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Abstract. Alzheimer’s disease (AD) is a neurodegenerative disorder that drastically compromises patients’ and relatives’
quality of life, besides being a significant economic burden to global public health. Its pathophysiology is not completely
elucidated yet, hence, the current therapies are restricted to treating the symptoms. Over the years, several epidemiological
studies have shown disproportionalities in AD when sex is considered, which has encouraged researchers to investigate the
potentiality of sex as a risk factor. Studies in rodent models have been used to investigate mechanistic basis of sex differences
in AD, as well as the development of possible new sex-specific therapeutic strategies. However, full knowledge on factors
related to this sexual dimorphism remains to be unraveled. Some findings point to differences in genetic and developmental
backgrounds either earlier in life or in the aging brain. Herein we summarize the multisystemic framework behind the sex
differences in AD and discuss the possible mechanisms involved in these differences raised by the literature so far in an
integrative perspective.
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INTRODUCTION

Alzheimer’s disease (AD) causes emotional, phys-
ical, social, and financial consequences for patients
and their families, and the complexity of its etiology
remains to be clarified. AD is the most common form
of dementia, and memory loss is the key symptom
present in the patients [1]. Even though recall of facts
from the remote past (long-term memory) is pre-
served, they cannot remember events that happened
minutes before (short-term memory). In addition,
with the progression of the disease, patients find dif-
ficulties in everyday life (e.g., spatial disorientation
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Macêdo Medeiros).

and language disorders) which can be accompanied
by comorbidities such as depression, irritability, and
delusions [2]. AD is an irreversible age-related dis-
ease, and its risk increases dramatically over the years
[3]. According to the US Center for Disease Control
and Prevention (2001), AD is the eighth leading cause
of death in the United States. Studies have predicted
that the AD prevalence will triple in the next 50 years
to approximately 14 million Americans [4]. The
number of the AD cases on the European continent
is also high [5] and the total cost of care for these
patients exceeds those of cancer and cardiovascular
disease together [6, 7]. Worldwide, AD is the most
prevalent disease among neurodegenerative disor-
ders [8]. In 2005, 24.2 million people had dementia
(70% of which were assigned to AD) and 4.6 million
new cases were counted each year since then. Latin
America has the third highest prevalence of AD cases
(4.9%), behind North America (6.4%) and Western
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Europe (5.4%), and has the second highest incidence
rate—9.2 in 1000 individuals in the population [9]. In
Brazil, the prevalence and incidence of dementia are
similar to that reported in other countries [10–12].

AD can arise at middle age, but usually affects
people over 65 years. The early-onset familial form
of AD is rare (about 4–5% of all cases), and is related
to genetic heritability [13]. On the other hand, the
most common late-onset form (sporadic AD) is
attributed to many triggering genetic, developmental,
and environmental factors. Indeed, sporadic AD
has several risk factors: age, sex, family history,
depression, brain injury (traumas), increased allelic
frequency of apolipoprotein E (ApoE), solvent expo-
sure, low educational levels, and genetic mutations
[2]. Existing treatments are palliative; thus, studies
have been focusing on possible new drugs that would
reduce disease progression and delay the appearance
of the symptoms. Part of the constraints in the search
of significant therapeutic targets for neuroprotective
actions is the lack of a complete understanding of
AD pathogenesis. The deposition of A� peptides
[14], A� oligomers-induced toxicity [15], tau protein
hyperphosphorylation and neurofibrillary tangles
(NFT) [16], mitochondrial damage, oxidative stress
and metal ions deregulation [17, 18], neuropeptides
unbalance [19, 20], exacerbated neuroinflammation
[14], cerebral alterations in calcium signaling and
glucose metabolism (for review, see [21]) are
among the hypotheses that have been proposed in
the last decades to explain AD pathophysiology.
Figure 1 summarizes the elements involved in the
AD pathophysiological mechanisms, which may
or may not follow a chronological sequence. It
is recognized that they interact with each other,
playing specific roles in this multifactorial process
that lead to a common outcome. Although all
of the aforementioned hypotheses are reasonable
explanations to the variety of abnormalities found
in AD, more research is needed in order to stablish
causal elements and their relationship with the risk
factors that have been already linked to the disease.

One of the potential risk factors that has attracted
attention of AD researchers is sex. The National
Institute of Health Office of Research on Women’s
Health recently highlighted the need for addressing
sex differences in AD research [22]. Indeed, a
greater investigation of AD sex differences has been
observed in recent years and studies on this topic
have grown. From the epidemiological perspective,
there are important controversies, with data on
prevalence between the sexes being more consensual

Fig. 1. Summary of Alzheimer’s disease multifactorial
mechanisms.

than those on incidence. Although a large body
of evidence shows a greater prevalence of AD
in women [3, 23–31], scientists suggest that this
apparent difference is due to an indirect consequence
of the greater longevity of females [3, 23, 28, 32,
33]. However, it is not fully clear whether the higher
prevalence of AD in women is entirely due to their
longer life expectancy, or if other factors put women
at greater risk. Although there are reports arguing
that the incidence of the disease is not significantly
different between the sexes despite increased preva-
lence [34, 35], a large number of studies have shown
higher incidence of AD in women. Some of them
demonstrated that AD is three times more common
in women than in men [2, 36, 37].

The fact that there are controversial epidemiologic
data does not exempt the continuous research on the
biological basis of sex differences in AD. Indeed, the
biochemical basis for AD-related sex differences is
still a gap to be unraveled [38]. The recognition of
the relevance of this issue is the strengthening of the
debate and the allocation of funds for studies in this
theme by the Alzheimer’s Association [39]. Thus, the
clinical and preclinical studies that will be discussed
in the present review bring hypotheses based on a sig-
nificant body of data stating that sex should be placed
as a risk factor for AD predisposition, development,
and resilience.

The focus of this review is to highlight the main
mechanistic pathways of the sex influence on AD
risk. We discuss how changes biased by sex dur-
ing the development and the aging process could
modulate the disease outcome. We also gather the
dimorphic pathophysiological mechanisms shown by
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the literature in a rationale that encompasses intrin-
sic factors of both sexes as genetic interactions,
hormone influence, and variations in sex-specific
biomarkers. Our intention is to unite gaps under
an alternative view without disregarding conflicting
epidemiological data or controversial results from
clinical and pre-clinical studies with animal models.
In this context, we find it necessary to make a brief
retrospective on this important scientific tool in AD
research (see below). These models allow the inves-
tigation of pathophysiological mechanisms and the
evaluation of potential symptomatic and neuropro-
tective/preventive therapies.

ADVANCES IN AD ANIMAL MODELS

The use of animal models over the years was
very important for AD research. The identification
of biological targets with an explicit role in the
AD early stages contributes to the development of
new therapeutic strategies to alleviate or prevent this
neurodegenerative condition [40]. It is important to
mention that the pathophysiology observed in ani-
mal models may not necessarily reproduce all clinical
findings observed in patients and, although there
are a wide variety of valid animal models, none of
them summarizes all AD aspects [41]. In general,
AD animal models comprise non-transgenic (non-
Tg)–spontaneous or induced–and transgenic (Tg)
models. In addition to humans, few species (dogs,
cats, sheep, and nonhuman primates) spontaneously
develop amyloid plaques and tauopathies (disorders
related to NFT formation) associated with cogni-
tive decline [42–46]. There is a limitation in the use
of spontaneous models for experimental research in
terms of availability, costs (based on long lifetime),
standard techniques, and ethical reasons [40]. Thus,
similar to other areas of research, rodents are the
most used animal models of AD, despite they do not
spontaneously display the histopathological charac-
teristics during aging.

The first AD-induced rodent model was based
on the cholinergic hypothesis. This hypothesis sug-
gests that the degeneration of cholinergic neurons,
which protrude from the basal forebrain to the neo-
cortex, is an early outcome of the disease [47, 48].
This approach has provided knowledge about learn-
ing and memory impairment related to cholinergic
neurotransmission, and allowed the assessment of
cholinomimetics and acetylcholinesterase inhibitors,
the first line of drugs for AD treatment [49–51].

