NOTE

RATIONAL ω-LANGUAGES ARE NON-AMBIGUOUS

André ARNOLD

Université de Poitiers, 86022 Poitiers, France

Communicated by M. Nivat
Received December 1982

Abstract. We prove that every rational ω-language can be recognized by a non-ambiguous automaton, i.e., an automaton which accepts every infinite word in at most one way.

One knows (see [1] for example) that a rational ω-language cannot be recognized by a deterministic automaton. However, one can ask whether it can be recognized by a non-ambiguous automaton which, although nondeterministic, accepts a word in the ω-language in only one way. We answer this question by proving the following proposition.

Proposition. Every rational ω-language is recognized by a non-ambiguous automaton.

Notation. An automaton over a finite alphabet A is a 4-uple $\mathcal{A} = (Q, Q_0, Q_{inf}, \delta)$ where

Q is a finite set of states,

$Q_0 \subseteq Q$ is the set of initial states,

$Q_{inf} \subseteq Q$ is a set of designated states,

$\delta : Q \times A \rightarrow \mathcal{P}(Q)$ is the transition mapping.

For every infinite word $u = u(1)u(2) \cdots u(n) \cdots \in A^\omega$ and for every state $q \in Q$, we define a computation of u from q in \mathcal{A} as being an infinite sequence $\{q_i\}$ of states such that $q_0 = q$ and $q_i \in \delta(q_{i-1}, u(i))$ for $i \geq 1$. We say that a computation $\{q_i\}$ of u is successful if $q_0 \in Q_0$ and $\{i \mid q_i \in Q_{inf}\}$ is infinite. The ω-language recognized by \mathcal{A} is the set $L(\mathcal{A})$ of all infinite words u which have a successful computation in \mathcal{A}. The automaton \mathcal{A} is said to be non-ambiguous if for every u in $L(\mathcal{A})$ there exists only one successful computation of u in \mathcal{A}. Finally, an ω-language L is said to be rational if it is recognized by an automaton.
The starting point of the proof of the proposition is the following version of
the Büchi–MacNaughton Theorem.

Theorem. Every rational ω-language can be recognized by a deterministic Muller
automaton.

Here a deterministic Muller automaton is a 4-uple $A = (Q, Q_0, \mathcal{C}, \delta)$ where $Q,$ Q_0 and δ are as above but $\text{Card}(\delta(q, a))$ is always less than 1, and $\mathcal{C} \subseteq \mathcal{P}(Q)$; the
set of infinite words recognized by A is the set of words u such that the (unique
if it exists) computation of u in A satisfies

$$q_0 \in Q_0 \quad \text{and} \quad \{q \in Q \mid \{i \mid q_i = q\} \text{ is infinite} \} \in \mathcal{C}.$$

Now we are ready for the proof. Let L be any rational ω-language and let
$A = (Q, Q_0, \mathcal{C}, \delta)$ be a deterministic Muller automaton recognizing it.

Proof of the Proposition. First, let us define, for every T in \mathcal{C}, the deterministic
Muller automaton $A_T = (Q, Q_0, \{T\}, \delta)$. Obviously, $L(A)$ is the disjoint union of
the $L(A_T)$, since if $u \in L(A_T) \cap L(A_T')$, the unique computation of u in A_T satisfies
$T = \{q \in Q \mid \{i \mid q_i = q\} \text{ is infinite} \} = T'$. Now the disjoint union of ω-languages recog-
nized by non-ambiguous automata is recognized by the disjoint union of these
automata which is still non-ambiguous. Thus it remains to prove that $L(A_T)$ is
recognized by a non-ambiguous automaton.

Let us remark that any word u in $L(A_T)$ can be written in a unique way in the
form vw for w such that

$$u \in A^*.$$

Thus, assuming $T = \{s_0, s_1, \ldots, s_n \}$, we consider the automaton $\mathcal{A}' = (Q', Q_0', Q_0', \delta')$ where

$$Q' = Q \cup \{w \times \{0, 1, \ldots, n\} \}, \quad Q_0' = Q_0 \cup \{(T \cap Q_0) \times \{0\}\},$$

and δ' is defined by

if $q' = \delta(q, a)$, then

$$q' \in \delta'(q, a),$$

$(q', 0) \in \delta'(q, a)$ iff $q \in T$ and $q' \in T$.
Rational ω-languages are not ambiguous

\[(q', i) \in \delta'((q, i), a) \quad \text{iff} \quad q \in T \text{ and } q' \neq s_i,\]
\[(s_n, i + 1) \in \delta'((q, i), a) \quad \text{iff} \quad q \in \Gamma, q' = s_i \text{ and } i < n,\]
\[(q', 0) \in \delta'((q, n), a).\]

It is just an exercise to prove that $L(\mathcal{A}') = L(\mathcal{A})$. Moreover, to every successful computation \{\[q_i\] \} of \(u\) in \(\mathcal{A}'\) we have either

1. \(\forall i \geq 0: q_i = (q_i, n_i)\) with \(q_i \in T\), or
2. \(\exists k > 0: \bar{q}_k \in Q - T \text{ and } \forall i > k + 1, q_i = (q_i, n_i)\) with \(q_i \in T\).

In both cases we get a decomposition of \(u\) in \(w\) or \(vww\) which satisfies \((*)\). Since this decomposition is unique, \(u\) has only one successful computation in \(\mathcal{A}'\) and \(\mathcal{A}'\) is non-ambiguous. \(\square\)

Some other properties of rational ω-languages can be derived from the previous construction of \mathcal{A}'.

1. Like the automaton constructed by Karpinski in [2], \mathcal{A}' is of 'nondeterministic rank' 2 and we get Theorem 2 of [2].
2. More important is the following improvement of a part of the Büchi MacNaughton theorem:

Every rational ω-language L has a non-ambiguous decomposition in the form $\bigcup_{i=1, \ldots, n} U_i V_i^\omega$

which means that every word u in L has a unique decomposition in the form $uw_1w_2 \cdots w_n \cdots$ with $u \in U_i$ and $v_n \in V_i$.

References