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Abstract

We present a detailed analysis of the 3+1-split formalism of gravity in the presence of

a cosmological constant. The formalism helps revealing the intimate connection between

holography and the initial value formulation of gravity. We show that the various methods

of holographic subtraction of divergences correspond just to different transformations of the

canonical variables, such that the initial value problem is properly set up at the boundary.
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1 Introduction

An enormous amount of work in the past decade has been devoted to holographic studies of four-

dimensional quantum field theories. The basic setup has been the AdS5/CFT4 correspondence,

whereby various five or higher-dimensional gravity models (related or not to supergravity) provide

information for strongly coupled, largely supersymmetric, four-dimensional gauge theories. This

way, fundamental quantum field theory properties such as symmetry breaking, confinement and

finite-temperature phase transitions may be viewed as the holographic images of certain properties

of gravitational theories.

However, relatively less work has been devoted to holographic studies of four-dimensional grav-

ity theories, mainly due to the lack of understanding of their three-dimensional boundary coun-

terparts. Nevertheless, recently there is a sharp rise in interest on AdS4/CFT3 holography. This

is partly due to the set of ideas regarding the holographic description of three-dimensional con-

densed matter systems, see for example [1, 2, 3, 4, 5] and references therein. Moreover, important

additional motivation to study the AdS4/CFT3 correspondence comes from the recent emergence

of various proposals regarding three-dimensional theories that describe M2 branes [6, 7, 8, 9, 10].

Apart from attracting all that recent recent interest, AdS4/CFT3 has for some time now being
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singled out as a new holographic paradigm as it possesses some special properties not shared by

its more known AdS5/CFT4 counterpart. Its most distinctive property is that it gives rise to a

holographic map of the electric-magnetic duality of Yang-Mills, and also of the generalized electric-

magnetic duality of linearized gravity and higher-spin gauge fields in four dimensions. Some of the

salient features of the three-dimensional boundary systems, such as Quantum-Hall type of dualities

[11, 12, 13] and the possibility of an exact holography [14, 15, 16] are intimately connected to it

[17, 18].

We believe that all the above is strong motivation to revisit four-dimensional gravity with

a cosmological constant and analyze in depth its holographic description. We embark in this

endeavour in the present and a companion work [19] based on the 3+1-split formalism of [20].

The latter was instrumental in the proof [20] of electric-magnetic duality of linearized gravity in

(A)dS4. We believe that the economy and the familiar physics picture drawn by the 3+1-split

formalism (e.g. the introduction of ”electric” and ”magnetic” gravitational fields) make it very

well suited for studies in the AdS4/CFT3 correspondence.

The 3+1-split formalism is a hybrid of the standard ADM construction [21] and hence it

can be used to setup an initial value formalism for gravity. We should clarify from the beginning,

however, that the initial value formalism relevant to holography is physically different - and in many

cases simpler since causality issues do not arise - from the standard initial value formalism that

evolves the data on a Cauchy surface along real time. We comment further in Section 3. Perhaps

expectedly, we find that in the presence of a cosmological constant, setting up the initial value

problem in the boundary is equivalent to a holographic description.4 The upshot of our work is the

demonstration that all known methods of holographic removal of divergences, namely holographic

renormalization [22, 23] and Kounterterms [24, 26] correspond to just different transformations of

the canonical variables, such that the initial value problem is properly set up at the boundary.

These transformations are canonical when they are implemented on the restricted phase space

defined by constraints. We identify the initial boundary velocity with a component of the Weyl

tensor. Holographically the latter gives the boundary energy momentum tensor. In the companion

paper [19] we discuss the notion of self-duality in gravity with a cosmological constant and show the

relevance of the three-dimensional gravitational Chern-Simons theory for self-dual configurations.

We begin in section 2 with a detailed presentation of the the 3+1-split formalism for gravity

with Lorentzian signature. We define our variables and explain our gauge-fixing choices. We end

up with a compact form of the equations of motion and zero-torsion constraints. Section 3 contain

the formal setup of the initial value problem for four-dimensional gravity with a cosmological

constant. In Section 4 we detail the Fefferman-Graham expansion in the 3+1-split formalism.

4Throughout the present and the companion work [19] “holography” is a broader notion (i.e. the mapping

of generic bulk data to the boundary) while AdS/CFT has a more specific meaning (the holographic mapping

between specified bulk and boundary theories). Away from a string/M-theory setup it is not clear if generic bulk

gravitational data can be encoded by non-gravitational QFTs, nevertheless the issue is not yet settled.
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We identify the proper boundary data, namely the initial position and initial velocity. We also

note that the various terms on the FG expansion correspond to boundary geometrical data. In

section 5 we explain why holography can be viewed as an initial value formulation of gravity in

the boundary. We show that the two different methods of holographic removal of divergences

correspond to certain transformations of he canonical variables, such that a proper initial value

problem is setup at the boundary. We conclude in Section 6. Three Appendices contain useful

relations for the Weyl tensor, a brief presentation of the fist-order formalism for Yang-Mills theories

and also the holographic description of Schwarzschild and Taub-NUT AdS black holes.

2 Details on the the 3+1-split formalism

In this section we present a concise version of the 3+1-split formalism of [20] for gravity in the

presence of non-zero cosmological constant. We consider a Lorentzian manifold M and take the

Einstein-Hilbert action with cosmological constant in the first-order Palatini formalism as

SEH = − 1

32πG

∫

M

ǫabcd

(
Rab +

Λ

2
ea ∧ eb

)
∧ ec ∧ ed . (1)

This is thus equivalent to the standard second-order gravitational action

S2nd = − 1

16πG

∫
d4x

√−g (R + 6Λ) ,

and hence the cosmological constants is related to the parameter Λ as Λcosm. = −3Λ. The curvature

and torsion 2-forms are defined in terms of the vielbein ea and spin-connection ωab as

Rab = dωab + ωa
c ∧ ωcb , T a = dea + ωa

b ∧ eb .

