Andre Freitas

Andre Freitas
  • Ollscoil na Gaillimhe – University of Galway

About

218
Publications
28,391
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,121
Citations
Current institution
Ollscoil na Gaillimhe – University of Galway

Publications

Publications (218)
Article
This work presents a novel systematic methodology to analyse the capabilities and limitations of Large Language Models (LLMs) with feedback from a formal inference engine, on logic theory induction. The analysis is complexity-graded w.r.t. rule dependency structure, allowing quantification of specific inference challenges on LLM performance. Integr...
Article
This paper investigates how hallucination rates in Large Language Models (LLMs) may be controlled via a symbolic data generation framework, exploring a fundamental relationship between the rate of certain mathematical errors and types of input intervention. Specifically, we systematically generate data for a derivation generation task using a symbo...
Preprint
A persistent challenge in AI is the effective integration of material and formal inference - the former concerning the plausibility and contextual relevance of arguments, while the latter focusing on their logical and structural validity. Large Language Models (LLMs), by virtue of their extensive pre-training on large textual corpora, exhibit stron...
Preprint
Full-text available
Chain-of-Though (CoT) represents a common strategy for reasoning in Large Language Models (LLMs) by decomposing complex tasks into intermediate inference steps. However, explanations generated via CoT are susceptible to content biases that negatively affect their robustness and faithfulness. To mitigate existing limitations, recent work has propose...
Preprint
Full-text available
This paper introduces ExKLoP, a novel framework designed to evaluate how effectively Large Language Models (LLMs) integrate expert knowledge into logical reasoning systems. This capability is especially valuable in engineering, where expert knowledge-such as manufacturer-recommended operational ranges-can be directly embedded into automated monitor...
Preprint
Full-text available
Thanks to their linguistic capabilities, LLMs offer an opportunity to bridge the gap between informal mathematics and formal languages through autoformalization. However, it is still unclear how well LLMs generalize to sophisticated and naturally occurring mathematical statements. To address this gap, we investigate the task of autoformalizing real...
Preprint
Full-text available
Large language models (LLMs) struggle with compositional generalisation, limiting their ability to systematically combine learned components to interpret novel inputs. While architectural modifications, fine-tuning, and data augmentation improve compositionality, they often have limited adaptability, face scalability constraints, or yield diminishi...
Preprint
Recent large language models (LLMs) have advanced table understanding capabilities but rely on converting tables into text sequences. While multimodal large language models (MLLMs) enable direct visual processing, they face limitations in handling scientific tables due to fixed input image resolutions and insufficient numerical reasoning capabiliti...
Preprint
Full-text available
Retrieval-augmented generation (RAG) has emerged as a critical mechanism in contemporary NLP to support Large Language Models(LLMs) in systematically accessing richer factual context. However, the integration of RAG mechanisms brings its inherent challenges, as LLMs need to deal with potentially noisy contexts. Recent studies have shown that LLMs s...
Preprint
Full-text available
Syllogistic reasoning is crucial for Natural Language Inference (NLI). This capability is particularly significant in specialized domains such as biomedicine, where it can support automatic evidence interpretation and scientific discovery. This paper presents SylloBio-NLI, a novel framework that leverages external ontologies to systematically insta...
Preprint
Full-text available
Understanding the internal mechanisms of large language models (LLMs) is integral to enhancing their reliability, interpretability, and inference processes. We present Constituent-Aware Pooling (CAP), a methodology designed to analyse how LLMs process compositional linguistic structures. Grounded in principles of compositionality, mechanistic inter...
Preprint
Full-text available
Embeddings are now used to underpin a wide variety of data management tasks, including entity resolution, dataset search and semantic type detection. Such applications often involve datasets with numerical columns, but there has been more emphasis placed on the semantics of categorical data in embeddings than on the distinctive features of numerica...
Preprint
Full-text available
Matching patients to clinical trials demands a systematic and reasoned interpretation of documents which require significant expert-level background knowledge, over a complex set of well-defined eligibility criteria. Moreover, this interpretation process needs to operate at scale, over vast knowledge bases of trials. In this paper, we propose a sca...
Article
Full-text available
The sparsity of labeled data is an obstacle to the development of Relation Extraction (RE) models and the completion of databases in various biomedical areas. While being of high interest in drug-discovery, the literature on natural products, reporting the identification of potential bioactive compounds from organisms, is a concrete example of such...