Other AD-induced model comprises the intracerebral
or intracerebroventricular infusions of A� peptides
[52]. A� intracerebral infusions cause learning and
memory deficits, as well as other behavioral changes
similar to those observed in humans [53–55]. The
administration of streptozotocin (STZ) is also used
to induce an AD non-Tg model [21]. STZ selectively
disrupt insulin secreting cells resulting in diabetes
mellitus [56]. When administered by intracerebral
infusions, STZ induces dysfunctions in the brain
insulin system [57], accompanied by behavioral and
neurochemical alterations related to aspects of AD.

The identification of several genes and the com-
prehension of its role in the early-onset familial
pathology enabled the production of Tg mouse and rat
models for AD. The Tg-mice models were first pro-
posed in the mid-1990s, such as the PDAPP model,
followed by the Tg2576 [58] and APP23 [59] (all
A�PP-based models). The discovery of mutations in
PSEN genes led to the development of PSEN1 and
PSEN2 Tg mouse models. Although the aforemen-
tioned Tg animals have an increase in the A�40/A�42
ratio, they show few cognitive abnormalities, and lack
plaque formation, tau hyperphosphorylated form,
and NFT [40]. Tg-mice models of tauopathy were
designed to test the development of NFT, in addi-
tion to enabling the interaction between NFTs and
other aspects related to AD pathology. For example,
Lewis et al. [60] have shown increased formation and
distribution of NFTs in brain regions vulnerable to
the amyloid lesions using the JNPL3 model. P301S
Tg-mice, derived from the PS19 line, overexpress
the human tau gene with a 5-fold increase compared
to endogenous mouse tau. P301S mice also develop
synaptic deficits and microglial activation prior to
neurodegeneration and NFT [61, 62]. The rTg4510
model rapidly express neuronal loss, spatial memory
deficits, and NFTs at an early age [63, 64].

The triple transgenic mouse model (3xTg-AD)
was developed in an attempt to overpass or refine
the remaining limitations in Tg models. Mice of
this Tg strain co-express the human wild-type tau
isoform and both PSEN1 and A�PP Swedish double
mutations because of the crossbreeding between
carriers of these genotypes. Overall, these models
replicate elements consistent with the amyloid
cascade hypothesis, exhibiting progressive A� depo-
sition, cerebral amyloid angiopathy, astrocytosis,
microgliosis, hippocampal and synaptic atrophy,
neurotransmission dysfunction, and cognitive
impairments (for review, see [40, 65–67]). More
recently, genetic modifications with the use of viral
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vectors have originated several Tg-rat models in
which AD-related genes are selectively expressed
in brain regions relevant to the disease [68, 69]. As
recently reviewed by Do Carmo and Cuello [70], the
Tg-rat models are a very good alternative to mice
models because of a greater genetic, physiology,
and morphology similarity with humans and a better
behavioral characterization.

Overall, because it encompasses a variety of
the disease aspects, AD Tg models are the most
widely used nowadays. Nevertheless, the high cost,
the chronological mismatched neurochemical and
behavioral changes, and the genetic background of
the strain itself are some drawbacks for the use of Tg
models, which enlighten the relevance of the research
conducted with non-Tg models as well. Both models
will be reviewed from the perspective of sex differ-
ences in a later section.

EVIDENCE FOR SEX DIFFERENCES IN
AD

Human findings

The discrepancies observed in previously dis-
cussed epidemiological studies may be due to many
factors, such as 1) different AD diagnostic criteria
and criteria for excluding other types of dementia;
2) small sample size, statistical power or lack of age
groups in the analysis, which could result in inaccu-
rate estimates; 3) type of study (e.g., cross-sectional
analysis, prospective or retrospective cohort); 4) cul-
tural differences that could affect the lifestyle over the
years; and 5) inclusion/exclusion criteria regarding
comorbidities [33]. In a recent study, Viña and Lloret
have raised the percentage of people suffering from
AD in Europe stratified by age categories. They have
shown that the amount of women with AD is higher
in all age groups, with the exception of the 65–69
age group [17]. Moreover, epidemiological discrep-
ancies among Europe, Asia, and North America can
be attributed to social, cultural, and historical aspects
[71]. In Brazil, the annual rate of mortality of people
suffering from AD has been higher in women than
in men in the last decade [72]. In 2010 and 2014 the
Alzheimer’s Association published two alerts high-
lighting the disproportionate number of women who
are affected and living with AD [73, 74], particularly
those aged 65 years or older, who are twice as likely
to have AD compared to age-matched men.

In recent years, there has been a significant advance
in the search of the physiological basis for the sex

differences in AD. Before discussing them, it is
important to highlight the conceptual distinction
between sex and gender. Sex is an essentially bio-
logical, chromosomal, hormonal trait that relates
to reproductive differences between men/male and
women/female. In contrast, gender refers to psy-
chological, social, political, and cultural differences
between the sexes [75, 76]. In this context, Rocca
and colleagues considered three categories of fac-
tors related to sex and gender differences in the
risk of developing AD. First, there are risk fac-
tors that are equally frequent in men and women
but have a stronger effect on one sex, for exam-
ple the APOE genotype (see below). Second, there
are risk factors that have similar effect on men and
women, but are culturally or socially more common
in one gender (e.g., access to education and employ-
ment). Finally, there are risk factors restricted to sex
(e.g., ovariectomy and abrupt hormonal loss over a
period of life). Hence, multiple factors may con-
tribute to the differential incidence and progression of
AD between men and women, including sex-related
(chromosomal, epigenetic, or hormonal differences)
and gender-related (psychosocial and cultural differ-
ences) factors [77].

Apolipoprotein E (ApoE), involved in the choles-
terol transport, favors A� aggregation and the
enhancement of amyloid plaques [78–81]. There are
three major isoforms of the ApoE protein (ApoE2,
ApoE3,and ApoE4), encoded by three alleles of the
ApoE gene (E2, E3, and E4, respectively). Carriers
of an E4 allele are three to four times more sus-
ceptible to AD compared to non-carriers [82, 83].
The presence of this allele decreases the age of the
disease onset in a manner dependent on the num-
ber of alleles and sex [84, 85]. For example, women
with one or two E4 alleles are at higher risk than
men with the same genotype in the age group up
to 85 years [86]. Women with E4 also show more
significant changes in the connectivity pattern of
the neural network [87], more presence of tauopa-
thy [84] and a stronger association between tau and
APOE [88], reduced brain metabolism and increased
brain atrophy [89], and worse memory performance
than men [90]. Moreover, postmortem studies showed
exacerbated deposition of amyloid plaques and NFT
formation in the brains of E4 allele carriers [91, 92]
and the E4 effect on AD biomarkers in the cere-
brospinal fluid is more pronounced in women than
in men [93]. Recently, a meta-analysis study reported
the age-dependency of ApoE4 as an AD risk factor for
women, being restricted to an age range of 10 years
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[94]. Other genetic predictors have been identified
as sex-specific for AD. For example, Karch & Goate
reviewed 20 genetic loci on autosomal chromosomes
that are linked to increased risk of AD [95] and some
of them, as Serpin genes, showed stronger associ-
ation with amyloidosis, especially among females
[88]. However, the fully role of such genes on AD
sex differences requires further research.

The ApoE E4 genotype may also interact synergis-
tically with alcohol consumption, smoking, physical
inactivity and high saturated fat intake [96, 97]. These
factors can trigger metabolic syndrome, character-
ized by obesity, insulin resistance, hypertension, and
dyslipidemia, factors that have also been associated
with an increased risk of AD [98]. As mentioned,
reduced cerebral glucose metabolism is common to
insulin resistance (type 2 diabetes) and AD, and it
has been implicated in increased A� deposition, tau
protein hyperphosphorylation, vascular dysfunction,
and inflammation [99–101]. Thus, these interactions
may explain the differential effects of ApoE between
men and women, as they differ in their exposure to
smoking, alcohol consumption, food preferences, and
physical activity [77].