We define ηab = diag(σ⊥, +, +, σ3), where σ⊥σ3 = −1, σ2
⊥ = σ2

3 = 1 and set Λ = σ⊥/ℓ2 such that

Λ < 0 (Λ > 0) yields the de Sitter (Anti-de Sitter) vacuum. The manifold is supposed it can be

foliated by slices Σt indexed by a function t which is either a time coordinate if σ⊥ = −1 or a

radial coordinate if σ⊥ = +1. Consequently, we split the vielbein and the spin connection as5

e0 = Ndt , eα = Nαdt + ẽα , (2)

ω0α = q0αdt + σ⊥Kα , ωαβ = −ǫαβγ (Qγdt + Bγ) . (3)

Using (2) and (3) and some lengthly but straightforward calculations [20] the action (1) can be

brought into the form

SEH = − σ⊥

8πG

∫

M

dt ∧
{
−Kα ∧ Σ̇α + NW̃α ∧ ẽα + σ⊥Q̂ ∧ Kβ ∧ ẽβ

+σ⊥q0αD̃Σα − NαǫαβγD̃Kβ ∧ ẽγ
}

− 1

8πG

∫

∂M

(
q0αdt + σ⊥Kα

)
∧ Σα , (4)

5Throughout this work, Latin indices run as a, b, c... = 0, 1, 2, 3 and Greek indices as α, β, γ, ... = 1, 2, 3.
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where Q̂ ≡ Qαẽα. We have introduced the 2-form

W̃α ≡ ρα − 1

2
ǫαβγK

β ∧ Kγ +
1

ℓ2
Σα . (5)

and have defined the oriented surface element as

Σα = ∗̃ẽα =
1

2
ǫα

βγ ẽ
β ∧ ẽγ ,

with ∗̃ the three-dimensional Hodge dual defined in terms of ẽα only. The three-dimensional

component of the curvature 2-form

ρα = d̃Bα +
1

2
ǫαβγB

β ∧ Bγ ,

is made out of Bα only. Moreover, D̃ denotes a covariant derivative with respect to the one-form

field Bα as

D̃V α = d̃V α + ǫα
βγB

β ∧ V γ ,

if V α is a generic vector-valued one-form (with respect to either SO(3) or SO(2, 1) depending on

whether σ⊥ = ∓1 respectively) defined on Σt. Comparing the action (4) to the Yang-Mills action

(60) in B motivates calling the vector-valued one-forms Kα and Bα the “electric” and “magnetic”

fields respectively.

The boundary term in (4) is exactly minus the usual Gibbons-Hawking term [27] SGH. Hence,

the action S = SEH + SGH is stationary on-shell when δẽα = 0 in the boundary, i. e. it provides a

good Dirichlet variational principle with respect to the vielbein. The form of the action (4) appears

to indicate that the proper conjugate dynamical variables are Σα (or, equivalently, ẽα) and Kα.

We will later see that the proper identification of the dynamical variables is slightly more involved

than this. The remaining fields {N, Nα, q0α, Q̂, Bα} enter the action as Lagrange multipliers of the

following constraints:

− 8πGσ⊥

δS

δN
= W̃α ∧ ẽα = 0 , (6)

−8πGσ⊥

δS

δNα
= −ǫαβγD̃Kβ ∧ ẽγ = 0 , (7)

−8πGσ⊥

δS

δq0α
= σ⊥D̃Σα = σ⊥ǫαβγ T̃

β ∧ ẽγ = 0 , (8)

−8πGσ⊥

δS

δQ̂
= σ⊥Kα ∧ ẽα = 0 , (9)

−8πGσ⊥

δS

δBα
= NT̃ α +

(
d̃N + σ⊥KβNβ − q̂

)
∧ ẽα = 0 , (10)

where q̂ ≡ q0
αẽα. The exterior multiplication of (10) by ǫαβγ ẽ

γ gives, by virtue of (8),

d̃N + σ⊥KβNβ − q̂ = 0 , (11)
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and hence we obtain the zero torsion condition

T̃ α = Dẽα = 0 , (12)

In other words, the magnetic field Bα is a Lagrange multiplier which is algebraically related to the

vielbein via the vanishing of torsion (12). This is exactly analogous to electromagnetism and gives

an important hint regarding the relevance of torsion to holography and gravitational duality [28].

Next, we use diffeomorphisms and local Lorentz rotations to fix some of the Lagrange multi-

pliers.

{N, Nα, q0α}-fixing: Using suitable diffeomorphisms we can fix N = 1 and Nα = 0. In order to

set N = 1 it is sufficient to choose, in a certain neibourhood, the proper “time”6 of a family

of “timelike” geodesics as the new time coordinate. Moreover, in order to have Nα = 0,

it is sufficient to choose as new spatial coordinates the coordinates that parametrize the

surfaces orthogonal to the family of geodesics we have chosen above. All that means that

the spacetime metric can be cast into the Gaussian normal form

ds2 = σ⊥dt2 + hij(t, ~x)dxidxj ,

which is also suitable for discussing holography. If we use now (11) we obtain that q0α = 0.

{Qα}-fixing: These can be fixed by a suitable local Lorentz rotation. Recall that ω is an so(3, 1)-

valued connection, while the vielbein e is a vector under SO(3, 1)-rotations. Under a generic

finite local Lorentz transformation g ∈ SO(3, 1) they transform as

e 7→ e′ = ge ,

ω 7→ ω′ = gωg−1 + gdg−1 .

If we want to preserve our choice of the vielbein, say e0 = Ndt, it turns out that g0
α = 0.

As a consequence we restrict our interest to the subgroup of local trasformations given by

L =

{
SO(3) if σ⊥ = −1

SO(2, 1) if σ⊥ = +1

}
⊂ SO(3, 1) .

Then, from the second equation in (3) we see that Qα can be gauged fixed to zero by a

suitable g ∈ L such that

−ǫα
βγQ

γ = (g−1)α
γ ġ

γ
β .

A residual gauge freedom, t-independent L-rotations on the fields, remains nevertheless.

6The coordinate t is actually a time coordinate only if Λ ≤ 0. Otherwise it is a spatial coordinate, but the

arguments we give above do not change.
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With the N = 1 and Nα = q0α = Qα = 0 gauge fixing the equations of motion read

− 8πGσ⊥

δS

δKα
= −ǫαβγ

(
˙̃eβ + Kβ

)
∧ ẽγ = 0 , (13)

−8πGσ⊥

δS

δẽα
= W̃α +

2

ℓ2
Σα + ǫαβγ ẽ

β ∧ K̇γ = 0 . (14)

(13) actually implies that

˙̃eα + Kα = 0 .

Gathering all together, the equations describing any classical gravitational background in 4D are;

the zero torsion conditions

Kα ∧ ẽα = 0 , D̃ẽα = 0 , ˙̃eα + Kα = 0 , (15)

and Einstein’s equations

W̃α ∧ ẽα = 0 , ǫαβγD̃Kβ ∧ ẽγ = 0 , W̃α + ǫαβγ

(
K̇β +

1

ℓ2
ẽβ

)
∧ ẽγ = 0 . (16)

An important role is played by the quantity W̃α defined in (5) which is a component of the on-shell

Weyl tensor7

W ab = Rab + Λea ∧ eb .

Within our formalism and gauge-fixing the on-shell Weyl tensor reads

σ⊥W 0α = dt ∧
(

K̇α +
1

ℓ2
ẽα

)
+ D̃Kα , (17)

W α =
σ⊥

2
ǫα

βγW
βγ = dt ∧ Ḃα + W̃ α . (18)

3 The initial value formulation of gravity

The 3+1 split formalism can be nicely used towards the initial value formulation of general re-

lativity which deals with the definition of a well-posed Cauchy problem for Einstein equations.

