphasising “how to”, for

example, how to use an if-statement in a particular problem, may

result in students being unable to transfer what they have learnt.

Their underlying skills and concept knowledge would be lacking

[2]. Overemphasising “why” would provide students with a

theoretical knowledge of the underlying programming principles.

However, the theory would need to be accompanied by practical

experience demonstrating how the principles are applied.

Teachers also need to assist novice programmers to create a

proper mental model of different programming concepts,

especially the more abstract concepts [32]. Each person has a

preferred learning style, differing abilities, learning speeds and

attitudes or motivations toward the subject [22, 23] which would

need to be taken into consideration by the teacher when assisting

individual students. However, many teachers use one teaching

approach for all students [1] thus not catering for the learning

requirements of individual students.

2.4.2 Programming Language and Environment
The programming language and development environment tool

used by novice programmers when learning to program can also

contribute to the difficulties experienced [26]. Certain

programming languages are too complex to use to explain or teach

introductory programming concepts [5, 17, 27]. If a novice

programmer is having difficulty understanding a programming

concept, an explanation of the concept using a code example

should not be further confusing. Professional programming

environments may also overwhelm novice programmers by

presenting them with functionality and interfaces that are only

used by professional programmers [5, 17, 27].

2.4.3 Specific Programming Concepts
Certain programming concepts are more abstract than others and

are thus more difficult for novice programmers to understand [16].

Abstract concepts have no related explanation in real life, making

it difficult for novice programmers to develop an accurate mental

model of these concepts.

A literature survey has identified several specific programming

concepts which novice programmers struggle to understand.

Recursion is identified by three different research studies [14, 23,

32] as a difficult concept for novice programmers to understand.

Abstract data types such as arrays are identified by two separate

research studies [14, 23]. Novice programmers also seem to have

difficulty understanding and using methods or procedures and

functions [12, 14].

Another concept that teachers specifically find difficult to teach is

object-oriented programming (OOP). The difficulty related to

OOP has been associated with the paradigm shift from structured

methods and not the actual concepts [17]. Two approaches have

been recommended for teaching OOP: “objects first” and “objects

last”. The “objects last” approach is the most common instruction

method. This approach starts with simple concepts and programs

and gradually advances to more difficult concepts [7]. This

provides a gentle learning curve which allows novice

programmers to incrementally build their programming

knowledge.

A problem with teaching OOP last is that a paradigm shift is

needed for students to switch from the procedural style of

programming to the OOP style of programming. This shift has

been identified as the cause of the difficulties related to teaching

OOP last [7, 17]. The solution is the “objects first” approach.

The “objects first” approach introduces concepts such as string

handling and looping within the OOP environment. However, a

novice programmer’s first experience of programming is a

difficult mental challenge because they are faced with learning the

basic programming concepts and syntax together with the

complexities of OOP [7].

A review of the literature has indicated greater support for the

“objects first” approach [7, 17, 18, 20]. This is evident from

many tools that have been developed to promote “objects first”

and ensure that students are not impacted by the difficulties of

“objects first” highlighted earlier.

3. SELECTION CRITERIA
Table 1 lists selection criteria that can be used to select a

programming assistance tool to support novice programmers

learning to program. All items followed by an asterisk are derived

from the programming difficulties identified in Section 2. The

remaining items are derived from the results of surveys

administered to Information Technology (IT) learners and

teachers in South African secondary schools [21, 22].

The left hand column (Table 1) lists programming concepts that

an introductory programming course should include. This list is

derived from the list of programming concepts that Information

Technology (IT) learners in South African secondary schools are

required to learn [9]. The bold items in the list are programming

concepts that have been identified as difficult to understand based

on the results of a survey administered to IT teachers and IT

learners [21].

The programming skills and knowledge items in the right hand

column of Table 1, originate from the programming skills required

by novice programmers identified in the literature survey

presented in Section 2. Programming assistance tools should

allow novice programmers to develop code comprehension skills,

promote problem solving ability using appropriate strategies,

assist understanding of code execution and allow syntax

knowledge and knowledge of programming principles and

concepts to be improved.

