Andre Goffinet

Andre Goffinet
Université Catholique de Louvain - UCLouvain | UCLouvain · Institute of Neuroscience

MD, PhD

About

212
Publications
41,157
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
13,466
Citations

Publications

Publications (212)
Research
Full-text available
Nature Medicine published a "Correspondence" in March 2020 entitled "The proximal origin of SARS-CoV-2" in which five virologists claimed: "Our analyses clearly show that SARS-CoV-2 is not a laboratory construct or a purposefully manipulated virus". However, Email messages and Slack direct messages among the authors of the paper show that the autho...
Research Proposal
Full-text available
The hugely disruptive COVID-19 pandemic should trigger an analogous response to address the risks inherent to research on enhanced pathogens with pandemic potential (ePPP). We propose the creation by the UN of an International Pandemic Pathogen Agency (IPPA) defined as the world’s central intergovernmental forum for scientific and societal cooperat...
Research Proposal
Full-text available
It is essential to examine all plausible hypotheses regarding the origin of COVID-19, in order to understand how this pandemic started and prevent future pandemics. The unfortunate reality is that this process has been stalled. The European Commission could play a decisive role in addressing this critical issue of European and global concern with t...
Presentation
Full-text available
Two hypotheses of the origin of the COVID-19 pandemic exist: a natural zoonosis or a laboratory-related event. An investigation of the origin of the COVID-19 pandemic needs to be conducted to a science-based resolution of these competing hypotheses. Until new evidence is found, an investigation of the pathway for the origin of COVID-19 should proce...
Research Proposal
Full-text available
The G7 leaders recently released a joint statement calling for “a timely, transparent, expert-led, and science-based WHO-convened Phase 2 COVID-19 Origins study including, as recommended by the experts’ report, in China.” Because failing to comprehensively investigate pandemic origins puts everyone and future generations at unnecessary risk, we cal...
Research Proposal
Full-text available
We call on the World Health Organization and its Executive Board to fully address the recommendations and questions raised in this letter as a critical step toward protecting everyone on earth and future generations. As terrible as COVID-19 has been, this is almost certainly not the last pandemic we will face -- and possibly not even the worst. Ta...
Research Proposal
Full-text available
Reaction to the China-WHO joint study team report. In our previous open letter, we outlined our fears that the joint international committee/Chinese government team “did not have the mandate, the independence, or the necessary accesses to carry out a full and unrestricted investigation into all the relevant SARS-CoV-2 origin hypotheses.” Having re...
Research Proposal
Full-text available
As strong supporters of the WHO and its mission, we believe it must be made clear that any findings of the joint committee, while potentially useful to a limited extent, represent neither the official position of the WHO nor the result of an unrestricted, independent investigation. For this reason, we believe it is essential that the contours of a...
Method
Full-text available
This list of 50 questions was sent by André Goffinet and Gilles Demaneuf to the members of the Jan 2021 WHO Mission to Wuhan (Embarek, Koopmans, etc - the non-Chinese side as we had no name for the Chinese members), as a useful reference before they went on their trip. The questions themselves were a collective DRASTIC work over Dec 2020. I redacte...
Article
Neural progenitor proliferation, neuronal migration, areal organization, and pioneer axon wiring are critical events during early forebrain development, yet remain incompletely understood, especially in human. Here, we studied forebrain development in human embryos aged 5 to 8 postconceptional weeks (WPC5-8), stages that correspond to the neuroepit...
Article
Full-text available
The development of the cerebral cortex is a tightly regulated process that relies on exquisitely coordinated actions of intrinsic and extrinsic cues. Here, we show that the communication between forebrain meninges and apical neural progenitor cells (aNPC) is essential to cortical development, and that the basal compartment of aNPC is key to this co...
Article
The cerebral cortex covers the rostral part of the brain and, in higher mammals and particularly humans, plays a key role in cognition and consciousness. It is populated with neuronal cell bodies distributed in radially organized layers. Understanding the common and lineage-specific molecular mechanisms that orchestrate cortical development and evo...