Here we refer to the standard notion of an initial value problem, describing the time evolution

of a set of initial data on a Cauchy spacelike surface, only for positive or vanishing cosmological

constant. In the case of a negative cosmological constant the 3+1 split formalism describes instead

the evolution of certain data on a Lorentzian hypersurface along a spacelike transverse (radial)

coordinate. We gather this two physically distinct problems into the same conceptual framework

of the “initial value problem” since the mathematics endowed in the 3+1 split formalism makes

7Details are given in A.
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us act this way naturally. Firstly, the setup is the right one: we deal with a four dimensional ma-

nifold sliced by three dimensional submanifolds Σt, parameterized by the coordinate t, which are

naturally endowed with a metric structure defined by a vielbein ẽα and torsionless spin connection

Bα whose curvature ρα is the Riemann on the slice. Picking up a particular t0, the submanifold

(Σt0 , ẽ
α
t0
, Bα

t0
) can suitably play the role of “initial position” in the Cauchy problem.

Moreover, an additional symmetric8 (see the first equation of (15)) field Kα exists and, by

virtue of the third equation of (15), it is related to the velocity of the immersion of the vielbein

towards the transverse t-direction. Hence its value on the slice Σt0 must play the role of “initial

velocity”, or exstrinsic curvature in geometrical terms.

The remaining equations are the “dynamical equation” – the third of (16) – which involves

the “acceleration”, i. e. the derivative of the Kα, and the “integrability conditions” – the first two

equations of (16) – which are algebraical in the sense that the coordinate t appears as a parameter

and hence they are valid on any slice.

Using our definitions we can thus reformulate the theorem 10.2.2 in [29], chapter 10, page 264,

in the presence of a cosmological constant:

Theorem: (Initial Value Formulation) Consider a three-dimensional smooth manifold Σ with

signature (3,0) (when σ⊥ = −1) or (2,1) (when σ⊥ = 1), together with a metric structure

defined by a vielbein εα and its torsionless spin connection bα, say D̃bε
α = 0, and a 1-form

κα satisfying a symmetry constraint κα ∧ εα = 0. If the metric structure (εα, bα) and the

additional field κα satisfy the following conditions

w̃α ∧ εα = 0 , ǫαβγD̃bκ
β ∧ εγ = 0 , (19)

where

w̃α = d̃bα +
1

2
ǫαβγb

β ∧ bγ − 1

2
ǫαβγκ

β ∧ κγ +
1

2ℓ2
ǫαβγε

β ∧ εγ ,

then there exists a unique four-dimensional spacetime (M, g) of signature (3, 1) satisfying

the following properties:

1. The metric g is given by

g = σ⊥dt ⊗ dt + ẽα ⊗ ẽα ,

where limt→t0 ẽα = εα. Moreover at any slice we define the torsionless spin connection

Bα of ẽα, with limt→t0 Bα = bα. The extrinsic curvature Kα of the foliation also satisfies

limt→t0 Kα = kα.

8Symmetry and, later on, trace properties of various one-forms refer to their components e.g. for the vector

valued one-form V α = V α
β ẽβ the symmetry and trace properties refer to V α

β .
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2. (M, g) satisfies Einstein’s equations with cosmological constant

Λcosm. = −3σ⊥

ℓ2
,

which means that {ẽα, Bα, Kα} satisfy the integrability conditions (19) on any slice Σt,

(the first two of (16)), and the dynamical equation (the third of (16)).

3. Every other spacetime (M′, g′) satisfying (i)–(iii) can be mapped isometrically into a

subset of (M, g). Furthermore (M, g) satisfies the domain of dependence property (as

explained in the chapter of the textbook we referred to before, but we do not enter in

the details here).

Note that the standard initial value formulation corresponds to the limit for vanishing cosmological

constant. In this case t is the real time and Σ = Σt0 is a Cauchy surface; moreover the spacetime

(M, g) is globally hyperbolic. In the other cases the global hyperbolicity ceases to be a necessary

condition; for instance if σ⊥ = 1 global hyperbolicity of the four-dimensional spacetime is lost (see

[30, 31] for a discussion of the simple AdS example).

The idea is to extend this kind of description to the boundary. This is a particular slice,

∂M = Σ∞, which is reached when the transverse coordinate t takes its boundary value (typically

t = ±∞). In other words, the boundary is the slice that can t-evolve only backwards (forward).

Any bulk solution induces a three-dimensional metric on the slices Σt for every t. However, given

a bulk solution only a conformal class of metrics can be specified at the boundary [32, 35]. One

can then pick a particular representative boundary metric by choosing a defining function. Hence

the correct “initial position”, as we are putting it, is given by a certain conformal class. Different

bulk geometries arise by t-evolution by giving some “initial velocity” to the initial conformal data.

Nevertheless, the “initial velocity” need not be conformally invariant.

Since our initial value problem is formulated at the boundary it should somehow be related to

holography. Indeed, in the next subsection we will show that the different methods of holographic

renormalization correspond to different ways of setting up an initial value problem at the boundary

i.e. different ways to define the appropriate “initial boundary velocity”.

4 The Fefferman-Graham expansion in the 3+1 split for-

malism

The Fefferman-Graham (FG) expansion of the metric [32, 33] has proven to be the most efficient

method in holographic applications [23]. Here we present a detailed transcription of the FG

expansion to all our 3+1-split quantities. In doing so, we discover that the coefficients in the FG

expansion are intimately related to the geometrical data of the boundary.
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In the FG expansion the vielbein is expanded in powers of e−t/ℓ as

ẽα = et/ℓEα(x) + e−t/ℓ
∑

k=0

F α
[k+2](x)e−kt/ℓ . (20)

In the absence of sources the finite term in the expansion (20) above is missing [34], hence we

neglect it right from the beginning. We will be interested in the boundary at t = +∞ where Eα

is a representative of the conformal class of boundary vielbeins. Recall that t is related to the

standard Poincaré patch radial coordinate r ∈ [0,∞) as r/ℓ = e−t/ℓ. Picking then a particular

defining function we can refer to Eα as the boundary vielbein.