Gender-related factors as educational level can
interact with the effects of ApoE E4 genotype. In
fact, women carrying the E4 allele, but with early
high educational level have reduced risk of demen-
tia [102]. In addition, individuals who perform mind
stimulator activities, those requiring complex inter-
actions with data and people, have lower risk of
dementia [103]. Educational level, type of occupa-
tion during working life, and cognitively stimulating
leisure activities during the middle age are part of
an intellectual enrichment that may delay the cogni-
tive decline and dementia onset [104, 105]. Leisure
activities throughout life, education, and mental stim-
ulation as part of labor are primarily gender-related
and historically contingent. Indeed, men historically
have higher educational attainment than women, and
in some regions of the world, especially in underde-
veloped and developing countries, this discrepancy
is still considerable [106]. Likewise, jobs that are
cognitively more demanding have been historically
restricted to men (e.g., directing public or private
institutions, serving high-level political roles, hold-
ing high academic positions, etc.), although in a few
countries this pattern has become more equal between
genders [71, 107]. In this sense, the changes in social
and cultural attitudes that have been occurring in
many countries over the past decades may alter future
projections of gender influence on AD [108].

Finally, there are some factors restricted to sex,
such as ovariectomy in women, which may be
associated with an increased risk of developing
AD. Research has shown that women who had
bilateral ovariectomy before menopause had an
increased risk of cognitive decline and dementia
[77]. Bove and coworkers reported the results of
a cohort study on the association between surgi-
cally induced menopause, cognitive decline, and AD.
Early menopause was associated with a faster decline
in cognition, specifically on episodic and semantic
memories, and enhanced amyloid plaques formation
in AD patients. The authors also demonstrate that
estrogen replacement therapy in a perimenopause
stage was associated with a slower cognitive decline
[109]. Thus, it is suggested that early bilateral
ovariectomy in women causes an abrupt decline
in estrogen levels which might mediate a chain of
reactions leading to degenerative and cerebrovascu-
lar lesions. Estrogen-related factors will be further
discussed in this review. Sex differences in human
AD studies are corroborated by preclinical stud-
ies with animal models, as described below. In
general, the human studies discuss direct (AD preva-
lence/incidence and ApoE genotype) and indirect
(educational and hormonal status) features related to
sex differences with AD (see Table 1).

Studies in animal models

Table 2 summarizes the variety of AD animal mod-
els that considered sex as an independent factor in the
experimental design. Most animal studies that have
addressed sex differences in AD used Tg models,
and, to our knowledge, there are very few studies
with non-Tg animals using both sexes. For example,
only two studies have recently verified the influence
of sex on the STZ model. Biasibetti and colleagues
[110] demonstrated that the behavioral effects and
changes in neurochemical markers depended on sex
and were more prominent in males. Similarly, Bao
et al. [111] showed that females were more resis-
tant to the learning and memory impairment induced
by STZ administration. Spatial memory was strongly
affected in A�PP/PS1 Tg-females while spared in
males, at all ages. The reduction of the synaptic
connectivity and the high density of hypertrophic
astrocytes were associated with the memory impair-
ment [112]. Also in the A�PP/PS1 Tg model, Wang
and coworkers reported significantly increased A�40
and A�42 levels in the brain tissue of females com-
pared to males at 4, 12, and 17 months. Moreover, at
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Table 1
Overview of the features related to AD sexual differences in animal models and human studies

Features Sexual differences References

Human studies AD prevalence and incidence ♀ > ♂ [2, 3, 23–31, 36, 37]
Susceptibility to ApoE4 genotype ♀ > ♂ [82, 84, 86, 87, 89, 90, 94, 95]
Educational enrichment ♀ < ♂ [71, 77, 106–108]
Ovariectomy Restricted to ♀ [77, 109]

Aging-related gene expression changes ♀ > ♂ [124]
Susceptibility to ApoE4 genotype ♀ > ♂ [118, 119]
AD histological hallmarks and behavioral deficits ♀ > ♂ [113–117, 120]

> or < indicates which sex is most likely to exhibit or suffer from the listed feature.

Table 2
AD animal models that mostly considered sex as an independent factor in the experimental design

AD animal models Sex as an independent factor References

Transgenic A�PP +++ [38, 83, 115–117, 258, 278]
A�PP/PSEN1 ++ [112–114]
Tau ++ [60, 62, 64]
A�PP/Tau + [60]
3xTg-AD +++ [82, 120, 189, 297]
ApoE4 ++ [118, 119]

Non-transgenic Spontaneous – ?*
Induced + [110, 111]

The signs denote the number of studies using the type of animal model mentioned. *No studies that
concomitantly used both sexes in the experimental design was found.

the ages of 12 and 17 months, the load of amyloid
plaques was substantially higher in females than in
males (at four months of age there were no deposits).
Interestingly, the animals presented differences in A�
levels between the sexes prior to what would cor-
respond to the menopause period in women (at the
age of 4 and 12 months). In addition, the relatively
unchanged proportion between A� species (40/42)
at 12 and 17 months for both sexes indicates that
sex probably affects only the A�PP overproduction
but not the A� generation [113]. Recently, a study
also showed that in A�PP/PS1 mice the A�40 and
A�42 levels do not differ between the sexes until nine
months of age. After this, there was an increase in
plasma amyloid levels in females and a reduction in
males [114].

Other studies with Tg mice models (APP23 [115,
116], Tg2576 [117], and A�PP/Tau [60]) observed
similar patterns. These studies found that females
had higher A� levels in several brain regions, more
deposition and amyloid plaques formation, as well as
a more remarkable neurodegenerative profile when
compared to males of the same age [113, 117]. Raber
and colleagues showed that Tg female mice express-
ing human ApoE4 were more susceptible to learning
impairments in the water-maze test [118]. Further,
Cacciottolo et al. [119] showed stronger A� burden

in ApoE4 females than in males. Likewise, in the
3xTg-AD model, female mice exhibited pronounced
impairments on learning and memory than males in
the water-maze and inhibitory avoidance tasks. How-
ever, in the novel-object recognition task there were
no sex differences. It is important to note that in
this study, in all age groups, no significant difference
in A� and tau levels was detected [120], contrary
to what was observed in the above-mentioned stud-
ies. Regarding models of tauopathy, rTg4510 female
mice have more severe spatial memory deficits asso-
ciated with an increased level of hyperphosphorylated
tau [64]. JNPL3 female mice exhibit faster tau pathol-
ogy, and have tau overexpression two times higher
than males [60]. On the other hand, mitochondrial
dysfunction is greater in male P301S mice at older
age [62]. Interestingly, pharmacological treatments
that target anti-A� actions have differentiated (even
opposite) effects between the sexes in Tg mice [121],
which reinforces the thesis that sex has to be taken
into account in the analysis of studies using AD mod-
els. Although the development of Tg models has
optimized and tackled unanswered questions, some
intrinsic limitations such as the higher amyloidoge-
nesis in females can generate more variable results.
Dubal et al. [122] scrutinized how surpass these lim-
itations, and proposed guidelines to choose those

Animal models Life expectancy regardless sexual genotype ♀ > ♂ [83]
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that best embodies the human condition for future
research.

The mechanisms underlying the sex differences in
AD are not completely understood. Recently, Broestl
et al. [83] designed a remarkable experiment to inves-
tigate the effects of sex chromosomes and gonads on
AD pathology using an AD Tg mice model (overex-
pression of A�PP). Even though depletion of gonadal
hormones is a key aspect of human aging, these same
steroids remain relatively stable in older rodent mod-
els [122]. To overcome this limitation, the authors
depleted the hormones of mice manipulated to have
female sex chromosomes, but male sex organs (tes-
ticles), as well as male sex chromosomes together
with female sex organs (ovaries). Mice with male
genotypes died faster regardless of whether they had
male or female sex organs. This outcome suggests
that sex chromosomes contribute to AD-related brain
disorders in A�PP mice.