Article
Cadherin EGF LAG seven-pass G-type receptors 1, 2 and 3 (CELSR1-3) form a family of three atypical cadherins with multiple functions in epithelia and in the nervous system. During the past decade, evidence has accumulated for a key role of CELSR1 in epithelial planar cell polarity (PCP), and for CELSR2 and CELSR3 in ciliogenesis and neural developm...
Article
Full-text available
The diaphanous homologue Diaph3 (aka mDia2) is a major regulator of actin cytoskeleton. Loss of Diaph3 has been constantly associated with cytokinesis failure ascribed to impaired accumulation of actin in the cleavage furrow. Here we report that Diaph3 is required before cell fission, to ensure the accurate segregation of chromosomes. Inactivation...
Data
Supplementary Figures 1-11 and Supplementary Table 1.
Article
The caudal migration of facial branchiomotor (FBM) neurons from rhombomere (r) 4 to r6 in the hindbrain is an excellent model to study neuronal migration mechanisms. Although several Wnt/Planar Cell Polarity (PCP) components are required for FBM neuron migration, only Celsr1, an atypical cadherin, regulates the direction of migration in mice. In Ce...
Article
Full-text available
Purpose: Frizzled3 (Fzd3), a member of the core planar cell polarity (PCP) family in mammals, contributes to visual development by guiding axonal projections of some retinal ganglion cells. However, its other functions in the maturation of the visual system, especially the retina, remain elusive. The present study explores the role of Fzd3 in reti...
Article
Full-text available
Celsr3 and Fzd3 regulate the development of reciprocal thalamocortical projections independently of their expression in cortical or thalamic neurons. To understand this cell non autonomous mechanism further, we tested whether Celsr3 and Fzd3 could act via Isl1-positive guidepost cells. Isl1-positive cells appear in the forebrain at embryonic day (E...
Article
Full-text available
Sequential generation of neurons and glial cells during development is critical for the wiring and function of the cerebral cortex. This process requires accurate coordination of neural progenitor cell (NPC) fate decisions, by NPC-autonomous mechanisms as well as by negative feedback from neurons. Here, we show that neurogenesis is protracted and g...
Data
Supplementary Figures 1-10 and Supplementary Table 1
Article
The assembly of functional neuronal circuits depends on the correct wiring of axons and dendrites. To reach their targets, axons are guided by a variety of extracellular guidance cues, including Netrins, Ephrins, Semaphorins and Slits. Corresponding receptors in the growth cone, the dynamic structure at the tip of the growing axon, sense and integr...
Article
Full-text available
The oviduct is an important organ in reproduction where fertilization occurs, and through which the fertilized eggs are carried to the uterus in mammals. This organ is highly polarized, where the epithelium forms longitudinal folds along the ovary-uterus axis, and the epithelial multicilia beat towards the uterus to transport the ovulated ova. Here...
Article
The class of adhesion G protein-coupled receptors (aGPCRs), with 33 human homologs, is the second largest family of GPCRs. In addition to a seven-transmembrane α-helix-a structural feature of all GPCRs-the class of aGPCRs is characterized by the presence of a large N-terminal extracellular region. In addition, all aGPCRs but one (GPR123) contain a...
Article
Full-text available
The cadherin Celsr3 regulates the directional growth and targeting of axons in the CNS, but whether it acts in collaboration with or in parallel to other guidance cues is unknown. Furthermore, the function of Celsr3 in the peripheral nervous system is still largely unexplored. Here we show that Celsr3 mediates pathfinding of motor axons innervating...
Article
Full-text available
Significance Ependymal cilia are required for circulation of the cerebrospinal fluid and neurogenesis. To function properly, ependymal cilia must coordinate their beats in individual cells and across the tissue. Planar cell polarity (PCP) orients cilia in a given cell, thereby enabling their concerted beating. Here, we describe previously unidentif...
Article
Full-text available
Significance Connections are crucial to brain function and a variety of molecular systems direct axonal growth during development and regeneration. An important system involves Celsr2, Celsr3, and Fzd3, membrane proteins that also regulate epithelial planar cell polarity (PCP). Here, we show genetically that Celsr2 and Celsr3 guide axons redundantl...