The electric and the magnetic fields are obtained by solving the equations (15). From the third

equation in (15) we find

Kα = −1

ℓ
et/ℓEα +

1

ℓ
e−t/ℓ

∑

k=0

(k + 1)F α
[k+2]e

−kt/ℓ . (21)

The first equation of (15) determines the symmetry properties of the components of the FG

expansion. The first few orders yield

F α
[2] ∧ Eα = F α

[3] ∧ Eα = F α
[4] ∧ Eα = 0 . (22)

The magnetic field has the expansion

Bα =
∑

k=0

Bα
[k]e

−kt/ℓ ,

and has a finite t → ∞ limit. Its various coefficients in the expansion are implicitly obtained by

solving the second equation of (15) and the first few orders give

D[0]E
α = Bα

[1] = 0 , (23)

D[0]F
α
[2] + ǫα

βγB
β
[2] ∧ Eγ = 0 , (24)

D[0]F
α
[3] + ǫα

βγB
β
[3] ∧ Eγ = 0 , (25)

D[0]F
α
[4] + ǫα

βγB
β
[2] ∧ F γ

[2] + ǫα
βγB

β
[4] ∧ Eγ = 0 , (26)

where D[0] is the three-dimensional covariant exterior derivative made with the leading order mag-

netic field Bα
[0]. From (23) we learn that Bα

[0] is the torsionless spin connection of the boundary

vielbein Eα. By taking the exterior multiplication of (24)–(25) with Eα we find

ǫαβγB
α
[2] ∧ Eβ ∧ Eγ = 0 , ǫαβγB

α
[3] ∧ Eβ ∧ Eγ = 0 ,

and hence the components Bα
[2] and Bα

[3] of the magentic field are traceless.
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Next we need to solve Einstein’s equations, order by order in the FG expansion. To do that

we first compute the components of the Weyl tensor as

K̇α +
1

ℓ2
ẽα = − 1

ℓ2

∞∑

k=0

[(k + 2)2 − 1]F α
[k+3]e

−(k+2)t/ℓ , (27)

D̃Kα = −e−t/ℓ 2

ℓ
ǫα

βγB
β
[2] ∧ Eγ − e−2t/ℓ 3

ℓ
ǫα

βγB
β
[3] ∧ Eγ + O

(
e−3t/ℓ

)
, (28)

Ḃα = −1

ℓ

∞∑

k=0

(k + 2)Bα
[k+2]e

−(k+2)t/ℓ , (29)

W̃ α = ρα
[0] +

2

ℓ2
ǫα

βγF
β
[2] ∧ Eγ + e−t/ℓ 3

ℓ2
ǫα

βγF
β
[3] ∧ Eγ

+e−2t/ℓ

[
D[0]B

α
[2] +

4

ℓ2
ǫα

βγF
β
[4] ∧ Eγ

]
+ O

(
e−3t/ℓ

)
. (30)

Hence, Einstein’s equations yield:

Equation ǫαβγD̃Kβ ∧ ẽγ = 0: This is the equivalent of Gauss law and to leading and subleading

order simply imposes the symmetry properties of the components of the magnetic field

Bα
[2] ∧ Eα = 0 , Bα

[3] ∧ Eα = 0 . (31)

Equation W̃α + ǫαβγ

(
K̇β + 1

ℓ2
ẽβ

)
∧ ẽγ = 0: This is what we have called the dynamical equation.

It reveals that the various coefficients in the FG expansion correspond to geometrical quan-

tities of the boundary. The equation reads

ρα
[0] +

2

ℓ2
ǫα

βγF
β
[2] ∧ Eγ + e−2t/ℓ

[
D[0]B

α
[2] −

4

ℓ2
ǫα

βγF
β
[4] ∧ Eγ

]
+ O

(
e−3t/ℓ

)
= 0 . (32)

To leading order it gives

ρα
[0] +

2

ℓ2
ǫα

βγF
β
[2] ∧ Eγ = 0 , (33)

and hence it shows that F α
[2] is proportional to the boundary Schouten tensor, whose details

are given in A. This follows from the fact that the three-dimensional equation Λα + ǫαβγF
β ∧

Eγ = 0 can be solved for the one-form F α in terms of the Hodge dual of the two-form

Λα, provided Eα is a vielbein and hence invertible. Explicitly, if F α = F α
βEβ, we have that

F α
β−tr(F )δα

β = −σ⊥(∗̃Λβ)
α. Moreover, from (33) the tensor F[2]−tr(F[2])id. is proportional

to the Einstein tensor, as it should be. Explicitly we have

−2σ⊥

ℓ2
F α

[2] = (3)Sα = Ricα − R

4
Eα ,

where Ricα = Eβ⌋ρβα and R = Eα⌋Ricα. For the same reason, from (24) Bα
[2] is given in

terms of the Hodge dual of the boundary Cotton-York tensor. Since Bα
[2] is symmetric and

traceless we obtain

Bα
[2] = −σ⊥

∗̃D[0]F
α
[2] =

ℓ2

2
∗̃Cα ,
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where Cα = D[0]
(3)Sα. In three dimensions the Cotton-York tensor is the only irreducible

conformally invariant tensor [36]. It vanishes if and only if the metric is conformally flat.

Since F α
[2] and Bα

[2] are related to each other, the e−2t/ℓ-component of (32) relates Bα
[2] to F α

[4]

as

F α
[4] − tr(F[4])E

α = σ⊥

ℓ2

4
∗̃D[0]B

α
[2] = σ⊥

ℓ4

8
∗̃D[0]

∗̃Cα . (34)

Moreover, the three-dimensional spatial component of the Weyl tensor reads

W̃ α = e−t/ℓ 3

ℓ2
ǫα

βγF
β
[3] ∧ Eγ

+e−2t/ℓ 8

ℓ2
ǫα

βγF
β
[4] ∧ Eγ + O

(
e−3t/ℓ

)
, (35)

and thus vanishes at the boundary.

Equation W̃α ∧ ẽα = 0: This is an algebraic equation whose leading and subleading terms set to

zero the traces of the matrices F α
[3] β and F α

[4] β, since it gives

3

ℓ2
ǫαβγF

α
[3] ∧ Eβ ∧ Eγ + e−t/ℓ 8

ℓ2
ǫαβγF

α
[4] ∧ Eβ ∧ Eγ + O

(
e−2t/ℓ

)
= 0 . (36)

As a result (34) is modified to

F α
[4] = σ⊥

ℓ4

8
∗̃D[0]

∗̃Cα .

A nice consequence of the above results is that the whole Weyl tensor vanishes at the boundary,

W ab
∣∣
∂M

= 0 .

From the relationship between the on-shell Weyl tensor and the curvature one can easily find the

asymptotic behavior of the latter e.g. in order to define asymptotic charges.

Not all coefficients of the FG expansion are determined in terms of the boundary geometrical

data Eα and Bα
[0]. The quantity F α

[3] is an independent coefficient. Actually, it is only possible to

say that it is symmetric

F α
[3] ∧ Eα = 0 ,

traceless

ǫαβγF
α
[3] ∧ Eβ ∧ Eγ = 0 ,

and that it obeys a conservation law

ǫαβγD[0]F
β
[3] ∧ Eγ = 0 .

11



In a holographic setup this function determines the vacuum expectation value of the energy mo-

mentum tensor in the boundary conformal field theory.

The fact that the general solution to Einstein’s equations requires two different sets of unde-

termined data, {Eα, F α
[3]}, is clearly related to the initial value problem of general relativity. In

particular, we can naturally associate Eα to the boundary initial position and F α
[3] to the boundary

initial velocity of the well-posed Cauchy problem that describes the transverse “propagation” of the

boundary geometrical data towards the 4D bulk. In that sense, the vev of the energy momentum

tensor of the boundary CFT can be viewed as an initial velocity.

