Retrieving Film Heritage content using an MPEG-7 Compliant Ontology

Y. Cobos, C. Sarasua, M.T. Linaza, I. Jiménez, A. García

Dept. of Tourism, Heritage and Creativity, Visual Communication Technologies
VICOMTech, Spain
Introduction
Objectives
The CINeSPACE project
The CINeSPACE MPEG-7 Compliant Ontology and Knowledge Base
The CINeSPACE Multimedia Retrieval System
Evaluation of the system
Conclusions and future work
The availability of huge amounts of multimedia documents requires a careful design and an efficient implementation of multimedia retrieval systems.

- Storage, retrieval and browsing of not only textual, but also image, audio and video files
- MPEG-7 standard for describing multimedia documents using machine-consumable metadata descriptors

Multimedia retrieval systems have always forced humans to describe their query in terms of a written language.

- There are systems that are aware of multimedia semantics
- Users can specify a set of keywords or concepts used to search for multimedia contents containing those concepts.
- This is already a big step towards more semantic search engines from previous approaches, but it still may be too limiting in some cases.
Introduction

Objectives

The CINeSPACE project

The CINeSPACE MPEG-7 Compliant Ontology and Knowledge Base

The CINeSPACE Multimedia Retrieval System

Evaluation of the system

Conclusions and future work
Designing and implementing a MPEG-7 Compliant Ontology based Multimedia Retrieval System for Film Heritage

- Annotation of multimedia content using an Annotation Tool based on MPEG-7 standard
- Development and instantiation of the MPEG-7 Compliant Ontology
Introduction
Objectives
The CINeSPACE project
The CINeSPACE MPEG-7 Compliant Ontology and Knowledge Base
The CINeSPACE Multimedia Retrieval System
Evaluation of the system
Conclusions and future work
Designing and implementing a mobile rich media collaborative information exchange platform, scalable, accessible through a wide variety of network, interoperable and location-based for the promotion of Film Heritage.
A new way for cities to access and promote their Cultural Heritage, collective memory and tourism in a mobile virtual environment

Three main target groups of users

- Citizens and collective memory in Glasgow
- Film lovers and film-induced tourism in Venice
- Cinema professionals and shooting locations in San Sebastian

Designing and implementing a mobile rich media collaborative information exchange platform, scalable, accessible thought a wide variety of network, interoperable and location-based for the promotion of Film Heritage
Designing and implementing a mobile rich media collaborative information exchange platform, scalable, accessible through a wide variety of networks, interoperable and location-based for the promotion of Film Heritage.
Architecture of the CINeSPACE project
Introduction
Objectives
The CINeSPACE project
The CINeSPACE MPEG-7 Compliant Ontology and Knowledge Base
The CINeSPACE Multimedia Retrieval System
Evaluation of the system
Conclusions and future work
The methodology for the creation and instantiation of the CIneSPACE MPEG-7 Multimedia Compliant Ontology includes seven steps.
Step 1: Selection of MPEG-7 metadata

- Selection of the metadata required regarding the CINeSPACE requirements
 - Structural, classification and semantic descriptions have been considered
 - Points of Interest (PoI) to inform about any part of the city with some tourist or cultural attractions
Step 2: Annotation using the CINeSPACE Annotation Tool

- Multimedia content indexed with the tool
- Outputs as pairs of XML files and multimedia content
- Three main parts in a XML file
 - Description metadata (all specific CINeSPACE descriptors)
 - User description (user preferences)
 - Content entity (multimedia items)

```
<xml version="1.0" encoding="UTF-8" >
  <mpeg7 xmlns="urn:mpeg:mpeg7:schema:2001" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
    <DescriptionMetadata>
      <Identifier>0000000001</Identifier>
    </DescriptionMetadata>
    <UserPreferences>
      <ImagesInFolder>0</ImagesInFolder>
      <BlackAndWhite>FALSE</BlackAndWhite>
      <ThumbnailFile>/C:/CINESPACE_WS_CONTENT/CONTENT/SanSebastian/Image/0000000001.jpg</ThumbnailFile>
    </UserPreferences>
    <POI>
      <id>0000000001</id>
      <idCity>0000000001</idCity>
      <GeoPoint>
        <Longitude>1.985556</Longitude>
        <Latitude>-43.321114</Latitude>
      </GeoPoint>
    </POI>
  </mpeg7>
```
Step 3: Generation of the Java Classes

- Generation of the Java classes related to the selected metadata of Step 1
- Castor framework selected
 - Combination of Java objects, XML documents and relational tables
 - Castor XML Code used
Step 4: Java Objects

- Instantiation of Java Classes from Step 3 into Java Objects with the XML outputs from Step 2
- Java Objects are instances of the selected metadata from Step 1
Step 5: Design of the MPEG-7 Compliant RDFS Ontology

- Design based on the descriptions made with the CINESPACE Annotation Tool
- MPEG-7 descriptions connected in a plain tree structure
- Establishment of other relationships among concepts
Step 6: Update of the MPEG-7 Compliant OWD-DL Ontology
- Update from RDFS to OWL-DL
- Development using Protegé Ontology Editor
Step 7: Combination of the final MPEG-7 Compliant Ontology Individuals