Every person has a preferred learning preference. Four learning

preferences are identified by Fleming and Baume [10], namely

visual, aural, read/write and kinesthetic. A persons learning

preference could be only one or a combination of the four. The IT

teacher/learner survey results indicated that programming

assistance tools should cater for at least 2 of the learning

preferences to assist individual users.

A programming assistance tool should be constructivist to allow a

novice programmer to “build” their knowledge of programming

concepts using the tool and promote self-study. Novice

programmers also need assistance to formulate a code solution

before actually writing the program code.

A tool that uses visualisation and/or animation techniques can

increase interest and motivation [29]. Error handling refers to

whether or not a tool can detect errors in code, that is, compile a

code solution. Simple errors messages and/or suggestions to

correct errors refer to the way in which the tool assists novice

programmers to detect and correct errors in the code.

Novice programmers also struggle to apply programming

strategies used to solve simple exercises, to solve more complex

exercises.

Table 1. Selection criteria for Programming Assistance Tools.

The programming assistance tools should be able to assist novice

programmers with the syntax of whichever programming language

the novice programmer is learning to program in. Care should be

taken to select a tool which implements code or can be adapted to

implement code that is the same or similar to that of the

programming language being used by the novice programmers.

Differences in syntax or the manner in which concepts are

implemented can be confusing and result in making the learning

process more difficult.

4. PROGRAMMING ASSISTANCE TOOLS
Programming assistance tools (PATs) are specifically designed to

support novice programmers learning to program [26]. PATs can

assist novice programmers to develop their understanding of

programming concepts. [31] states that the ideal PAT would be

able to support several features including problem solving,

algorithm design, assist with learning syntax for a particular

programming language, and partial compiling to quickly check

output and operation of a code block.

PATs can also make use of visualisation and animation

techniques. Most programming concepts, data structures and

algorithms are abstract [31]. Visualisation techniques can be used

to help novice programmers develop an accurate mental model of

programming concepts (Section 2).

Several PATs have been identified from literature and will be

discussed briefly.

4.1 RobotProg

Figure 2. Execution of RobotProg flowchart.

RobotProg is a PAT in which the user creates a flowchart (Figure

2) by dragging and dropping icons representing programming

concepts. When the program created is executed, it controls a

robot to perform specific tasks (Figure 2).

Different levels of difficulty can be specified in RobotProg. The

simple programming concepts are available in the lowest level.

More complex programming concepts are available for use in the

flowchart as the level is increased.

Users are also challenged to complete tasks such as finding a

corner or picking up a ball. The RobotProg tool is able to detect

Selection Criteria

Concepts Programming skills & knowledge:

Variables Code comprehension*

Input (getting information from the user) Promotes problem solving using strategies*

Output(displaying information to the user) Code execution*

If-statements Syntax knowledge*

Switch statements Knowledge of programming principles & concepts*

For-loops Teaching/Learning approach:

Repeat-until/do-while loops Constructivist (promote self-study)

While-do loops Feedback to guide solution creation

String handling Learning Preferences:

Procedures* Visual

Functions* Aural

One-Dimensional Arrays* Read/Write

Two-Dimensional Arrays* Kinesthetic

File handling Other:

Accessing a database Simple & complex examples (scaffolding)

SQL statements Error handling

Correct use of parameters Simple error messages/suggestions to correct errors

Objects & classes* Visualisation/Animation

Problem solving* Programming Language (e.g. Java, C#, Delphi (Pascal), etc.)

Debugging*

whether or not the task has been completed successfully. The

RobotProg interface can be complicated for novice programmers

to understand in the beginning. Users are not able to view any

code generated by the flowcharts.

4.2 BlueJ

Figure 3. Creating UML-like class diagrams in BlueJ.

BlueJ is a tool that uses an objects first approach (Section 2.4) to

introduce novice programmers to the concept of objects and

classes. In BlueJ, the objects and classes concepts are

demonstrated without the user having to write any code [17, 19].