5 Renormalization methods vs transformations of the canon-

ical variables

Having in mind the holographic application of our results we focus henceforth in the case where

σ⊥ = 1, namely the case where our bulk configurations are asymptotically Anti-de Sitter. However,

we will continue using σ⊥, in order to keep track of the signature dependance of our results which

can be used in applications, other than holography, involving asymptotically de-Sitter spacetimes.

In the 3+1 split formalism described in section 3, it appears that the two canonically conjugate

fields that describe “position” and “velocity” are given by {ẽα, Kα}. This is correct on any slice

Σt other than the boundary i.e. with t 6= ∞, where these quantities are finite. However, to define

the correct geometrical data on the boundary one needs to multiply ẽα and Kα by e−t/ℓ and then

take the t → ∞ limit [35]. In this case, from (20) and (21) one finds that

Kα = −1

ℓ
ẽα + O

(
e−t/ℓ

)
(37)

hence it would seem that the boundary geometrical data extracted form ẽα and Kα are proportional

to each other. In fact, both the vielbein ẽα and the extrinsic curvature Kα could suitably play the

role of the boundary initial position. The question is what plays the role of the boundary initial

velocity. Looking at the expansions of the fields given in the previous section we note that the

three-dimensional component of the on-shell Weyl tensor W̃ α has the expansion

W̃ α = e−t/ℓ 3

ℓ2
ǫα

βγF
β
[3] ∧ Eγ + O

(
e−2t/ℓ

)
. (38)

Defining the one-form Pα as

W̃ α = σ⊥ǫα
βγPβ ∧ ẽγ

its leading behavior is given by F α
[3] and hence it could nicely play the role of boundary initial

velocity. To see that note that on any slice Σt, Pα is symmetric Pα ∧ ẽα = 0, due to the Bianchi

12



identity, and traceless ∗̃Pα ∧ ẽα = 0, by virtue of the first of (16). In fact we have Pα = ∗̃W̃ α and

hence

Pα = σ⊥

3

ℓ2
e−2t/ℓF α

[3] + O
(
e−3t/ℓ

)

Also notice that Pα is not in general conserved for t 6= ∞, but it becomes conserved at the

boundary due to

lim
t→+∞

et/ℓǫαβγD̃Pβ ∧ ẽγ = 0 .

The discussion above implies that both pairs of conjugate variables

{ẽα,Pα} , {Kα,Pα} , (39)

can equivalently describe an initial value formulation at the three-dimensional boundary. It appears

therefore that the boundary is the point where holographic renormalization methods meet the

initial value formulation. Namely, starting from a Dirichlet problem where δẽα = 0 at the boundary,

i.e. where ẽα is the boundary initial position, one needs to make sure that the boundary initial

velocity is Pα. This can be achieved by a transformation of the canonical momentum such that

Kα 7→ Pα. We will show below that this procedure coincides with the standard holographic

renormalization (i.e. [22, 23]). On the other hand, one could have started with a Dirichlet problem

where δKα = 0 at the boundary i.e. Kα being the boundary initial position. This is equivalent

to not adding the Gibbons-Hawking term in the Einstein-Hilbert action. Again, one needs to

make sure that the boundary initial velocity is given by Pα and this can be achieved by the

transformation ẽα 7→ Pα, or equivalently Σα 7→ W̃α. We will demonstrate below that this second

procedure coincides with the method of Kounterterms [24, 25, 26] where the infinities are cancelled

by the addition of the Euler density.

To be explicit, the essence of holography is the evaluation of the on-shell gravitational action

which is then identified with (minus) the generating functional of connected diagrams of a boundary

conformal field theory in the leading saddle point approximation. The boundary values of bulk

fields are interpreted as external sources for boundary conserved currents. For pure gravity in the

bulk, we have schematically

S
∣∣∣
os

[Eα] = −WQFT[Eα] . (40)

Since Eα plays the role of an external source in the boundary, the variation δS
∣∣∣
os

must be zero

for fixed Eα. This is equivalent to the statement of ensuring a well posed Dirichlet problem

for the vielbein, hence a natural starting point for holography is the gravitational action S =

SEH + SGH. Schematically, indicating {λi} = {N, Nα, q0α, Qα} the lagrange multipliers providing

the constraints Ci respectively, the gravitational action reads

S =
σ⊥

8πG

∫

M

[
ǫαβγK

α ∧ ẽβ ∧ dẽγ − λiCi
]

. (41)

13



Its on-shell variation reads

δS
∣∣∣
os

=
σ⊥

8πG

∫

∂M

ǫαβγK
α ∧ ẽβ ∧ δẽγ , (42)

and hence the presence of the Gibbons-Hawking term ensures that only the variation with respect

to the vielbein survives.

However, one could have not added the Gibbons-Hawking term, in which case we would consider

simply the Einstein-Hilbert action (4) which schematically reads

SEH = − σ⊥

8πG

∫

M

[
Σα ∧ dKα + λiCi

]
. (43)

Its on-shell variation is given by

δSEH

∣∣∣
os

= − σ⊥

8πG

∫

∂M

Σα ∧ δKα . (44)

Since ẽα and Kα are proportional to each other at the boundary, both the starting points (42)

and (44) correspond to the same Dirichlet problem and hence are expected to correspond to the

same boundary physics. Moreover, in both cases we need to ensure that the initial boundary

velocity is the same, given by the boundary value of Pα, and here lies the difference between the

two cases; we need different transformations to achieve that. We will show below that the two

different transformations leading to the same boundary initial velocity correspond to the standard

holographic renormalization [22, 23] and to the Kounterterms method [24, 25, 26] respectively.

5.1 Holographic renormalization

The problem that we need to take care of in (42) can be phrased in two different ways; we can

either say that the two-from ǫαβγK
β ∧ ẽγ is not a well-defined initial velocity or we can say that

(42) diverges at the boundary. These two points of view are essentially equivalent. Indeed, by

virtue of the definition (5) and the expansions (37), (38) we notice that the quantity W̃ ′
α defined

as

ǫαβγK
β ∧ ẽγ ≡ ℓW̃ ′

α − ℓρα − 2

ℓ
Σα , (45)

has the same near boundary expansion as W̃α, namely

W̃ ′

α = e−t/ℓ 3

ℓ2
ǫαβγF

β
[3] ∧ Eγ + O

(
e−2t/ℓ

)
. (46)

Hence, our strategy is to implement the transformation (45) at the level of the action. Then we

will be sure that the new canonical momentum W̃ ′
α will give on shell the proper boundary initial

velocity.