Finally, Rae and Brown [123], in an exten-
sive review, drew attention to the genotype and
sex-dependent differences in lifespan, which have
important implications for designing experiments
using AD Tg mice models. These authors discussed
the need to standardize age-related disorders in these
models in order to equate each genotype and sex with
different life expectancies. Indeed, the expression
profile of some genes in the hippocampus revealed
differences in the development of aging-related alter-
ations between male and female brains, which may
help to clarify early changes in female brains at risk
for AD. For example, in female mice brains, 44.2%
of the genes underwent significant change between
six and nine months of age, and two thirds of them
were downregulated. In contrast, in male mice brains,
only 5.4% of the genes were significantly altered dur-
ing the same period. In subsequent age groups, the
changes in female mice brains were much smaller
(10.9% from 9 to 12 months and 6.1% from 12 to 15
months) while in the male mice brains most of the
changes were related to gene upregulation between
12 and 15 months. Thus, male and female mice
brains seem to follow markedly different aging paths
and particularly female brains undergo age-related
changes much earlier than males [124].

SEX-RELATED FACTORS IN AD

Both human studies and animal models have high-
lighted the importance of addressing the differences
between the sexes in AD pathophysiology. In general,

they showed that females are more susceptible to the
disease-related features (Table 1). In this respect, it
is important to mention that susceptibility and vul-
nerability are different concepts when considering
sex-specific physiological factors involved in AD (see
below). According to Kottow [125], susceptibility is
a feature of subjects who have a priori disadvan-
tages and are at risk of suffering other damages.
On the other hand, vulnerable subjects would not
present those disadvantages, but are at risk of dam-
age provided a certain condition affects them. In
other words, knowing that susceptibility indicates a
prior weakness not yet established, but with risk of
development, and vulnerability refers to the weak-
ness already present, but with less resilience, it is
possible to draw a comparison between morbidity
and mortality with these concepts. Indeed, mortal-
ity means the proportion of deaths among those who
may die, and morbidity the proportion of ill patients
among those who may become ill. Thus, the idea of
vulnerability is closer to the concept of mortality,
and that of susceptibility to morbidity. Taking this
into account, both conditions (i.e., susceptibility and
vulnerability), when expressed differentially between
the sexes, may skew the course of the disease in terms
of morbidity and mortality. The view of greater vul-
nerability of men to the disease is congruent with
previous reports. For example, one of the strongest
predictors for aggressive disease course and progres-
sion to death following a diagnosis of AD is male sex
[122, 126]. On the other hand, men have better over-
all health at older ages than their female counterparts
in terms of morbidity, but not mortality [127].

Otherwise, the idea of increased susceptibility to
AD by females while a greater vulnerability in males
is questionable since females would be more resilient
in earlier stages of the disease as shown by some stud-
ies [128–131]. Indeed, these studies show a greater
resilience of females due to protection at low levels
of AD pathology [131] or an advantage of cog-
nitive reserve [128–130]. However, the evaluation
of female’s resilience using only a single cognitive
demand (i.e., verbal memory) may bias the issue,
especially when studies have shown there is baseline
advantage of females over males in verbal mem-
ory [132], which may hinder generalizations for the
pathology as a whole. Moreover, other studies coun-
teract these data by stating that females may be more
sensitive to AD-related pathological agents and expe-
rience greater and more rapid structural loss than
males. Thus, males would be more resilient because
they have greater cognitive reserve [71].
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Fig. 2. Integrative view of the main factors involved in AD sex differences. Data reveal substantial differences in the overall age-related
changes between the brains of males and females. Aging-related components as sex hormones, stress response and the immune system
seem to be involved in sex-specific brain predisposition to AD. Besides genetic factors that enhance the AD susceptibility of females,
developmental changes linked to sex-specific and stress hormones directly bias females to increased AD risk. The sex-biased risk for AD
in which females appear to be more susceptible to the disease raises the questions: If one sex is more susceptible, is it necessarily more
vulnerable? Could the intrinsic factors linked to sex from early development to the natural aging process lead to different neuropathology
processes between the sexes? Susceptibility appears to be greater in females than in males and this does not appear to be age dependent.
Conversely, the vulnerability to comorbidities or intrinsic AD factors seems to be age dependent. A pattern showing that females would be
more vulnerable at early ages and males would be more vulnerable at more advanced stages of the disease highlights the highest mortality
rate of this sex in AD.

From another perspective, age seems to be a key
part in this discussion. Fisher et al. [33] argued that
imprecise timing of pre-AD diagnosis may make the
definition of age-of-onset more variable. For exam-
ple, women receive the diagnosis of AD later than
men. Other caveat pointed by the authors is that
the use of clinical diagnosis may categorize other
dementia presentations incorrectly as being AD. In
this respect, sex and gender factors interact with age
across development to alter risk for dementia. Brain
sexual dimorphism begins in pregnancy and may
promote risk or resilience on the disease outcome
across the lifespan. Interestingly, males have a higher
potential risk for the development of other types of
dementia excepting AD, such as vascular demen-
tia, Lewy body dementia, dementia associated with
Parkinson’s disease, dementia due to frontotemporal
degeneration, or by multiple causes [133]. Regarding
AD-type dementia, a systematic review [71] endorsed

several findings that have pointed to a shorter lifespan
among males [134–140], regardless of age at diagno-
sis [141]. Therefore, sex differences in the clinical
manifestations of the disease may vary across the
cognitive diagnostic spectrum, and additional lon-
gitudinal work is needed to better understand this
dynamics process [142].

Furthermore, it is difficult to conclude whether the
observed sex differences is driven by differences in
the AD etiology, or simply by differences in risk
factors during brain aging, such as the higher pro-
portion of comorbidities and mortality in men or
greater disability but longer survival in women [135].
The overview of mechanistic processes related to
aging and addressed in this section will be discussed
under the integrative rationale outlined in (Fig. 2),
which shows factors intrinsic to sex and involved
in the relative sex susceptibility and vulnerability
to AD.
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Sex hormones

Numerous physiological and behavioral effects of
estrogen (E2) have been the focus of preclinical and
clinical research. The role of E2 goes far beyond
the effects on sexual differentiation and reproduc-
tive function. The drastic reduction of E2 levels is
a key feature of menopause, with negative conse-
quences to the female organism, such as on bone
density and cardiovascular functioning [143, 144].
The effects of E2 on these peripheral systems are
well documented, as well as the important role of this
hormone on the central nervous system [145–147].
For example, as reviewed by Galea et al. [148], E2
can increase neurogenesis in several brain regions,
such as the dentate gyrus in the hippocampus, which
contributes to learning and memory mechanisms. In
animal models, E2 has shown a neuroprotective effect
by increasing dendritic spines in the hippocampus
[149], LTP upregulation [150], modulation of several
neurotransmitter systems [151], and decrease in cell
death by modulating mitochondrial functions [152].
E2 is also responsible for increased immunocompe-
tence in females [153, 154]. Likewise, E2 positively
regulates the expression of antioxidant enzymes, as
shown by increased levels of reduced glutathione
[155], which could preserve the immunologic func-
tion throughout the aging process [153, 156–158].