The advantages of BlueJ are that it is interactive and simple to

use. It uses visualisation to help novice programmers understand

objects and classes. UML-like class diagrams are used to provide

a graphical overview of project structures (Figure 3). A

disadvantage is that exercises would need to be designed by the

teacher, based on the functionality provided by BlueJ.

BlueJ generates code in Java. If users want to view the

corresponding code implementations associated with the objects

and classes visualisations, an understanding of the Java

programming language is required. BlueJ also does not provide

assistance with the understanding of other programming concepts

such as conditional statements or looping, although they can be

implemented.

4.3 Greenfoot

Figure 4. Greenfoot main screen with objects.

Greenfoot is a PAT that is used to teach object-oriented

programming to secondary school learners [15]. Users can easily

create different microworlds that are visually appealing and easy

to interact with.

Users can interact with Greenfoot objects directly (Figure 4).

Changes in the position and appearance of objects can be

observed directly. Classes associated with Greenfoot objects are

visible on the main screen (Figure 4) and code for the different

objects can also be modified by the user. The coding language

used is Java. Similar to BlueJ, Greenfoot only assists with the

understanding of the implementation of objects and classes.

4.4 Ville

Figure 5. Execution of program in Ville with question being

posed to user.

Ville is a language-independent programming tool [28]. Code

execution is demonstrated using visualisation techniques. Ville

has the syntax rules for several programming languages built in,

including Java, Python, PHP, javascript, C++ and pseudocode.

New languages can be added using the syntax editor.

A user can control the speed of execution as well as step forward

or back through the program code. Explanations for program

lines are provided and Ville can be set up to ask the user questions

about the current code being executed (Figure 5).

4.5 Jeliot

Figure 6. Visualisation of program execution using Jeliot.

Jeliot animates programs to assist novice programmer

understanding of introductory programming concepts. Jeliot is

capable of animating most of the Java language, including object

allocation [4].

Visualisation and animation techniques are used in Jeliot to assist

novice programmers to develop an accurate mental model of

programming concepts during code comprehension [4]. The

current line of execution is indicated to users during execution of

the program (Figure 6). Four areas in the animation are used to

indicate current variable values, expression evaluations, value of

constants and the allocation of and reference to objects and arrays.

The standard Jeliot program assists novice programmers with the

understanding of Java programs [4]. Jeliot 3 has been redesigned

to separate the interpretation and animation of Java programs.

This means that Jeliot 3 can be used to animate programs written

in another programming language.

4.6 RoboMind

Figure 7. RoboMind program executing.

RoboMind has been designed as a tool that can be used as a first

introduction to programming without any prerequisites. User

program a robot to move around and interact with objects in a

map world using a simple educational programming language

called ROBO (Figure 7).

The RoboMind environment is freely available and the RoboMind

2.2 development environment is available as open source.

RoboMind can thus be adapted to change the implementation of

programming concepts to suit a particular programming language

or to add additional functionality.

4.7 Scratch
The purpose of Scratch is to provide children with a tool that will

allow them to start programming earlier [33]. Scratch allows

people of different backgrounds and interests to easily create their

own interactive games, animations, stories and simulations [29,

33].

In Scratch a building block metaphor is used whereby graphical

blocks are combined to build scripts (Figure 8). This allows

novice programmers to focus on finding problem solutions as

syntax errors are eliminated. Scratch is also visually appealing

and promotes active learning.

A problem that novice programmers using Scratch may encounter

is that it will be difficult for them to move directly to a traditional

programming environment after using Scratch. The use of an

intermediate software tool to provide a link between the concepts

introduced in Scratch and the methods of implementing these

concepts in a programming language is suggested [29].

Figure 8. Scratch main screen with code area in the middle.