Preprint
Full-text available
This work presents a novel systematic methodology to analyse the capabilities and limitations of Large Language Models (LLMs) with feedback from a formal inference engine, on logic theory induction. The analysis is complexity-graded w.r.t. rule dependency structure, allowing quantification of specific inference challenges on LLM performance. Integr...
Preprint
Full-text available
Locating and editing knowledge in large language models (LLMs) is crucial for enhancing their accuracy, safety, and inference rationale. We introduce ``concept editing'', an innovative variation of knowledge editing that uncovers conceptualisation mechanisms within these models. Using the reverse dictionary task, inference tracing, and input abstra...
Article
Full-text available
One of the fundamental research goals for explanation-based Natural Language Inference (NLI) is to build models that can reason in complex domains through the generation of natural language explanations. However, the methodologies to design and evaluate explanation-based inference models are still poorly informed by theoretical accounts on the natu...
Preprint
Full-text available
We present BioLunar, developed using the Lunar framework, as a tool for supporting biological analyses, with a particular emphasis on molecular-level evidence enrichment for biomarker discovery in oncology. The platform integrates Large Language Models (LLMs) to facilitate complex scientific reasoning across distributed evidence spaces, enhancing t...
Article
Full-text available
Automating discovery in mathematics and science will require sophisticated methods of information extraction and abstract reasoning, including models that can convincingly process relationships between mathematical elements and natural language, to produce problem solutions of real-world value. We analyze mathematical language processing methods ac...
Preprint
Full-text available
Explainable natural language inference aims to provide a mechanism to produce explanatory (abductive) inference chains which ground claims to their supporting premises. A recent corpus called EntailmentBank strives to advance this task by explaining the answer to a question using an entailment tree \cite{dalvi2021explaining}. They employ the T5 mod...
Preprint
Full-text available
Sentences that present a complex syntax act as a major stumbling block for downstream Natural Language Processing applications whose predictive quality deteriorates with sentence length and complexity. The task of Text Simplification (TS) may remedy this situation. It aims to modify sentences in order to make them easier to process, using a set of...
Preprint
Full-text available
The derivation of mathematical results in specialised fields using Large Language Models (LLMs) is an emerging research direction that can help identify models' limitations, and potentially support mathematical discovery. In this paper, we leverage a symbolic engine to generate derivations of equations at scale, and investigate the capabilities of...
Preprint
Full-text available
Inferring over and extracting information from Large Language Models (LLMs) trained on a large corpus of scientific literature can potentially drive a new era in biomedical research, reducing the barriers for accessing existing medical evidence. This work examines the potential of LLMs for dialoguing with biomedical background knowledge, using the...
Preprint
Full-text available
Whether Transformers can learn to apply symbolic rules and generalise to out-of-distribution examples is an open research question. In this paper, we devise a data generation method for producing intricate mathematical derivations, and systematically perturb them with respect to syntax, structure, and semantics. Our task-agnostic approach generates...
Article
Full-text available
Background There is an increasing interest in the use of Deep Learning (DL) based methods as a supporting analytical framework in oncology. However, most direct applications of DL will deliver models with limited transparency and explainability, which constrain their deployment in biomedical settings. Methods This systematic review discusses DL mo...
Preprint
Full-text available
Rigorous evaluation of the causal effects of semantic features on language model predictions can be hard to achieve for natural language reasoning problems. However, this is such a desirable form of analysis from both an interpretability and model evaluation perspective, that it is valuable to zone in on specific patterns of reasoning with enough s...
Preprint
Neural-based word embeddings using solely distributional information have consistently produced useful meaning representations for downstream tasks. However, existing approaches often result in representations that are hard to interpret and control. Natural language definitions, on the other side, possess a recursive, self-explanatory semantic stru...
Preprint
Full-text available
How can we interpret and retrieve medical evidence to support clinical decisions? Clinical trial reports (CTR) amassed over the years contain indispensable information for the development of personalized medicine. However, it is practically infeasible to manually inspect over 400,000+ clinical trial reports in order to find the best evidence for ex...
Preprint
Full-text available
This paper describes the results of SemEval 2023 task 7 -- Multi-Evidence Natural Language Inference for Clinical Trial Data (NLI4CT) -- consisting of 2 tasks, a Natural Language Inference (NLI) task, and an evidence selection task on clinical trial data. The proposed challenges require multi-hop biomedical and numerical reasoning, which are of sig...