Paganini-Hill and Henderson [159] reported that
the marked E2 decrease during menopause contribute
to the AD pathogenesis. Indeed, evidence show that
E2 has a beneficial role against several dysfunctional
brain systems associated with AD [160, 161]. For
example, E2 can reduce A� levels by 1) favoring the
non-amyloidogenic pathway by MAPK/ERK activa-
tion and reduction of BACE levels; 2) promoting A�
clearance by microglial phagocytosis; and 3) regu-
lating enzymes involved in A� degradation such as
neprilysin (NEP) [162]. E2 also prevents the neu-
ronal loss mediated by A� toxicity, and activates the
anti-apoptotic Bcl-2 protein at the same time it sup-
presses the expression of the proapoptotic isoform
[163]. Moreover, E2 decreases hyperphosphorylated
tau levels, and this effect depends on the activity of
kinases and phosphatases, such as GSK-3�, Wnt, and
PKA [164]. E2 depletion leads to A� accumulation
in the Tg2576 mice brain, which can be reversed by
hormone replacement [165]. However, ovariectomy
in females did not alter A� brain levels, but signifi-
cantly reduced A�PP levels [166]. On the other hand,
although E2 treatment reduced A� brain levels, A�PP
levels did not change in another study [167]. Together,

both studies suggest that E2 possibly influence the
A�PP processing, A� levels, or its deposition.

Several epidemiological studies and clinical tri-
als have suggested that the E2 replacement reduces
risk of AD in healthy women, delays disease onset,
and improves cognitive function in women with AD
[168–173]. In addition, women with AD presented
lower serum levels of E2 [172]. On the other hand,
some authors have refuted the efficacy of E2 in AD
patients [173–175]. In addition, some studies have
indicated that E2 replacement is not beneficial for
AD, especially when the disease is already in course
[176, 177]. Others have shown increased risk for car-
diovascular disease, dementia, and decreased brain
volume in women aged 65 to 79 years as a conse-
quence of this replacement [178–180].

In face of this controversy, studies need to address
multiple factors that can modulate the hormonal
response in AD research [176]. For example, the
studies that investigated the potential neuroprotection
exerted by E2 in women have led to the hypothesis
that this action only occurs in the time window called
perimenopause [77, 181]. Perimenopause is a natural
transition towards menopause, during which there is
a sharp decline of hormone levels, especially estro-
gen and progesterone [182, 183]. This transition is
considered a critical period to the potential neuro-
protective effects of E2 [184, 185]. Another inherent
problem that may result in inaccuracies is the fact that
there is still no appropriate model that naturally mim-
ics human hormonal conditions (e.g., menopause; for
review on caveats and alternatives, see [122]).

Moreover, the bioavailability of E2 may influ-
ence its actions on the central nervous system.
A recent study by our research group using the
scopolamine-induced amnesia rat model has shown
that E2 administration resulted in a bimodal effect.
Specifically, although the acute treatment with E2
counteracted the scopolamine-induced acquisition
impairment, E2 impaired the consolidation process
in female with low physiological levels of the hor-
mone. Differences in E2 bioavailability can activate
genomic and non-genomic actions during the differ-
ent phases of memory (acquisition and consolidation)
and the interaction between these two pathways pos-
sibly interfered with the behavioral outcome [186].
Both the long lasting genomic and the rapid non-
genomic pathways participate in the activational
and organizational effects of E2 on physiological
and behavioral processes [187]. From this perspec-
tive, the developmental and physiological differences
between sexes, particularly regarding the activational
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and organizational effects of the sex steroid hor-
mones, could contribute to the sex-related AD
framework. As recently reviewed by Pike [188],
the sex-specific activational variations during aging,
combined to differences in the sex hormones organi-
zational actions during early development may confer
inherent vulnerability to the female sex.

In addition to E2, other sex steroid hormones
such as progesterone and testosterone may also be
involved in the AD sex differences. For example,
recent work has demonstrated that the protective
efficacy of E2 in non-Tg and AD Tg rodents is
regulated by progesterone [189–191]. Progesterone
have also shown neuroprotective actions against
AD, such as gamma-secretase modulation [192] and
increased A� clearance by insulin degrading enzyme
[191]. In addition, studies in cell cultures, animal
models, and humans have shown that progesterone
also modulates tau protein phosphorylation [193].
Unlike E2, progesterone had no effect on alpha-
secretase [192, 194]. However, a study showed that
the administration of progesterone in ovariectomized
rats induced a downregulation of beta-secretase gene
expression [195]. Progesterone administration also
promoted better performance in novel-object recog-
nition and T-maze tasks in a Tg mice model of
AD [196]. In this same work, progesterone admin-
istration not only significantly reduced A� levels,
but also synergistically increased the E2 neuropro-
tective action. In contrast, continuous progesterone
treatment did not alter A� levels and eventually
inhibited the E2 protective effects in another study
[190]. Finally, progesterone significantly attenuated
oxidative damage resulting from glutamate- [197]
and A�-induced [198] toxicity in hippocampal cell
cultures. In summary, there is evidence of a role
of progesterone in the neuroprotective action of sex
steroids.

The aging-related loss of androgens also has conse-
quences to the brain. In human studies, aging-related
loss of androgen has been associated with increased
risk of developing AD. For example, AD men have
lower circulating [199, 200] and brain testosterone
levels [201, 202] compared to men without AD. Brain
testosterone levels were also inversely related to the
A� levels in men who developed early-onset AD
[202]. Overall, the loss of testosterone associated
with aging seems to precede the AD clinical diag-
nosis, suggesting that androgen depletion can be a
precursor event that contributes to the disease onset
[202]. Moreover, low testosterone levels agreed with
increased formation of the amyloid plaques [203],

lower cognitive performance [200], and reduced brain
metabolism [204]. Some studies have also shown
that testosterone treatment improves cognitive func-
tion in men [205, 206]. In a male reproductive aging
rat model, cerebral decrease of dihydrotestosterone
occurred concomitantly with increasing levels of
A�40 during aging [207]. Furthermore, androgen
depletion by orchiectomy significantly accelerated
cognitive deficit and brain injury in 3xTg-AD mice
[208]. In APP23 mice, the genetic manipulation
of aromatase, resulting in increased testosterone
bioavailability, led to a significant reduction of the
AD pathology and consequent improvement of the
cognitive function [209]. Androgens also protect
the brain against a variety of AD-related insults.
For example, testosterone may protect against A�
toxicity [210–212], oxidative stress [213], and tau
protein hyperphosphorylation [214]. The neuropro-
tective effects of testosterone may be related to its
action at the androgen receptor, or to the conversion
to E2 by aromatase [213, 215].

The loss of sex steroid hormones during aging is
undoubtedly one of the mechanisms related to AD
sex differences. Although each sex-specific hormone
has a potential neuroprotective relevance to AD risk,
female hormones present a more abrupt decline and,
therefore, the susceptibility to AD would be higher in
women. Conversely, men would be less susceptible
to the loss of estrogen-mediated neuroprotection, but
they might present greater vulnerability to other AD-
related factors (Fig. 2).

Cortisol/corticosterone

Long-term glucocorticoid overload during chronic
stress leads to changes in the hippocampus [216, 217],
including dendritic remodeling [218], LTP reduc-
tion [219, 220], increased oxidative stress [221], and
reduced hippocampal volume [222]. Chronic stress
also alters the dendritic morphology of the prefrontal
cortex neurons [223, 224] and suppresses neurogen-
esis in the dentate gyrus [217, 225], and this effect
increases with aging [226]. The consequences of
the functional changes mentioned above result in
cognitive impairment, particularly of hippocampus-
dependent memories (see [227] for review) and
executive functions [228].

Of note, there is an increase in cortisol lev-
els in both plasma and cerebrospinal fluid of AD
patients. This increase is positively correlated with
the degree of cognitive impairment [229], but not to
the co-morbid depression symptoms of the disease
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[230]. In addition, a longitudinal study demonstrated
that stressful life-long events are associated to an
earlier onset in familial AD [231]. It is notewor-
thy that AD patients exhibit functional alterations
in the hypothalamic-pituitary-adrenal axis (HPA)
[232–234]. In addition, AD patients with high cor-
tisol levels have worse performance in memory
tasks compared to those patients with lower lev-
els [235]. These patients are unable to adequately
cease stress responses, leading to a chronic HPA axis
hyperactivity and deleterious effects on the aging
brain [236].