4.8 Additional Programming Assistance Tools
Several other PATs were also identified by this research study.

PlanAni [6], for example, is a tool that uses animation to

demonstrate the roles of variables. Alice [7, 15] is a tool similar

to Scratch that can be used to create 3D animations and games by

dragging object properties and methods to build the program

code. In B# [13], users create a program by dragging and

dropping icons to create a flowchart. The program can be

executed and equivalent Pascal code is generated. jGrasp [17]

automatically generates UML class diagrams to allow users to

visualise objects, data structures and primitive variables.

5. EVALUATION OF PATS
This section demonstrates how the selection criteria formulated in

Section 3 can be used to evaluate programming assistance tools.

The programming assistance tools presented in Section 4 are

evaluated. Table 2 and Table 3 provide an indication of which

selection criteria each of the tools meet.

BlueJ, Greenfoot, BlueJ and Jeliot allow users to write programs

in Java code, while B# generates Pascal code from the flowchart

created by the user. The remaining tools are not programming

language specific. Scratch, Alice and RobotProg can be used to

teach any programming languages even though none of the tools

explicitly teaches syntax for these languages. All three tools

allow users to learn about different programming concepts using a

drag-and-drop interface. The statements used are similar to the

statements used by most programming languages even though

they do not conform to the syntactical rules of any particular

language. RoboMind can be adapted to compile code in any

programming language.

BlueJ, Greenfoot, jGrasp and Jeliot allow the user to implement

all of the programming concepts listed in Table 2. These are Java

tools that are able to open and compile any java source files. The

remaining tools allow users to implement certain of the

programming concepts.

Table 2. Evaluation of programming assistance tools using selection criteria: Programming Concepts.

B#, Jeliot, PlanAni, Ville and RobotProg can assist users with

code comprehension and code execution through the use of

visualisation and animation (Table 3). All of the tools, except

Alice and Scratch, can assist users to improve their knowledge of

programming language syntax. The statements used by the

original RoboMind are similar to Java but the editor can be

adapted to compile statements that users are more accustomed to

using in a particular programming language. All of the tools have

been developed to support user understanding of programming

principles and concepts. The tools also all promote self-study and

self-exploration by users.

Scratch and Alice help users to create a solution correctly. In

Scratch and Alice the statements used indicate to users where

conditions or variables must be inserted or if other statements

must be included within a loop or control structure. RobotProg

allows users to create a solution using a flowchart diagram. Users

are able to visualise and compare the execution of the solution

using the flowchart with the actions of the robot.

All of the tools except PlanAni allow users to code or create a

solution within the tools, thus catering for the kinesthetic learning

preference. In PlanAni, users can only run built-in examples to

understand how the code is executed. None of the tools cater for

the aural learning preference. Jeliot, Ville and PlanAni include

functionality to ask users questions regarding the code or provide

explanations when the code is executed. This may assist users

that prefer the read/write learning preference. All of the tools

address the visual learning preference by using visualisation when

building the code solution or during code execution.

All of the tools can be used to assist users to apply their

understanding of simple exercises to more complex exercises.

None of the tools explicitly scaffold the learning. In all the tools,

the example exercises provided should include simple as well as

complex examples of different programming concepts to assist

user understanding.

The error handling item is greyed out for Scratch and Alice (Table

3). These tools do not require error handling or error messages to

be displayed to users. The use of the drag-and-drop interface

ensures that users can only use the correct statements and syntax.

Error handling and compiler messages are also not applicable for

PlanAni as built-in examples are used which cannot be edited by

the user.

 = tool meets the criteria

 = tool can be adapted to meet the criteria

R
o

b
o

M
in

d

B
lu

eJ

G
re

en
fo

o
t

S
cr

a
tc

h

R
o

b
o

tP
ro

g

B
#

J
el

io
t

V
il

le

P
la

n
A

n
i

A
li

ce
3

D

J
G

ra
sp

Programming Language (s=specific, n=non-specific) n s s n n s s n n n s

Concepts

Variables

Input (getting information from the user)

Output(displaying information to the user)

If-statements

Case (Delphi)/Switch(Java) statements

For-loops

Repeat loops

While loops

String handling

Procedures

Functions

One-Dimensional Arrays

Two-Dimensional Arrays

File handling

Accessing a database

SQL statements

Correct use of parameters

Objects & classes

Problem solving

Debugging

Table 3. Evaluation of programming assistance tools using selection criteria: Programming skills and knowledge.