14



We implement the transformation (45) on the restricted phase space defined by the constraints

i.e. the fields appearing in (45) satisfy the constraints. Then, the insertion of (45) into (41)

modifies the gravitational action, when we set to zero the constraints, as

S =
σ⊥ℓ

8πG

∫

M

W̃ ′

α ∧ dẽα − σ⊥ℓ

8πG

∫

∂M

[
Ḃα ∧ ẽα ∧ dt + ρα ∧ ẽα +

1

3ℓ2
ǫαβγ ẽ

α ∧ ẽβ ∧ ẽγ

]
. (47)

The first term inside the brackets of (47) vanishes by virtue of the third of (15) together with

the second of (16). Hence, the transformation (45), when implemented on the restricted phase

space defined by the constraints, modifies the action by boundary terms. In fact, one should

be able to show that the constraints are not modified and hence that (45) is a proper canonical

transformation. The two boundary terms are geometrical quantities, namely the curvature and

the volume form defined on the slice. They coincide with minus the original counterterms used

in the context of holographic renormalization [22, 23]. We can subtract them to be left with the

so-called renormalized action S ′
ren whose on-shell variation yields at the boundary

δS ′

ren.

∣∣∣
os

=
3σ⊥

8πGℓ

∫

∂M

ǫαβγF
α
[3] ∧ Eβ ∧ δEγ + O(e−t/ℓ) . (48)

The holographic interpretation of (48) is that the expectation value of the boundary energy mo-

mentum tensor is related to the Hodge dual of the Weyl tensor as

τα ≡ δS ′
ren.

δEα
=

3σ⊥

8πGℓ
ǫαβγF

β
[3] ∧ Eγ =

σ⊥ℓ

8πG
lim

t→+∞
et/ℓW̃α ,

and hence explicitly

〈Tij〉s = Eα
i

(
∗̃τα

)
j

=
3

8πGℓ
F[3] ij . (49)

Recall that F[3] αβ is traceless, symmetric and conserved, as the energy momentum tensor of a

three-dimensional CFT should be.

5.2 Kounterterms

We can now try to set up an initial value formalism for gravity starting with the Einstein-Hilbert

action, without adding to it the Gibbons-Hawking term. In this case we wold need to make the

transformations

Σα = ℓ2W̃α − ℓ2ρα +
ℓ2

2
ǫαβγK

β ∧ Kγ , (50)

into (43), setting to zero the constraints. We get

SEH 7→ S ′

EH = −σ⊥ℓ2

8πG

∫

M

[
W̃α ∧ dKα + D̃Kα ∧ dBα

]

+
σ⊥ℓ2

8πG

∫

∂M

[
ρα ∧ Kα − 1

6
ǫαβγK

α ∧ Kβ ∧ Kγ

]
.

(51)
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where, in the boundary integral, we have already dropped a term proportional to
∫

∂M

Ḃα ∧ Kα ∧ dt

which vanishes since the leading term of the integrand is proportional to e−t/ℓ. The second term

in the first line of (51), gives the on shell contribution
∫

∂M
D̃Kα ∧ δBα, which vanishes identically

at the t = ∞ boundary since the integrand is proportional to e−t/ℓ (notice that the magnetic field

is finite in the boundary). Dropping this term we are left with the two boundary contributions in

the second line of (51). Again, one should be able to show that the constraints do not change and

that the transformation above is canonical.

Remarkably, the boundary term we are left will in (51) are exactly minus the Euler density

χ = − σ⊥ℓ2

64πG

∫
ǫabcdR

ab ∧ Rcd

= −σ⊥ℓ2

8πG

∫

∂M

[
ρα ∧ Kα − 1

6
ǫαβγK

α ∧ Kβ ∧ Kγ

]
, (52)

hence adding it to (51) we would obtain the on-shell action

Sren.

∣∣∣
os

= S ′

EH + χ = −σ⊥ℓ2

8πG

∫

M

W̃α ∧ dKα , (53)

As shown above, the variation of (53) gives exactly the previous result (48) and hence the stress

tensor is the same as in (49).

We conclude that the two procedures, holographic renormalization and Kounterterms, can be

equivalently used to setup an initial value formulation for gravity in the t = ∞ boundary and -

as we propose - can be used equivalently for its holographic description. At this point we also

notice that the Kounterterm method is intriguingly connected with the geometrical Mac-Dowell

Mansouri formulation of gravity [37, 38, 39, 40, 41]. Indeed, the sum of the Einstein-Hilbert action

plus the Euler density with the exact coefficient given in (52) is the MM action

SMM = − σ⊥ℓ2

64πG

∫
ǫabcdW

ab ∧ W cd . (54)

The two-form W ab coincides on-shell with the Weyl tensor which, as discussed at the end of A,

plays the role of the Lorentz component of the curvature of a so(3, 2)(so(4, 1))-valued connection

for σ⊥ = 1 (σ⊥ = −1). Hence, (54) coincides on-shell with the renormalized action (53) and it also

gives a procedure to compute finite conserved quantities associated to spacetimes [24].

6 Conclusions

We presented a detailed analysis of gravity in the 3+1-split formalism having in mind applications

to AdS4/CFT3 holography. The formalism allows for the setup of an initial value problem at
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the t = ∞ boundary. We presented the explicit Fefferman-Graham expansion of the various

quantities involved and noted that their coefficients correspond to geometrical boundary data.

Armed with our explicit results, we have argued that the holographic description of gravity can

alternatively be considered as the formulation of an initial value problem at the boundary. In

this context we have shown that holographic renormalization and the Kounterterm method both

correspond to certain transformations of the canonical variables. In the companion work [19]

we will discuss the emergence of gravitational Chern-Simons in the boundary of four-dimensional

gravity and also the consequences of self-duality in the case of Euclidean signature. We believe that

our techniques and results can provide the basis for extensive studies in AdS4/CFT3 holography.

Finally, our approach has many similarities with past work on quantum gravity9, in particular on

its holographic formulation [43, 44, 45], and therefore it may be useful in linking the two fields.
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A Weyl’s Conformal Tensor

Consider a four-dimensional manifold M endowed with a metric structure described by a vielbein

ea and a torsionless so(3, 1)-valued connection ωab. The Riemann tensor, given explicitly as the

curvature of the Lorentz connection, Rab = dωab +ωa
c ∧ωcb, can be decomposed into the following

parts which are irreducible representations of the full Lorentz group

Rab = Cab + Eab + Gab , (55)

where

Eab = e[a ∧ F b] , Gab =
R

12
ea ∧ eb (56)

being F a = Rica− R
4
ea the traceless part of the Ricci tensor Ra

b, Rica = Ra
be

b the Ricci 1-form and

R = ea⌋Rica = Ra
a the scalar curvature. This decomposition defines the Weyl conformal tensor

Cab: it is called “conformal” since its components do not change under conformal transformations.

9We thank Lee Smolin for bringing these works to our attention.
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It is possible to define the Weyl tensor in any dimensions D (actually for D > 3) in the following

way

Cab ≡ Rab − ea ∧ Sb + eb ∧ Sa ,

where

Sa ≡ 1

D − 2

[
Rica − R

2(D − 1)
ea

]

is the Schouten tensor. Besides the standard symmetries enjoyed by the Riemann tensor, the

Weyl tensor has the additional feature to be completely traceless, ea⌋Cab = 0, and hence in four

dimensions it has ten independent components. In three dimensions it turns out that the Weyl

tensor vanishes identically and thus the Riemann tensor is given entirely in terms of the Schouten

tensor,

(3)Rab = ea ∧ (3)Sb − eb ∧ (3)Sa ,

with

(3)Sa = Rica − R

4
ea .