Preprint
Full-text available
Disentangling sentence representations over continuous spaces can be a critical process in improving interpretability and semantic control by localising explicit generative factors. Such process confers to neural-based language models some of the advantages that are characteristic of symbolic models, while keeping their flexibility. This work prese...
Preprint
Full-text available
Probing strategies have been shown to detect the presence of various linguistic features in large language models; in particular, semantic features intermediate to the "natural logic" fragment of the Natural Language Inference task (NLI). In the case of natural logic, the relation between the intermediate features and the entailment label is explic...
Article
Cytokine release syndrome (CRS), also known as cytokine storm, is one of the most consequential adverse effects of chimeric antigen receptor therapies that have shown otherwise promising results in cancer treatment. When emerging, CRS could be identified by the analysis of specific cytokine and chemokine profiles that tend to exhibit similarities a...
Preprint
Full-text available
The recent evolution in Natural Language Processing (NLP) methods, in particular in the field of argumentation mining, has the potential to transform the way we interact with text, supporting the interpretation and analysis of complex discourse and debates. Can a graphic visualisation of complex argumentation enable a more critical interpretation o...
Article
Full-text available
Specialized transformers-based models (such as BioBERT and BioMegatron) are adapted for the biomedical domain based on publicly available biomedical corpora. As such, they have the potential to encode large-scale biological knowledge. We investigate the encoding and representation of biological knowledge in these models, and its potential utility t...
Preprint
Full-text available
In this work, we examined Business Process (BP) production as a signal; this novel approach explores a BP workflow as a linear time-invariant (LTI) system. We analysed BP productivity in the frequency domain; this standpoint examines how labour and capital act as BP input signals and how their fundamental frequencies affect BP production. Our resea...
Article
Clinical Significance Optometrists are well-placed to provide helpful advice and guidance to patients with visual impairment but may not know how best to do this. The availability of a reliable and comprehensive conversational agent to which patients could be directed would be a valuable supplement to clinical intervention. Background The Artifici...
Article
PURPOSE Matching patients with cancer to precision medicine clinical trials on the basis of their tumor genotype has the potential to improve outcomes for patients who have exhausted standard-of-care treatment options. However, the matching process presents a substantial challenge because of the number of clinical trials available. We describe a fr...
Article
This paper contributes with a pragmatic evaluation framework for explainable Machine Learning (ML) models for clinical decision support. The study revealed a more nuanced role for ML explanation models, when these are pragmatically embedded in the clinical context. Despite the general positive attitude of healthcare professionals (HCPs) towards exp...
Preprint
Full-text available
The recent dominance of distributional language representation models has elicited a variety of questions regarding their capabilities and intrinsic properties, one of which is the manifestation of compositional phenomena in natural language, which has significant implications towards explainability and safety/fairness in the use of such models. Wh...
Article
Full-text available
This paper presents Diff-Explainer, the first hybrid framework for explainable multi-hop inference that integrates explicit constraints with neural architectures through differentiable convex optimization. Specifically, Diff- Explainer allows for the fine-tuning of neural representations within a constrained optimization framework to answer and exp...
Chapter
Complex models, such as neural networks (NNs), are comprised of many interrelated components. In order to represent these models, eliciting and characterising the relations between components is essential. Perhaps because of this, diagrams, as “icons of relation”, are a prevalent medium for signifying complex models. Diagrams used to communicate NN...
Article
Full-text available
Reinforcement Learning has shown success in a number of complex virtual environments. However, many challenges still exist towards solving problems with natural language as a core component. Interactive Fiction Games (or Text Games) are one such problem type that offer a set of safe, partially observable environments where natural language is requi...
Preprint
Full-text available
Background There is an increasing interest in the use of Deep Learning (DL) based methods as a supporting analytical framework in oncology. However, most direct applications of DL will deliver models with limited transparency and explainability, which constrain their deployment in biomedical settings. Methods This systematic review discusses DL mo...
Article
Full-text available
Patients with cancer have been shown to have increased risk of COVID-19 severity. We previously built and validated the COVID-19 Risk in Oncology Evaluation Tool (CORONET) to predict the likely severity of COVID-19 in patients with active cancer who present to hospital. We assessed the differences in presentation and outcomes of patients with cance...