Only B# and RoboMind use simple error messages that try to

inform users of syntax errors in the code using language and terms

that are easier for novice programmers to understand. BlueJ,

Greenfoot, jGrasp and Jeliot – use the standard Java compiler.

The error messages are the same messages that expert

programmers would receive in professional programming

environments such as Netbeans or Eclipse.All of the tools that

have been evaluated are freely available for use and can be

downloaded, without charge, from their respective websites. The

source-code of RoboMind and B# are available for modification

and adaption. Ville can be set up to convert code examples into

other programming languages that are not included with the initial

installation. In PlanAni, although the examples are built-in, it is

possible to extend these examples using a special file format. A

programmer with understanding of programming concepts and

principles and who is able to work with these different tools will

be able to adapt these tools to cater for more programming

concepts and/or different programming languages.

6. CONCLUSION
Teaching novice programmers to program requires an

understanding of the difficulties of learning to program. This

research study has discussed the difficulties novice programmers

face when learning to program and highlighted reasons for some

of these difficulties. Figure 1 and Section 2 explain the

knowledge and skills required to program successfully.

Novice programmers can be assisted by the programming

environments or tool in which they learn to program, especially if

the programming tool is specifically designed to assist novice

programmers. Before selecting a tool, however, it is important to

identify what knowledge and skills a novice programmer is trying

to develop. Table 2 and Table 3 (Section 5) indicate that

programming assistance tools do not meet all the criteria that have

been identified to assist novice programmers. It is recommended

that skills and knowledge that are most important for the novice to

develop (for example, problem solving, understanding of code

execution, or syntax knowledge) should first be identified in order

to guide the tool selection.

One should also be aware of how difficult it may be to use a tool

if no explicit instruction or assistance will be provided before

providing or recommending a programming assistance tool to

novice programmers. A brief document describing the main

interface of the tool together with sources where additional help

can be found is recommended. Including simple and complex

example exercises with the tool may also assist users to

understand how different programming concepts can be

implemented.

The selection criteria (Table 1) presented in this paper has been

used in a research study to select tools for IT learners in South

African secondary schools. The selection criteria will be

 = tool meets the criteria

 = tool can be adapted to meet the criteria

R
o

b
o

M
in

d

B
lu

eJ

G
re

en
fo

o
t

S
cr

a
tc

h

R
o

b
o

tP
ro

g

B
#

J
el

io
t

V
il

le

P
la

n
A

n
i

A
li

ce
3

D

J
G

ra
sp

Programming skills & knowledge:

Code comprehension

Promotes problem solving using strategies

Code execution

Syntax knowledge

Knowledge of programming principles & concepts

Teaching/Learning approach:

Constructivist (promote self-study)

Feedback to guide solution creation

Learning Preferences:

Visual

Aural

Read/Write

Kinesthetic (user actually codes)

Other:

Simple & Complex examples (scaffolding)

Error handling

Simple error messages/suggestions to correct errors

Visualisation/Animation

Can Adapt?

evaluated and changed, where necessary, based on the findings of

the research.

7. ACKNOWLEDGMENTS
We would like to thank the schools, teachers and learners who

participated in this research study for their valuable contributions.

8. REFERENCES
[1] Al-Imamy, S. Alizadeh, J. and Nour, M.A. 2006. On the

Development of a Programming Teaching Tool: The Effect

of Teaching by Templates on the Learning Process. Journal

of Information Technology Education, Vol. 5, 271-283.

[2] Baldwin, K. and Kuljis, J. 2000. Visualisation Techniques

for Learning and Teaching Programming. In Journal of

Computing and Information Technology - CIT 8, Vol. 4,

285-291.