Let us go back to the original definition (55), given in the case of a four dimensional manifold.

When we consider so(3, 1)-valued 2-forms Λab = 1
2
Λab

cde
c ∧ ed, such as any term in (55), we can

deal with two different notions of Hodge duality: one concerning the flat, tangent indices

∗̂Λab =
1

2
ǫab

a′b′Λ
a′b′ =

1

4
ǫab

a′b′Λ
a′b′

cde
c ∧ ed , (57)

and one concerning curved, spacetime indices

∗Λab =
1

2
Λab

c′d′
∗

(
ec′ ∧ ed′

)
=

1

4
Λab

c′d′ǫ
c′d′

cde
c ∧ ed .

The two notions, in general, have nothing to do with each other. But, from the definitions we gave

in (56), it turns out that

∗̂Cab = ∗Cab , ∗̂Eab = −∗Eab , ∗̂Gab = ∗Gab .

If Einstein’s equations hold, in absence of any source term, Rica = (R/2+3Λ)ea, the Eab component

of the Weyl tensor vanishes and hence the on-shell Riemann tensor reads Rab = Cab − Λea ∧ eb,

having the property ∗̂Rab = ∗Rab. So that the tensor W ab = Rab + Λea ∧ eb we used throughout

the paper can be reasonably called the on-shell Weyl tensor.

This tensor has another interesting geometric interpretation. The fundamental fields in gravity,

say the vielbein and the spin connection, can be assembled into a single Lie algebra-valued connec-

tion. For the case of four-dimensional gravity with a non vanishing cosmological constant (the case

18



with vanishing cosmological constant can then be recovered by an Inonu-Wigner contraction) we

consider the Lie group G = SO (3, 2) or G = SO (4, 1), depending on wheter σ⊥ = ±1 respectively,

whose algebra g is generated by the standard four-dimensional Poincaré generators, Pa and Jab

with a, b = 0, 1, 2, 3, with the introduction of a non-commutativity between translations

[Pa, Pb] = −ΛJab .

Picking a g-valued connection A, it is natural to interpret its components along generators as A =

eaPa− 1
2
ωabJab, where ea is the vielbein and ωab the spin connection. Its curvature F = dA+A∧A

can thus be written as F = T aPa− 1
2
W abJab, where T a is the standard definition for the torsion and

W ab = Rab + Λea ∧ eb precisely. So that W ab has a geometric interpretation: it is the component

of the curvature of a g-valued connection along Lorentz transformations.

Within this last context one should pay special attention to the Bianchi identities, since the G-

covariant exterior derivative is different from the simple Lorentz-covariant one due to the presence

of the translations. In particular the Bianchi identity reads ∇F = 0, where ∇F = dF + A∧F −
F ∧ A with, whose components read

∇F
∣∣∣
P

= DT a − W a
b ∧ eb = 0 ,

∇F
∣∣∣
J

= DW ab + Λea ∧ T b − Λeb ∧ T a = 0 , (58)

where D is the Lorentz-covariant part of the full ∇. An interesting fact is that it is not possible

to have a configuration with vanishing W ab and non-vanishing torsion T a, being the condition

W ab = 0 even more restrictive than Rab = 0.

B Lorentzian Yang-Mills theory in first order formalism

We want to develop the first order formalism for a generic YM theory for some Lie group G. Call

A = ϕdt + Ã the g-valued connection and F = dt ∧ E + F̃ , with Et = F̃ti = 0, a g-valued 2-form

which, on-shell, shall give the curvature of the potential A, say F = dA+A∧A. Pick a manifold

M, endowed with a metric structure g providing the standard Hodge dual operator ∗. Therefore

we have for the field F

∗F = dt ∧ B + ∗̃F ,

where

Bi =
√
−gǫijk

(
gjtEk +

1

2
F̃ jk

)
, ∗̃F ij =

√
−gǫijk

(
gttEk − gtkEt + gtlgkmF̃lm

)
,

where ǫijk = ǫtijk are the three-dimensional Levi-Civita symbols. It is always possible to choose

well-adapted coordinates in order to set gtt = σ⊥ and gti = 0. In this way the metric on M can be
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written as

ds2 = σ⊥dt2 + hij(t, ~x)dxidxj ,

and hence the dual of F simplifies to10

B = ∗̃F̃ , ∗̃F = σ⊥
∗̃E . (59)

Picking an Ad-invariant, symmetric, non-degenerate bilinear form 〈•, •〉 on the algebra, the action

shall read

S =

∫

M

−1

2
〈F ∧ ∗F〉 + 〈(dA + A ∧A) ∧ ∗F〉

=

∫

M

dt ∧
[
〈 ˙̃A ∧ ∗̃F〉 − 1

2

(
〈E ∧ ∗̃F〉 + 〈F̃ ∧ B〉

)

+ 〈
(
d̃Ã + Ã ∧ Ã

)
∧ B〉 + 〈ϕ, ∇̃∗̃F〉

]
−

∫

M

dt ∧ d̃〈ϕ, ∗̃F〉 ,

where the last term is actually a boundary term. Equivalently, if we performed the transformation

to bring the metric in the preferred form, the action would read

S = −σ⊥

∫

M

dt ∧
[
−〈 ˙̃A ∧ ∗̃E〉 +

1

2

(
〈E ∧ ∗̃E〉 − 〈∗̃B ∧ B〉

)

− σ⊥〈
(
d̃Ã + Ã ∧ Ã

)
∧ B〉 − 〈ϕ, ∇̃∗̃E〉

]
+ σ⊥

∫

∂M

dt ∧ 〈ϕ, ∗̃E〉 . (60)

It is easy, at this point, to give some interpretations to the fields. ϕ plays the role of a Lagrange

multiplier for the constraint ∇̃∗̃E = 0, the Gauss law, which is obtained by varying the action with

respect to ϕ itself. The dynamical fields, conjugate to each other, are given by the potential Ã and

the electric field E, while the magnetic field is some external field. The Lagrange multiplier can

be fixed to zero by a gauge transformation, say a certain g ∈ G such that ϕ = g−1ġ. Hence we are

left with a residual gauge symmetry given by group elements g̃ ∈ G such that ˙̃g = 0. Therefore,

within this gauge fixing, the equations of motion read

δS

δ∗̃E
= ˙̃A− E = 0 , (61)

δS

δÃ
= −σ⊥

(
∗̃E

)
˙+ ∇̃B = 0 , (62)

δS

δB
= d̃Ã + Ã ∧ Ã + σ⊥

∗̃B = 0 , (63)

plus the Gauss law

∇̃∗̃E = 0 .