Females live longer than males in a wide vari-
ety of animal species, including humans. Behaviors
like the search for food and the risk taking are
rather traits of males than females in most mam-
mals species [237], which contributes to the increased
male mortality in all ages [238, 239]. As cortisol or
corticosterone is inversely associated with risk behav-
iors [240], plasma concentrations of stress-related
hormones are considerably higher in adult females
than in males [241]. On the other hand, some authors
have described an aging-related decrease in cortisol
levels only in women [271, 272]. Similarly, 3xTg-
AD female mice presented decreased corticosterone
levels compared to age-matched males, while adult
females of non-Tg mice had a six-fold increase in
basal plasma corticosterone compared to adult males
[243]. Thus, although sexual dimorphism to stress
hormones is present across life, it seems to be atten-
uated with aging in humans and animal models.

In humans, a large meta-analysis by Otte et al.
[244] showed that the effect of aging on the cortisol
response to pharmacological or psychological stres-
sors was almost three times higher in women than in
men. The size effects of some studies that controlled
the sex hormones variations in women (e.g., stan-
dardization of menstrual cycles, exclusion of women
using oral contraceptives or hormone replacement
therapy) did not differ from the size effects of those
who did not. This suggests that sex hormones did
not appear to alter the effect of aging on the stress
response in women. In agreement with this finding,
studies that examined the effect of stress on cognition
in older men and women found that acute psychoso-
cial stressors caused memory impairment only in
women [245, 246]. In other words, even with the
attenuation of the differences in cortisol levels across
aging, the stress response still triggers more harmful
effects in females. Thus, the stress response is another
AD risk factor that confers greater susceptibility to
this sex (Fig. 2).

In addition to cortisol response per se, the associa-
tion between stress and BDNF is another mechanism
by which women may be more susceptible to AD.
A meta-analysis comprising intercontinental studies
found that the BDNF Met66 polymorphism, linked
to lower BDNF transport, was associated with AD
increased risk in women, but not in men [247]. Sim-
ilarly, in a study with young adults, women with the
BDNF Met66 polymorphism showed an increased
cortisol response to a social stressor, while the same
polymorphism was associated with a decreased cor-
tisol response in men [248]. In addition, BDNF was
decreased in cortical areas of both sexes, but BDNF
was downregulated in the entorhinal cortex only in
females, indicating that BDNF may be a female-
specific risk gene for AD [249]. In mice, stress
reduces hippocampal BDNF levels in females, but
not in males [250].

In animal models of AD, stress causes deficient
A�PP processing, which leads to increased A�40
and A�42 levels in the hippocampus [251], increased
tau protein phosphorylation in the hippocampus and
prefrontal cortex [252], as well as enhanced cog-
nitive impairment [253]. Interestingly, these effects
occurred only in stress-susceptible animals, and not in
the stress-resistant ones [254], suggesting that stress
actions on the nervous system require vulnerability to
these effects. Some evidence suggests that sex-biased
signaling in corticotropin-releasing factor increase
molecules associated with AD pathogenesis, suggest-
ing that stress may be a risk factor especially in
women [255] and female mice [256]. In addition,
treatment with a synthetic glucocorticoid (dexam-
ethasone) potentiated the disease-related damage in
3xTg-AD mice [257]. Furthermore, AD Tg mice
showed HPA axis hyperactivity that was dependent
on age and sex [258]. For example, Clinton et al.
[120] found that 3xTg-AD nine-month-old females
had higher stress-induced corticosterone response in
comparison to 3xTg-AD males and to age-matched
non-Tg females. This differential stress response
was not apparent in fifteen-month-old animals, along
with the cognitive disparity between the sexes. It is
possible that cognitive sex differences in stressful
tasks exist only when females have increased stress
response compared to males, regardless of genotype.
The authors raised the possibility of a progressive
synergistic effect between increased stress response
and the AD pathology [120]. A possible role for
stress response in AD sex differences is illustrated in
(Fig. 2). As mentioned above, the stress-related fea-
tures are more likely to participate in sex differences
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to AD risk earlier in life than during aging, when the
sex differences regarding stress response are attenu-
ated.

The immune system also plays an important role
in the relationship between stress response and aging,
and thus might be an important factor to explain sex
differences in AD, as illustrated in (Fig. 2). The hyper-
cortisolemia caused by HPA hyperactivation in AD
patients [259] could result in peripheral immunosup-
pression [260]. Furthermore, the literature indicates
that the immune system in females works more
efficiently and for a longer period than in males
[261] and shows stronger humoral [262] and cellu-
lar responses [156]. Thus, the sexual dimorphism in
the immune response indicates that females could be
more resistant to infections [263, 264], and males
would be more vulnerable to diseases. Particularly
in AD, the systemic immune changes exhibited by
immunodeficient subjects may be causally related to
increased AD pathology [243]. Thus, despite females
would be more susceptible to AD—due to the genetic
and developmental factors described throughout this
review—males could be more vulnerable due to the
difference in immunocompetence.

This view is illustrated in (Fig. 2), in an attempt
to integrate all the sex differences discussed above
that possibly underlie the greater AD prevalence in
females. In short, the exacerbated stress response
(mainly earlier in life) and the sharp decline in sex
hormones levels during aging render females more
susceptible to AD. In parallel, the less effective
immune function in males and their shorter lifespan
could confer more vulnerability to this sex once they
develop AD. Some authors have already strengthened
this hypothesis pointing out the higher vulnerability
of male immune system which results in an increased
mortality in AD male mice [243] and men [265].

NEUROCHEMICAL AND MOLECULAR
FACTORS

Oxidative stress

Oxidative stress and metal levels in the brain are
other mechanisms closely related to AD (Fig. 1). For
example, high ion metal levels in the brain such as
copper (Cu2+), zinc (Zn2+) and iron (Fe3+) may
facilitate A� precipitation [266, 267]. The catalytic
activity of A� reduce Cu2+ and Fe3+ [268] and this
process may be the main source of reactive oxygen
species (ROS) that provoke oxidative damage and
neurodegeneration in brain regions affected by AD

(see [269] for review). Furthermore, abnormalities in
metal homeostasis have been shown in AD brains,
such as increased levels of Fe3+ and Zn2+ [269, 270]
and decrease in Cu2+ levels [271–274]. In addition to
these metals, A�PP overexpression resulted in signif-
icantly increased manganese (Mn) levels in the brain
of AD Tg mice [274, 275]. Moreover, the Cu2+ defi-
ciency observed in both AD human [271–274] and Tg
mice [116, 275, 276] can be a direct consequence of
the A�PP/A� overproduction [275]. Indeed, Cu2+
binding A� domains and A�PP N-terminal region
interfering in the A�PP/A� metabolism [275]. Thus,
such deficiency could secondarily facilitate the A�
accumulation and amyloid plaques formation [116,
276].

Interestingly, brain oxidative stress parameters in
AD seem to be distinct between sexes [277, 278].
For example, Viña and Lloret [17] discuss the role of
mitochondrial mechanisms on the higher incidence
of AD in women. Conversely, male AD patients have
a reduction of the glutathione concentration in red
blood cells when compared to female AD patients
as well as healthy age-matched controls. The authors
suggested that a decrease in the concentration of glu-
tathione, the major antioxidant in cells, should render
men more vulnerable to AD [279]. In addition, it
is possible to observe lower levels of reduced glu-
tathione in spleen and brain cells of male mice, which
indicates an increase in oxidative status in males rel-
ative to females [280].