Article
Full-text available
How growth cones detect small concentration differences of guidance cues for correct steering remains a long-standing puzzle. Commissural axons engage planar cell polarity (PCP) signaling components to turn anteriorly in a Wnt gradient after midline crossing. We found here that Frizzled3, a Wnt receptor, undergoes endocytosis via filopodia tips. Wn...
Article
Full-text available
Planar cell polarity (PCP) is complementary to the intrinsic polarization of single cells and refers to the global coordination of cell behaviour in the plane of a tissue and, by extension, to the signalling pathways that control it. PCP is most evident in cell sheets, and research into PCP was for years confined to studies in Drosophila melanogast...
Article
Cadherin EGF LAG seven-pass G-type receptors 1, 2, and 3 (Celsr1-3) form a family of three atypical cadherins with multiple functions in epithelia and in the nervous system. During the past decade, evidence has accumulated for important and distinct roles of Celsr1-3 in planar cell polarity (PCP) during the development of the brain and some other o...
Article
Full-text available
A highly complex network of intrinsic enteric neurons is required for the digestive and homeostatic functions of the gut. Nevertheless, the genetic and molecular mechanisms that regulate their assembly into functional neuronal circuits are currently unknown. Here we report that the planar cell polarity (PCP) genes Celsr3 and Fzd3 are required durin...
Article
Full-text available
Background P73 belongs to the p53 family of cell survival regulators with the corresponding locus Trp73 producing the N-terminally distinct isoforms, TAp73 and DeltaNp73. Recently, two studies have implicated the murine Trp73 in the modulation in phospho-tau accumulation in aged wild type mice and in young mice modeling Alzheimer’s disease (AD) sug...
Article
GABAergic interneurons mainly originate in the medial ganglionic eminence (MGE) of the embryonic ventral telencephalon (VT) and migrate tangentially to the cortex, guided by membrane-bound and secreted factors. We found that Sip1 (Zfhx1b, Zeb2), a transcription factor enriched in migrating cortical interneurons, is required for their proper differe...
Article
G protein-coupled receptors (GPCRs) comprise an expanded superfamily of receptors in the human genome. Adhesion class G protein-coupled receptors (adhesion-GPCRs) form the second largest class of GPCRs. Despite the abundance, size, molecular structure, and functions in facilitating cell and matrix contacts in a variety of organ systems, adhesion-GP...
Article
Cadherin EGF LAG seven-pass G-type receptors 1, 2, and 3 (Celsr1-3) form a family of three atypical cadherins with multiple functions in epithelia and in the nervous system. During the past decade, evidence has accumulated for important and distinct roles of Celsr1-3 in planar cell polarity (PCP) and brain development and maintenance. Although the...
Article
Full-text available
Atypical cadherin Celsr3, a regulator of planar cell polarity, is critical for the development of the axonal blueprint. We previously showed that expression of Celsr3 is necessary to establish forebrain connections such as the anterior commissure and thalamocortical and corticospinal tracts. The requirement for Celsr3 during hippocampal wiring and...
Article
Reelin est la proteine produite par le gene mute chez les souris reeler. Reeler est une mutation recessive autosomique, initialement decrite voici 50 ans. Elle provoque des anomalies de l'organisation cytoarchitectonique de nombreuses regions cerebrales, parmi lesquelles le neocortex, l'hippocampe et le cervelet. Ces anomalies, qui touchent specifi...
Article
The primary cilium, a signal transduction organelle, is present on the cell bodies of adult-born dentate gyrus granule cells as they begin maturation. In its absence, their maturation and integration are impaired.
Article
Full-text available
The patterning of cortical areas is controlled by a combination of intrinsic factors that are expressed in the cortex and external signals such as inputs from the thalamus. EphA7 is a guidance receptor that is involved in key aspects of cortical development and is expressed in gradients within developing cortical areas. Here, we identified a regula...
Article
Full-text available
The subplate layer of the cerebral cortex is comprised of a heterogeneous population of cells and contains some of the earliest-generated neurons. In the embryonic brain, subplate cells contribute to the guidance and areal targeting of thalamocortical axons. At later developmental stages, they are predominantly involved in the maturation and plasti...