[3] Bednarik, R. and Tukiainen, M. 2006. An eye-tracking

methodology for characterizing program comprehension

processes. In Proceedings of the 2006 symposium on Eye

tracking research & applications (ETRA '06). ACM, New

York, NY, USA, 125-132.

[4] Bednarik, R., Moreno, A. and Myller, N. 2005. Jeliot 3, an

Extensible Tool for Program Visualisation. In Proceedings

of the Koli Calling 2005: 5th Annual Finnish / Baltic Sea

Conference on Computer Science Education.

[5] Ben-Ari, M., Levy, R. and Uronen, P.A. 2000. An Extended

Experiment with Jeliot 2000. In Proc. Of the Program

Visualisation Workshop, Porvoo, Finland.

[6] Byckling, P. and Sajaniemi, J. 2006. Roles of Variables and

Programming Skills Improvement. SIGCSE Bulletin, Vol.

38(1), March 2006, 413-417.

[7] Cooper, S., Dann, W. and Paush, R. 2003. Teaching Objects-

first in Introductory Computer Science. In Proceedings of

the 34th SIGCSE technical symposium on Computer science

education (SIGCSE '03). ACM, New York, NY, USA, 191-

195.

[8] De Raadt, M. 2008. Teaching Programming strategies

explicitly to Novice Programmers. Doctoral dissertation.

University of Southern Queensland.

[9] Department of Education. 2008. National Curriculum

Statement. Grades 10-12 (General). Learning Programme

Guidelines. Information Technology.

[10] Fleming, N. and Baume, D. 2006. Learning Styles Again:

VARKing up the right tree! Educational Developments,

SEDA Ltd., Issue 7.4, 4-7, November 2006.

[11] Garner, S. 2007. A program design tool to help novices learn

programming. In ICT: Providing choices for learners and

learning. Proceedings Ascilite Singapore 2007, 321-324.

[12] Gayo-Avello, D. and Fernández-Cuervo, H. 2003. Online

Self-Assessment as a Learning Method. In Proceedings of

the 3rd IEEE International Conference on Advanced

Learning Technologies, 2003. Published 9-11 July 2003,

254-255, ISBN: 0-7695-1967-9.

[13] Greyling, J.H., Cilliers, C.B. and Calitz, A.P. 2006. B#: The

Development and Assessment of an Iconic Programming

Tool for Novice Programmers. In 7th International

Conference on Information Technology Based Higher

Education and Training (ITHET'06), 367-375.

[14] Haataja, A., Suhonen, J., Sutinen, E. and Torvinen, S. 2001.

High School Students Learning Computer Science Over the

Web. Interactive Multimedia Electronic Journal of

Computer-Enhanced Learning. Wake Forest University.

Vol. 3(2), October 2001.

[15] Henriksen, P. and Kölling, M. 2004. Greenfoot: Combining

object visualisation with interaction. In Companion to the

19th Annual ACM SIGPLAN Conference on Object-oriented

Programming Systems, Languages, and Applications

(OOPSLA), pp. 73-82, Vancouver, BC, CANADA,

November 2004.

[16] Hu, C. 2008. Just Say ‘A Class Defines a Data Type’. In

Communications of the ACM, Vol. 51(3), 19-21.

[17] jGRASP 2009. Overview of jGRASP and the Tutorials.

DOI= http://www.jgrasp.org/tutorials187/00_Overview.pdf.

[18] Kölling, M. 1999. The Problem of Teaching Object-Oriented

Programming, Part 1: Languages. Journal of Object-

Oriented Programming, Vol. 11(8), 8-15.

[19] Kölling, M. and Rosenberg, J. 2001. Guidelines for Teaching

Object Orientation with Java. In Proceedings of the 6th

conference on Information Technology in Computer Science

Education (ITiCSE 2001), Canterbury, 2001.

[20] Kölling, M. and Rosenberg, J. 2001. BlueJ - The Hitch-

Hikers Guide to Object Orientation.