Article
Full-text available
Background Molecular Tumour Boards (MTBs) were created with the purpose of supporting clinical decision-making within precision medicine. Though in use globally, reporting on these meetings often focuses on the small percentages of patients that receive treatment via this process and are less likely to report on, and assess, patients who do not rec...
Preprint
Integer Linear Programming (ILP) provides a viable mechanism to encode explicit and controllable assumptions about explainable multi-hop inference with natural language. However, an ILP formulation is non-differentiable and cannot be integrated into broader deep learning architectures. Recently, Thayaparan et al. (2021a) proposed a novel methodolog...
Preprint
Full-text available
Entailment trees have been proposed to simulate the human reasoning process of explanation generation in the context of open--domain textual question answering. However, in practice, manually constructing these explanation trees proves a laborious process that requires active human involvement. Given the complexity of capturing the line of reasonin...
Preprint
In this paper we provide a structured literature analysis focused on Deep Learning (DL) models used to support inference in cancer biology with a particular emphasis on multi-omics analysis. The work focuses on how existing models address the need for better dialogue with prior knowledge, biological plausibility and interpretability, fundamental pr...
Article
Regenerating natural language explanations in the scientific domain has been proposed as a benchmark to evaluate complex multi-hop and explainable inference. In this context, large language models can achieve state-of-the-art performance when employed as cross-encoder architectures and fine-tuned on human-annotated explanations. However, while much...
Preprint
Full-text available
Cytokine release syndrome (CRS), also known as cytokine storm, is one of the most consequential adverse effects of chimeric antigen receptor therapies that have shown promising results in cancer treatment. When emerging, CRS could be identified by the analysis of specific cytokine and chemokine profiles that tend to exhibit similarities across pati...
Preprint
Full-text available
Informal mathematical text underpins real-world quantitative reasoning and communication. Developing sophisticated methods of retrieval and abstraction from this dual modality is crucial in the pursuit of the vision of automating discovery in quantitative science and mathematics. We track the development of informal mathematical language processing...
Preprint
Full-text available
A fundamental research goal for Explainable AI (XAI) is to build models that are capable of reasoning through the generation of natural language explanations. However, the methodologies to design and evaluate explanation-based inference models are still poorly informed by theoretical accounts on the nature of explanation. As an attempt to provide a...
Article
Full-text available
PURPOSE Patients with cancer are at increased risk of severe COVID-19 disease, but have heterogeneous presentations and outcomes. Decision-making tools for hospital admission, severity prediction, and increased monitoring for early intervention are critical. We sought to identify features of COVID-19 disease in patients with cancer predicting sever...
Preprint
Metamorphic testing has recently been used to check the safety of neural NLP models. Its main advantage is that it does not rely on a ground truth to generate test cases. However, existing studies are mostly concerned with robustness-like metamorphic relations, limiting the scope of linguistic properties they can test. We propose three new classes...
Preprint
Full-text available
This paper contributes with a pragmatic evaluation framework for explainable Machine Learning (ML) models for clinical decision support. The study revealed a more nuanced role for ML explanation models, when these are pragmatically embedded in the clinical context. Despite the general positive attitude of healthcare professionals (HCPs) towards exp...
Article
Full-text available
Objectives COVID-19 is a heterogeneous disease, and many reports have described variations in demographic, biochemical and clinical features at presentation influencing overall hospital mortality. However, there is little information regarding longitudinal changes in laboratory prognostic variables in relation to disease progression in hospitalised...
Preprint
Full-text available
BioBERT and BioMegatron are Transformers models adapted for the biomedical domain based on publicly available biomedical corpora. As such, they have the potential to encode large-scale biological knowledge. We investigate the encoding and representation of biological knowledge in these models, and its potential utility to support inference in cance...
Preprint
Full-text available
With the methodological support of probing (or diagnostic classification), recent studies have demonstrated that Transformers encode syntactic and semantic information to some extent. Following this line of research, this paper aims at taking semantic probing to an abstraction extreme with the goal of answering the following research question: can...
Preprint
Full-text available
In order for language models to aid physics research, they must first encode representations of mathematical and natural language discourse which lead to coherent explanations, with correct ordering and relevance of statements. We present a collection of datasets developed to evaluate the performance of language models in this regard, which measure...
Preprint
Full-text available
Regenerating natural language explanations in the scientific domain has been proposed as a benchmark to evaluate complex multi-hop and explainable inference. In this context, large language models can achieve state-of-the-art performance when employed as cross-encoder architectures and fine-tuned on human-annotated explanations. However, while much...