In the same context, metal levels could be related
to sex differences in AD. Studies have shown that
Cu2+ levels are lower in female mice, whereas cobalt
(Co) levels are higher, especially in older animals
[278]. Moreover, Mn levels exhibit marked sex dif-
ferences with consistently higher levels in females
compared to males [278]. Sex and age differences in
Cu metabolism or in Cu-mediated toxicity have also
been reported in rats [281–284]. From these findings
it is possible to infer that in humans there might be
differences in oxidative stress related to Cu homeosta-
sis between sexes, which could differently influence
AD progress [278]. Zn2+ also contributes to the A�
aggregation, characterized by high Zn levels in amy-
loid plaques [285]. Lee et al. [286] showed that mice
with lower expression of the Zn transporter had lower
amyloid plaque formation and higher Zn levels cor-
related significantly with A�40 and A�42 levels. This
work also demonstrated that the sex difference in
Zn2+ levels at the synapses contributes to the dis-
crepant amyloid plaque formation in Tg2576 mice.
Females expressing higher Zn transporters had more
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Fig. 3. Schematic representation of the possible interactions between the main neurochemical and molecular factors associated with aging
and AD sex differences. (1) The catalytic A� ability to produce Cu2+ is a source of reactive oxygen species (ROS) that provoke oxidative
stress and neurodegeneration (Perry et al. [269]). In aging male subjects, Cu2+ levels increase A� aggregation and oxidative stress (Maynard
et al. [275, 278]) and (2) AD male subjects have increased mitochondrial dysfunction (Dumont et al. [62]) and oxidative stress because an
antioxidant levels reduction (Liu et al. [279]; Viveros et al. [280]). (3) A�PP overexpression in females (Wang et al. [113]) significantly
increases Mn levels at the same time as reduce Cu2+ levels (Maynard et al. [278]). Moreover, (4) amyloid plaques have high Zn2+ levels
and Zn2+ contributes to the aggregation [286]. Lee et al. [287] showed that females have more plaques compared to the age-matched males
and older females have higher Zn2+ levels than males. Although (5) the supply of NGF receptors is higher in males due to more pronounced
reduction in AD female subjects [288], the same proportion of the high-affinity trkA receptors in both sexes could offset the greater loss of
low-affinity p75 receptors in females maintaining the neurotrophic signal. At the same time, (6) ApoD neuroprotective actions induce glial
activation and scavenging properties surrounding the amyloid plaque formation [291]. The ApoD increase only in healthy aging women may
be a result of the early need for their neuroprotective actions on the inflammatory response to some stressors (e.g., A� oligomers and fibrils
initial production), but may also indicate a delayed ApoD protective response in men. Meanwhile, (7) NEP decreased more prominently in
female than male transgenic mice [297], which facilitate A� deposition. Finally, (8) RL could also be involved in the AD sex differences
with lower expression in female animals [311]. Cu2+, ion cooper; Co, cobalt; Mn, manganese; Zn2+, ion zinc; A�PP, amyloid precursor
protein; A�, amyloid-beta peptide; ApoD, apolipoprotein D; NGF, neurotrophic growth factor; RL, reelin; NEP, neprylisin.

plaques compared to the age- and genotype-matched
males and older females had higher Zn2+ levels than
age-matched males. However, animals with lower
Zn transporter did not present sex differences in A�
deposits. In another study by Lee et al. [287], changes
in E2 levels affect the brain Zn2+ levels in the synap-
tic vesicles, so that ovariectomy increased brain Zn2+
levels and E2 replacement reduced those levels. In
view of the evidence above, changes in Zn2+ levels
in senescent animals may contribute to the AD sex
differences. However, they fail to explain the differ-
ences in the A� processing that is already evident
in young animals [38]. New studies should focus on

the interaction between the aging process, changes in
Zn2+ levels and the AD pathogenesis.

Figure 3 illustrates the suggested interactions
between oxidative stress, metal alterations, and other
molecular factors (see below) that may encompass
a differential cascade of events associated with AD
sex differences. A�PP overexpression [113], and the
increased burden of amyloid plaques associated with
high Zn2+ levels [286], reinforce the idea of more AD
susceptibility in females. Furthermore, the increased
oxidative stress due to high Cu2+ levels in aging male
subjects [275, 278] and the reduced antioxidant lev-
els [279, 280] emphasize the weakening of the male
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defense network against toxic substrates, which is
accordance with the shorter lifespan in males dis-
cussed previously.

Other molecular factors

Among other possible factors that might be
involved in AD sex differences there are the AMPA
glutamatergic receptors and the cognate receptors of
the neuronal growth factor (NGF) related to neuronal
survival, such as trkA and p75 [288]. These recep-
tors were analyzed in the nucleus basalis of healthy,
mild cognitively impaired, and mild/moderate AD
patients of both sexes and the results showed that
they go through a sex-dependent differential shift dur-
ing the progression of the disease. Patients with AD
of both sexes present less high-affinity trkA recep-
tor compared to healthy and mild cognitive impaired
groups, while low-affinity p75 type is reduced only
in the nucleus basalis of women with AD [288, 289].
The reduction in the number of receptors related to
neuronal survival in females depicted in (Fig. 3) is
in line with the idea of increased AD susceptibil-
ity of this sex. Conversely, the same proportion of
the high-affinity trkA receptors in both sexes could
counterbalance the greater loss of low-affinity p75
receptors in females, maintaining the neurotrophic
signaling.

The apolipoprotein D (ApoD) expression is dif-
ferent during aging in healthy women and men, but
not in AD patients, in which ApoD expression is
high in both sexes [290]. For example, there is an
age-related increase in ApoD expression in cells of
several brain areas in healthy women (but not men),
with no signs of degeneration or death. Given that
ApoD neuroprotective actions induce glial activation
[291] and scavenging properties against lipid oxida-
tion products surrounding the amyloid plaque [292],
this protein might be involved in AD sex differences
in two possible ways. The ApoD increase only in
healthy aging women may denote the early need for
their neuroprotective actions against pathogenic fac-
tors (e.g. A� oligomers and fibrils initial production).
Alternatively, there might be a delayed ApoD protec-
tive response in men, in which ApoD levels would
only increase when the AD is already installed (see
Fig. 3).

NEP is one of the enzymes responsible for the
degradation of A� [293]. It is significantly reduced
with aging, as previously reported in non-Tg mice
[294] and AD Tg models [295, 296]. The NEP
decrease in 3xTg-AD mice was more exacerbated

than that found in non-Tg mice and more promi-
nently in females [297]. In addition, ovariectomy
significantly reduced the cerebral NEP activity and
E2 replacement restored this activity [298], suggest-
ing that the activity is E2-dependent. Hirata-Fukae
and coworkers [297] found that 1) when mice did
not display plaque formation yet, A� levels were not
different between the sexes and 2) female plaque-
bearing mice showed significantly high A� levels
related to an enhanced BACE activity and suppressed
amount of NEP. These results suggest that both the
increased A� production and reduced degradation
may contribute to the higher risk of AD in female
mice (Fig. 3).

Reelin (RL) is a chemotactic glycoprotein from
the extracellular matrix that is widely produced dur-
ing neurodevelopment and participates in neuronal
migration [299]. In the adult brain, RL plays a role
in the memory and synaptic plasticity by modula-
tion of NMDA receptor activity, enhancement of
LTP [300], and stabilization of the cytoskeleton actin
[301]. The RL relationship with AD involves A�PP
trafficking and processing [302] and the reduction
in A� levels is possibly related to the enhancement
of the non-amyloidogenic cascade [303]. RL path-
way also prevents tau hyperphosphorylation [304]
and slows the fibrils formation through a direct inter-
action with soluble A�42 peptides [305]. Moreover,
reduced RL expression accelerates A� plaque for-
mation and tau pathology in Tg AD mice [306] and
cognitive decline during normal aging of rodents and
primates [307]. On the other hand, in 3xTg-AD mice
there was an accumulation of RL in amyloid plaques,
creating a precursor condition for senile plaque depo-
sition [307]. This finding is in agreement with the
association between RL and amyloid plaques in AD
double-Tg mice model [308]. Moreover, Botella-
López et al. [309] have shown that cortical RL was
40% higher in AD patients compared to controls. A
recent review approached these contradictory results.
In the AD brain, A� impairs RL signaling pathway,
hindering its biological activity, which would result in
a compensatory increase of the RL expression [310].
Also recently, Palladino and colleagues [311] showed
that the decrease of RL levels is more expressive in
the hippocampus and cerebral cortex of female Tg
mice (5 to 6 times compared to males). However, in
spite of a downregulation of RL expression compared
to males, Tg females display fewer A� plaques, sug-
gesting that additional factors, other than sex and RL
levels, influence the amyloidogenic pathway in this
mice model [311]. Of note, a variation in the RL gene
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Table 3
Markers possibly related to AD sex differences. Neurochemical
(oxidative stress) and molecular (receptors and proteins) factors
present variations between the sexes during natural aging and the

establishment of AD.