Article
Full-text available
Comment on: Holembowski L, et al. Cell Cycle 2011; 10:680-9.
Article
Full-text available
Monoaminergic neurons [serotonergic (5-HT) and dopaminergic (mdDA)] in the brainstem project axons along the anterior-posterior axis. Despite their important physiological functions and implication in disease, the molecular mechanisms that dictate the formation of these projections along the anterior-posterior axis remain unknown. Here we reveal a...
Article
Planar cell polarity (PCP), the organization of cell sheets in the tangential plane, is regulated by a set of 'core' PCP genes. Over the last few years, evidence has accumulated that PCP signaling is important for brain development and function. PCP signaling in the neuroepithelium and otic placode controls neural tube closure, the organization of...
Article
Full-text available
During hindbrain development, facial branchiomotor neurons (FBM neurons) migrate from medial rhombomere (r) 4 to lateral r6. In zebrafish, mutations in planar cell polarity genes celsr2 and frizzled3a block caudal migration of FBM neurons. Here, we investigated the role of cadherins Celsr1-3, and Fzd3 in FBM neuron migration in mice. In Celsr1 muta...
Article
Full-text available
How much neocortical development depends on connections remains elusive. Here, we show that Celsr3|Dlx mutant mice have no extrinsic neocortical connections yet survive to postnatal day 20, acquire a basic behavioral repertoire, and display spontaneous hyperactivity, with abnormal light/dark activity cycling. Except for hallmarks related to thalami...
Article
Full-text available
Ependymal cells form the epithelial lining of cerebral ventricles. Their apical surface is covered by cilia that beat in a coordinated fashion to facilitate circulation of the cerebrospinal fluid (CSF). The genetic factors that govern the development and function of ependymal cilia remain poorly understood. We found that the planar cell polarity ca...
Article
Full-text available
The p73 locus encodes two types of transcription factors: full length pro-apoptotic isoforms (TAp73), and N-terminally truncated anti-apoptotic proteins (DeltaNp73). To study the function of DeltaNp73 in vivo, we generated mutant mice in which DeltaNp73 is inactivated, but TAp73 expression is intact. In addition, we knocked in the locus the Cre rec...
Article
Comparative studies of embryonic cortical developement in all main amniote lineages suggest that architectonic organization is an important, yet reflected, aspect of cortical evolution. Key components of architectonic evolution include the secretion of reelin in marginal zones, by cajal-Retzius-like cells, and response to reelin via receptors and D...
Article
Full-text available
Apoptosis occurs widely during brain development, and p73 transcription factors are thought to play essential roles in this process. The p73 transcription factors are present in two forms, the full length TAp73 and the N-terminally truncated DeltaNp73. In cultured sympathetic neurons, overexpression of DeltaNp73 inhibits apoptosis induced by nerve...
Article
Full-text available
The development of axonal tracts requires interactions between growth cones and the environment. Major bundles, particularly in the internal capsule, are completely defective in mice with constitutive mutation of Celsr3. In order to understand better how Celsr3 controls axonal tract formation, we generated a conditional allele that allowed inactiva...
Article
Full-text available
Celsr, cadherin, EGF LAG seven-pass G-type receptor; Fmi/Stan, Flamingo/Starry night; PCP, planar cell polarity
Article
The subplate lays the foundation of the developing cerebral cortex, and abnormalities have been suggested to contribute to various brain developmental disorders. The causal relationship between cellular pathologies and cognitive disorders remains unclear, and therefore, a better understanding of the role of subplate cells in cortical development is...
Article
Full-text available
Development of axonal tracts requires interactions between growth cones and the environment. Tracts such as the anterior commissure and internal capsule are defective in mice with null mutation of Celsr3. We generated a conditional Celsr3 allele, allowing regional inactivation. Inactivation in telencephalon, ventral forebrain, or cortex demonstrate...
Article
Full-text available
Reelin is an extracellular matrix protein with various functions during development and in the mature brain. It activates different signaling cascades in target cells, one of which is the phosphatidylinositol 3-kinase (PI3K) pathway, which we investigated further using pathway inhibitors and in vitro brain slice and neuronal cultures. We show that...