Preprint
Full-text available
In the interest of interpreting neural NLI models and their reasoning strategies, we carry out a systematic probing study which investigates whether these models capture the crucial semantic features central to natural logic: monotonicity and concept inclusion. Correctly identifying valid inferences in downward-monotone contexts is a known stumblin...
Article
Full-text available
Objectives Dexamethasone has now been incorporated into the standard of care for COVID-19 hospital patients. However, larger intensive care unit studies have failed to show discernible improvements in mortality in the most recent wave. We aimed to investigate the impacts of these factors on disease outcomes in a UK hospital study. Methods This retr...
Conference Paper
Full-text available
SemEval is the primary venue in the NLP community for the proposal of new challenges and for the systematic empirical evaluation of NLP systems. This paper provides a systematic quantitative analysis of SemEval aiming to evidence the patterns of the contributions behind SemEval. By understanding the distribution of task types, metrics, architecture...
Preprint
Full-text available
Molecular Tumour Boards (MTBs) were created with the purpose of supporting clinical decision making within precision medicine. Though these meetings are in use globally reporting often focuses on the small percentages of patients that receive treatment via this process and are less likely to report on, and assess, patients who do not receive treatm...
Preprint
Full-text available
Reinforcement Learning has shown success in a number of complex virtual environments. However, many challenges still exist towards solving problems with natural language as a core component. Interactive Fiction Games (or Text Games) are one such problem type that offer a set of partially observable environments where natural language is required as...
Preprint
Full-text available
Models designed for intelligent process automation are required to be capable of grounding user interface elements. This task of interface element grounding is centred on linking instructions in natural language to their target referents. Even though BERT and similar pre-trained language models have excelled in several NLP tasks, their use has not...
Chapter
Diagrams are often used in scholarly communication. We analyse a corpus of diagrams found in scholarly computational linguistics conference proceedings (ACL 2017), and find inclusion of a system diagram to be correlated with higher numbers of citations after three years. Inclusion of more than three diagrams in this 8-page limit conference was foun...
Chapter
We utilise VisDNA as a tool for understanding neural network system architecture diagrams. Through examples from scholarly proceedings, we find that the application of the framework to this ecological and complex domain is effective for reflecting on these diagrams. We argue for additional vocabulary to describe semiotic variability and internal in...
Chapter
This paper examines diagrams describing neural network systems in academic conference proceedings. Many aspects of scholarly communication are controlled, particularly with relation to text and formatting, but often diagrams are not centrally curated beyond a peer review. Using a corpus-based approach, we argue that the heterogeneous diagrammatic n...
Preprint
Full-text available
This paper proposes a novel statistical corpus analysis framework targeted towards the interpretation of Natural Language Processing (NLP) architectural patterns at scale. The proposed approach combines saturation-based lexicon construction, statistical corpus analysis methods and graph collocations to induce a synthesis representation of NLP archi...
Preprint
Full-text available
We present a context-preserving text simplification (TS) approach that recursively splits and rephrases complex English sentences into a semantic hierarchy of simplified sentences. Using a set of linguistically principled transformation patterns, input sentences are converted into a hierarchical representation in the form of core sentences and acco...
Preprint
Full-text available
Natural language contexts display logical regularities with respect to substitutions of related concepts: these are captured in a functional order-theoretic property called monotonicity. For a certain class of NLI problems where the resulting entailment label depends only on the context monotonicity and the relation between the substituted concepts...
Preprint
Full-text available
This paper describes N-XKT (Neural encoding based on eXplanatory Knowledge Transfer), a novel method for the automatic transfer of explanatory knowledge through neural encoding mechanisms. We demonstrate that N-XKT is able to improve accuracy and generalization on science Question Answering (QA). Specifically, by leveraging facts from background ex...
Preprint
Full-text available
Constrained optimization solvers with Integer Linear programming (ILP) have been the cornerstone for explainable natural language inference during its inception. ILP based approaches provide a way to encode explicit and controllable assumptions casting natural language inference as an abductive reasoning problem, where the solver constructs a plaus...
Preprint
Full-text available
An emerging line of research in Explainable NLP is the creation of datasets enriched with human-annotated explanations and rationales, used to build and evaluate models with step-wise inference and explanation generation capabilities. While human-annotated explanations are used as ground-truth for the inference, there is a lack of systematic assess...

Network

Cited By