Neurochemical
and molecular
factors

AD-related markers ♀ ♂ References

Oxidative stress Antioxidants + – [279, 280]
[Cu] – + [278]
[Zn] + –
[Co] + –
[Mn] + –

Receptors TrkA – – [288]
p75 – +
AMPA – +

Proteins ApoD (no AD) + – [290]
Neprilysin – + [297]
Reelin – + [311]

The positive and negative signs indicate a greater or lesser amount
of the respective marker in each sex.

is associated with increased risk of AD in women
[312]. Table 3 summarizes the possible factors
involved in the AD sex differences discussed herein.

Autophagy and changes in white matter are also
examples of mechanisms that are linked to the risk
for AD. Zhou and coworkers [313] suggested a sex-
specific difference in the rate of conduction along
myelinated fibers and the reduction of volume of
the white matter, being the females most affected.
Autophagy induction is also affected by sex and data
showed that females have lower basal autophagy,
which may unleash greater predisposition to AD
[314]. There are several other factors correlated with
AD pathophysiology that were not mentioned in the
present study, such as neuropeptides (e.g., somato-
statin [19] and bradykinin [20]) and other hormones
(e.g., luteinizing hormone [315]). However, to our
knowledge, these issues have not been approached in
terms of sex differences yet.

CURRENT CAVEATS AND
PERSPECTIVES

The controversial clinical and epidemiological
data about AD sex differences should not be inter-
preted as a simple product of aging or life expectancy.
In other words, the literature should not ignore the
pronounced sex differences throughout the brain
development that are already based on a consider-
able body of evidence, mainly in animal models. Our
attempt here was to bring together conceptual subsi-
dies in a rationale to embrace hypotheses that would
try to elucidate discrepancies between the sexes. Our

point of view is in line with the conception posed
by Mazure and Swendsen [316] that the AD research
needs to consider sex-specific disabilities and vul-
nerabilities over the years and not only what brings
more susceptibility to one sex compared to the other.
The future AD research should discuss the sex differ-
ences in several levels of causal approaches and its
interactions.

Perhaps the main difficulty in the investigation of
AD sex differences is to detect the exact moment
of the changes related to the disease, which could
emerge in one sex and not in the other. Indeed,
most human and animal studies use subjects already
affected by the disease, often conducting analyses at
a specific time point and disregarding the progressive
feature of AD. Other drawback often found in AD
research is the mismatched chronology of the neuro-
chemical events and the emergence of the behavioral
alterations. Thus, further human and animal model
research should overcome these drawbacks by invest-
ing in follow-up studies of the same subject (instead
of simply separating them into age groups), in addi-
tion to better refine the limitations.

On the other hand, the increase in the lifespan
of people from emerging and developed countries,
together with the increased survival after AD diag-
nosis due to the advances in treatment, make sexual
variations related to the aging process more evident
(e.g., ApoD-linked sex differences). Likewise, the
research with animal models may vary according to
the genotype and lifespan of the AD strain used, and
therefore it is important to conduct the investigations
with aging- and sex-matched controls, so that correla-
tions of behavioral and physiological biomarkers can
be more reliable to the human condition (as reviewed
by [123]). Thus, the evaluation at various time points
during the disease progression seems to be criti-
cal. More systematic and comparative investigations
would enable the identification of significant changes
and contribute to detect new signaling pathways and
therapeutic targets.

Indeed, despite the growing incorporation of
female in AD studies, mainly in Tg models, there
remains a significant lack of comparative studies
between the sexes. This scenario continues in part
because of the underrepresentation of females in
the experimental designs, which could generate an
incomplete understanding of the differences in AD
studies [317]. For example, there are several biomark-
ers known to modulate AD pathophysiology that
have already been investigated in one sex (usually
in males), but have not been considered potential tar-
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gets for the study of AD sex differences. Scientific
findings on AD sex differences indicate that females,
whether human or not, are more susceptible due to
some molecular factors (such as ApoE) and present
early alterations related to developmental risk (such
as E2 loss and higher stress response) compared to
males. Awareness of these differences should encour-
age studies to surpass the historical disadvantage that
females have in scientific reports and evaluate both
sexes. Moreover, evidences also suggest that direct
factors, which confer greater susceptibility, but also
indirect factors that might lead to greater vulnerabil-
ity to one sex are not immutable and depend on the
AD course, sex-linked intrinsic factors and comor-
bidities. Therefore, it is important to investigate AD
under the light of a sex role for its pathophysiology.
This may help to overcome some gaps in the under-
standing of the disease and hence benefit patients and
future patients of both sexes.

Finally, our review endorses Fisher and coworkers’
suggestion [33] that biological mechanisms intrinsic
to sex increase the risk of developing AD, especially
those involved with changes during the aging process.
They also point out that comparisons of mecha-
nisms converging or shared by both sexes should
be encouraged. Future studies should not place male
versus female, or highlight the advantages and dis-
advantages of sex in AD, but rather observe in both
sexes details that drive disease control pathways more
suitable for one sex. Some authors [318, 319] cur-
rently advocate the merits and future directions on
the research of sex differences in AD. Among the
main recommendations, studies should investigate
not only factors directly related to the etiology of
the disease, but also comorbidities that knowingly
affect and interact with these factors. Moreover, the
current and next therapeutic approaches for AD need
to be continuously examined in light of the sex dif-
ferences. Indeed, only recently this topic attracted
attention [320] and the lack of information regard-
ing the relationship between pharmacodynamic and
pharmacokinetic properties of AD therapeutic agents
and sex is worrying. Therefore, more efforts should
be made to collect and report data on this issue.
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R, Pérez-Mediavilla A, Garcia-Osta A (2012) Chronic
mild stress accelerates the onset and progression of
the Alzheimer’s disease phenotype in Tg2576 mice.
J Alzheimers Dis 28, 567-578.

[254] Briones A, Gagno S, Martisova E, Dobarro M, Aisa B,
Solas M, Tordera R, Ramı́rez M (2012) Stress-induced
anhedonia is associated with an increase in Alzheimer’s
disease-related markers. Br J Pharmacol 165, 897-907.

[255] Yan Y, Dominguez S, Fisher DW, Dong H (2018) Sex
differences in chronic stress responses and Alzheimer’s
disease. Neurobiol Stress 8, 120-126.

[256] Bangasser DA, Dong H, Carroll J, Plona Z, Ding H,
Rodriguez L, McKennan C, Csernansky JG, Seeholzer
SH, Valentino RJ (2017) Corticotropin-releasing factor
overexpression gives rise to sex differences in Alzheimer’s
disease-related signaling. Mol Psychiatry 22, 1126-1133.

[257] Green KN, Billings LM, Roozendaal B, McGaugh JL,
LaFerla FM (2006) Glucocorticoids increase amyloid-beta
and tau pathology in a mouse model of Alzheimer’s dis-
ease. J Neurosci 26, 9047-9056.
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Reelin expression and glycosylation patterns are altered
in Alzheimer’s disease. Proc Natl Acad Sci U S A 103,
5573-5578.
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