- Instantiation of the OWL-DL ontology with the Java Objects from Step 4
- MPEG-7 Compliant Ontology individuals is characterised by
 - 45 classes
 - 41 object-type properties
 - 33 data-type properties
 - 63 individuals
Introduction
Objectives
The CINeSPACE project
The CINeSPACE MPEG-7 Compliant Ontology and Knowledge Base
The CINeSPACE Multimedia Retrieval System
Evaluation of the system
Conclusions and future work
Queries are made over the CINeSPACE MPEG-7 Compliant Ontology to retrieve semantically the multimedia content.

The Multimedia Retrieval System is implemented as a Web Service developed with Eclipse 3.2.
- The client sends the queries to the Web Service.
- The Web Service processes the queries.
- It returns the answers to the client.

Some queries can be answered:
- Give me all the multimedia content…
 - … around this geo-reference data
 - … in black and white colour
 - … visualized by the user\textsubscript{x}
 - … created yesterday by user\textsubscript{x}
Example of the queries

Location-Based nature of CINEspace Project

\[Q = \{ q_1 \cup q_2 \cup q_3 \cup q_4 \cup q_5 \cup q_6 \} \]

- \(q_1 = \text{CLASS Geographic Point with the PROPERTY Latitude GREATER A} \)
- \(q_2 = \text{CLASS Geographic Point with the PROPERTY Latitude SMALLER B} \)
- \(q_3 = \text{CLASS Geographic Point with the PROPERTY Longitude GREATER C} \)
- \(q_4 = \text{CLASS Geographic Point with the PROPERTY Longitude SMALLER D} \)
- \(q_5 = \text{CLASS Geographic Point with the PROPERTY LatOrientation EQUALS E} \)
- \(q_6 = \text{CLASS Geographic Point with the PROPERTY LongOrientation EQUALS F} \)

\(\beta_1 = 0.0035 \), the radius in degrees around the current latitude

\(\beta_2 = 0.0035 \), the radius in degrees around the current longitude

- \(x \), queried latitude
- \(y \), queried longitude
- \(A < x < B, A = x - \beta_1, B = x + \beta_1 \)
- \(C < y < D, C = y - \beta_2, D = y + \beta_2 \)
- \(E = \{ \text{North, South} \} \)
- \(F = \{ \text{West, East} \} \)
Introduction
Objectives
The CINeSPACE project
The CINeSPACE MPEG-7 Compliant Ontology and Knowledge Base
The CINeSPACE Multimedia Retrieval System
Evaluation of the system
Conclusions and future work
Pilot user study than 30 users of Glasgow, Venice and San Sebastian to demonstrate the effectiveness of the retrieval.

Multimedia Content Database includes:
- 8 videos of Glasgow
- 17 videos and 12 images of Venice
- 4 videos and 22 images of San Sebastian
Use case

- The user logins into the CINESPACE system and he/she starts moving around the city.
- The Application Layer receives a query informing that the user is physically located at the position 43.3205º N, 1.9883º W (Playa de la Concha, San Sebastian), with a CINESPACE compliant device.
- The system checks the multimedia content associated to that location.
- The Application Layer retrieves the multimedia content (images and videos) and renders them on the CINESPACE device.
EVALUATION OF THE SYSTEM

- Interface of the client with the results of the query
Introduction
Objectives
The CINeSPACE project
The CINeSPACE MPEG-7 Compliant Ontology and Knowledge Base
The CINeSPACE Multimedia Retrieval System
Evaluation of the system
Conclusions and future work
This paper has presented the design and implementation of an MPEG-7 Compliant Ontology based Multimedia Retrieval system for Film Heritage.

Process of obtaining the MPEG-7 Compliant Ontology:
- Selection of the metadata required regarding CINESPACE requirements
- Multimedia content indexing with the CINESPACE Annotation Tool
- Generation of the Java classes related to the selected metadata
- Instantiation of Java Classes from Java Objects with the metadata values of the multimedia content
- Designing of the CINESPACE MPEG-7 Compliant Ontology based on the descriptions made by the CINESPACE Annotation Tool
- Update from RDFS to OWL-DL
- Instantiation of the OWL-DL ontology with the Java Objects
CONCLUSIONS AND FUTURE WORKS

- Extension of the Multimedia Retrieval System
 - Personalization of the retrieved multimedia content regarding the profile of the user
 - High level semantic queries support
 - Mapping of the CINeSPACE MPEG-7 Compliant Ontology to other standard domain ontologies such as the CIDOC Conceptual Reference Model (CIDOC-CRM) or the Geoconcepts ontology
Authors would like to thank the following projects and institutions for their financial support:
Thanks for your attention!!!!!!

Yolanda Cobos Campos
Tourism, Heritage and Creativity Department
Visual Communication Technologies VICOMTech
ycobos@vicomtech.org