Article
Full-text available
Postnatal migration of interneuron precursors from the subventricular zone to the olfactory bulb occurs in chains that form the substrate for the rostral migratory stream. Reelin is suggested to induce detachment of neuroblasts from the chains when they arrive at the olfactory bulb. Here we show that ApoER2 and possibly very-low-density lipoprotein...
Article
Full-text available
Reelin, the protein defective in reeler mutant mice, plays a key role during brain development. Reelin is processed proteolytically at two sites, and the central fragment mimics function in vitro . Here, we show that processing is functionally important in vivo , a question that could not be addressed in our previous study. New monoclonal antibodie...
Article
Celsr3, the murine orthologue of Drosophila Flamingo/Starry night, is a brain-specific, atypical sevenpass cadherin that plays a key role during brain development. Celsr3 mutant mice die at birth of central hypoventilation. They have major anomalies of major tracts, particularly absence of anterior commissure and of all components of the internal c...
Article
Full-text available
Using a fetal brain slice culture system that recapitulates early cortical plate (CP) development, we screened the “Diversity Set” chemical library from the National Cancer Institute in order to identify molecules that interfere with radial migration and CP formation and identified 11 candidate molecules. Although most compounds had broadly similar...
Article
Ten years following identification of Reelin as the product of the gene mutated in reeler mice, the signalling pathway activated by Reelin is being progressively unravelled with the identification of lipoprotein receptors as reelin receptors, of the Dab1 adapter and of some other proximal components in target cells. However, we are still a long way...
Article
Full-text available
The cortex receives its major sensory input from the thalamus via thalamocortical axons, and cortical neurons are interconnected in complex networks by corticocortical and callosal axons. Our understanding of the mechanisms generating the circuitry that confers functional properties on cortical neurons and networks, although poor, has been advanced...
Article
Atypical cadherin (Celsr3) and the receptor Frizzled3 (Fzd3) are crucial for the development of axonal tracts in the mouse CNS. Celsr3 and Fzd3 are orthologues of the Drosophila'planar cell polarity' (PCP) genes flamingo/starry night (fmi/stan) and frizzled, respectively. Reasoning that Celsr3 and Fzd3 might interact with PCP orthologues in mammals...
Article
Full-text available
For a neurobiologist, the core of human nature is the human cerebral cortex, especially the prefrontal areas, and the question "what makes us human?" translates into studies of the development and evolution of the human cerebral cortex, a clear oversimplification. In this comment, after pointing out this oversimplification, I would like to show tha...
Article
Full-text available
Gonadotropin-releasing hormone (GnRH) neurons, a small number of cells scattered in the hypothalamic region of the basal forebrain, play an important role in reproductive function. These cells originate in the olfactory placode and migrate into the basal forebrain in late embryonic life. Here, we show that reelin, which is expressed along the route...
Article
Full-text available
In the embryonic CNS, the development of axonal tracts is required for the formation of connections and is regulated by multiple genetic and microenvironmental factors. Here we show that mice with inactivation of Celsr3, an ortholog of Drosophila melanogaster flamingo (fmi; also known as starry night, stan) that encodes a seven-pass protocadherin,...
Article
Reelin is an extracellular matrix protein secreted by a variety of cell types throughout the developing brain. The target cells for reelin express the cytoplasmic adapter protein Dab1, which binds to the reelin receptors VLDLR and ApoER2. In the present work, we have studied the localization of both receptors in developing mouse and human cortex, o...
Article
Full-text available
We carried out a screening of genes that are differentially expressed in normal mice and reeler mutants and are characterized by abnormal neuronal migration and neurite deployment due to defective Reelin signalling. A novel gene, provisionally named C61, was overexpressed in Reelin-deficient embryonic mouse brain RNA. C61 encodes a 3.7 kb mRNA that...
Article
The expression of Cxcr4 mRNA that encodes the receptor for the chemokine Sdf1 was studied during mouse brain development using in situ hybridization, from E9.5 to maturity at P21. At embryonic stages, expression is prominent in ventricular zones of stem cell proliferation. This abates during the postnatal period in parallel to the depopulation of v...