[21] Koorsse, M., Calitz, A.P. and Cilliers, C.B. (2010).

Programming in SA Secondary Schools: The Inside Story.

SACLA, 2010.

[22] Koorsse, M. Cilliers, C.B. and Calitz, A.P. (2010).

Motivation and Learning Preferences of Information

Technology Students in South African Secondary Schools.

SAICSIT, 2010.

[23] Lahtinen, E., Ala-Mutka, K., and Järvinen, H. 2005. A study

of the difficulties of novice programmers. In Proceedings of

the 10th Annual SIGCSE Conference on innovation and

Technology in Computer Science Education (Caparica,

Portugal, June 27 - 29, 2005). ITiCSE '05. ACM, New York,

NY, 14-18.

[24] Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J.,

Lindholm, M., McCartney, R., Moström, J. E., Sanders, K.,

Seppälä, O., Simon, B., and Thomas, L. 2004. A Multi-

National Study of Reading and Tracing Skills in Novice

Programmers. In Working Group Reports from ITiCSE on

innovation and Technology in Computer Science Education,

Leeds, United Kingdom, June 28-30, 2004. ITiCSE-WGR

'04, 119-150.

[25] Lister, R., Simon, B., Thompson, E., Whalley, J. L., and

Prasad, C. 2006. Not seeing the forest for the trees: novice

programmers and the SOLO taxonomy. In Proceedings of the

11th Annual SIGCSE Conference on Innovation and

Technology in Computer Science Education (Bologna, Italy,

June 26 - 28, 2006). ITICSE '06. ACM, New York, NY,

118-122.

[26] Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E.,

Bennedsen, J., Devlin, M., and Paterson, J. 2007. A survey

of literature on the teaching of introductory programming. In

Working Group Reports on ITiCSE on innovation and

Technology in Computer Science Education (Dundee,

http://www.jgrasp.org/tutorials187/00_Overview.pdf

Scotland, December 01 - 01, 2007). J. Carter and J. Amillo,

Eds. ITiCSE-WGR '07, 204-223.

[27] Pendergast, M.O. 2005. Teaching Introductory Programming

to IS Students: Java Problems and Pitfalls. In Journal of

Information Technology Education, Vol. 5, 491-515.

[28] Rajala, T., Laakso, M., Kaila, E. and Salakoski, T. 2007.

VILLE – A Language-Independent Program Visualisation

Tool. Seventh Baltic Sea Conference on Computing

Education Research (Koli Calling 2007), Finland.

[29] Resnick, M., Malone, J., Monroy-Hernández, A., Rusk, N.,

Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E.,

Silver, J., Silverman, B. and Kafai, Y. 2009. Scratch:

Programming for All. In Communications of the ACM, Vol.

52(11), 60-67.

[30] Robins, A., Rountree, J. and Rountree, N. 2003. Learning

and Teaching Programming: A Review and Discussion. In

Computer Science Education, Vol. 13(2), 137–172.

[31] Rongas, T., Kaarna, A. and Kalviainen, H. 2004. Advanced

Learning Technologies. In Proceedings of IEEE

International Conference on Advanced Learning

Technologies, ICALT’04, 678–680.

[32] Shuhidan, S., Hamilton, M. and D’Souza, D. 2009. A

Taxonomic Study of Novice Programming Summative

Assessment. In Eleventh Australasian Computing Education

Conference (ACE2009), (Wellington, New Zealand, January

2009). Conferences in Research and Practice in Information

Technology (CRPIT), Vol. 95. M. Hamilton & T. Clear,

Eds.

[33] Utting, I., Cooper, S., Kölling, M., Maloney, J. and Resnick,

M. 2010. Alice, Greenfoot, and Scratch - A Discussion.

ACM Transactions on Computing Education, Vol. 10(4),

Article 17, Pub. Date: November 2010.

[34] Vickers, P. 2009. How to Think Like a Programmer.

Cengage Learning EMEA. ISBN: 978-1-84480-903-5.