10Notice that, in this case, the determinant of the four-dimensional metric reduces to
√−g =

√
−σ⊥h
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If we want to write them only in terms of the curvature it is easy to see that (63) implies the

Bianchi identity ∇̃∗̃B = 0, while combining (61) and (63) we get σ⊥

(
∗̃B

)
˙+ ∇̃E = 0.

It is easy to see that if we define the complex g-valued 1-form

E ≡ E + iB , (64)

the equations can be nicely written as

∇̃∗̃E = 0 , ∇̃E − iσ⊥

(
∗̃E

)
˙= 0 .

The great benefit we acquire is that this form makes explicit the “global” duality invariance of the

equations of motion

E 7→ E ′ = eiθE ,

since the equations are linear and holomorphic in E .

C Example: holography of black holes in AdS4

As an application of our ideas we consider the holographic description of the standard Schwarzschild

AdS4 and also Taub-NUT-AdS4 black holes with negative cosmological constant. For positive

cosmological constant they are still solutions to Einstein’s equations but they describe cosmological

spacetimes. Our aim is to identify the right initial values – “position” and “velocity” – which,

by the arguments given in the previous section, is equivalent to finding the boundary metric and

energy momentum tensor.

We start with the metric

ds2 = σ⊥

dr2

V (r)
− σ⊥V (r)dτ 2 + r2dΩ2

κ , (65)

that gives the standard Schwarzschild AdS4 black holes for σ⊥ = 1. The difference with the

previous section is the presence of the nontrivial Lapse function N(r)2 = V (r)−1 11 where

V (r) = σ⊥κ − 2M

r
+

r2

ℓ2
. (66)

The term dΩ2
κ in (65) describes the metric of the horizon which is S2, R

2 or H2 for κ = 1, 0,−1

respectively. Using stereographic projections the horizon metric can be written in terms of complex

coordinates {w, w̄}, with w = x + iy, as

dΩ2
κ = e2γdwdw̄ , eγ = (1 + κ|w|2/4)−1 .

11See (2) for a definition of the function N . Here it has not been gauge-fixed to 1.
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The vielbein is given by

e0 = V (r)−1/2dr , ẽ3 = V (r)1/2dτ , ẽ• = reγdw .

Solving for the vanishing of the torsion constraints we obtain the electric field

K3 = −
(

M

r2
+

r

ℓ2

)
dz , K• = −V (r)1/2eγdw ,

and the magnetic field

B3 = −i
(
∂γdw − ∂̄γdw̄

)
, B• = 0 .

It turns out that the magnetic field is fixed from the boundary, while the electric field depends on

the radial coordinate, describing the extrinsic curvature of the metric ẽα on the slices Σr at fixed

radial coordinate.

The three-dimensional component of the Weyl tensor reads

W̃ 3 = −iσ⊥

M

r3
ẽ• ∧ ẽ•̄ , W̃ • = −i

M

2r3
ẽ3 ∧ ẽ• . (67)

and its three-dimensional Hodge dual Pα = ∗̃W̃ α hence reads

P3 = −σ⊥

2M

r3
ẽ3 , P• = σ⊥

M

r3
ẽ• , (68)

which is manifestly symmetric (it is actually diagonal) and traceless.

However, since the metric is not given in the FG form due to the presence of a nontrivial lapse

function, we can not directly read from the results above the proper initial data. In general one

is not able to compute exactly the diffeomorphism r = r(t), where t is the transverse coordinate

bringing the metric into the FG from, nevertheless we present below a general general argument

in order to compute the boundary data in some simple cases. Consider a metric of the form

ds2 = σ⊥N(ρ)2dρ2 + hij(ρ, ~x)dxidxj (69)

where N(ρ) = 1 + ζ(ρ) with ζ(ρ) → 0 as ρ → ∞. For instance this can be achieved in (65) by

simply defining r/ℓ = eρ/ℓ. It is clear that if there exists a transformation t = t(ρ) such that

et/ℓ = eρ/ℓ [1 + ǫ(ρ)] , (70)

with

lim
ρ→∞

ǫ(ρ) = 0 , (71)

the boundary data can be easily extracted by looking at the leading ρ → ∞ behavior of the vielbein

ẽα and of Pα. The point now is to understand under which circumstances such a transformation

(70) does exist. To bring (69) in the FG form one needs to solve for

N(ρ)dρ = dt ⇒ ζ(ρ)

ℓ
=

ǫ′(ρ)

1 + ǫ(ρ)
. (72)
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Then, by virtue of (71) the leading term of (72) is given by ǫ′ = ζ/ℓ. Furthermore in order for

(71) to be true, we need to ask for limρ→∞

∫
ζ(ρ) to be finite.

In our case we have that
∫

ζ(ρ) ∝ e−2ρ/ℓ as ρ → ∞ and hence the boundary data can be easily

computed. The boundary vielbein reads

E3 = dτ , E• = ℓ eγdw ,

and describes a conformally flat cylinder R × Bκ with base manifold Bκ being S2, R
2 or H2 for

κ = 1, 0,−1 respectively. Also, F α
[3] is given by

F 3
[3] = −2Mℓ2

3
E3 , F •

[3] =
Mℓ2

3
E• . (73)

As a consequence, the vacuum expectation value of the stress tensor of the dual theory simply

reads

〈T33〉s = σ⊥

Mℓ

4πG
, 〈T••̄〉s =

Mℓ

8πG
. (74)

Hence we conclude that these black holes are generated by the evolution along the radial coordinate

of the cylinder R×Bκ, which is a simple example of a conformally flat manifold, with initial velocity

(73) determined by the black hole mass M .

We consider now a generalization of the previous case given by the Taub-NUT-AdS black hole

[42]

ds2 = σ⊥

dr2

V (r)
− σ⊥V (r) (dτ + σ)2 +

(
r2 + n2

)
e2γdwdw̄ ,

where the lapse function is modified by the NUT charge n to be

V (r) =

(
σ⊥κ +

4n2

ℓ2

)
r2 − n2

r2 + n2
− 2Mr

r2 + n2
+

r2 + n2

ℓ2
. (75)

The shift one-form σ is given by

σ = −i
σ⊥n

2
eγ (w̄dw − wdw̄) .

The metric of the horizon is still given by eγ = (1 + κ|w|2/4)−1 with κ = 1, 0,−1. The presence of

the shift one-form σ introduces a non-staticity in the spacetime since the symmetry under τ 7→ −τ

that we had in the previous case is lost. The vielbein ẽα on the slices Σr is now given by

ẽ3 = V (r)1/2 (dτ + σ) , ẽ• = (r2 + n2)1/2eγdw ,

and the electric and magnetic fields read

K3 = −1

2
V ′(r)V (r)−1/2ẽ3 , K• = − r

r2 + n2
V (r)1/2ẽ• ,
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and

B3 = i
κ

4
eγ (w̄dw − wdw̄) − n

r2 + n2
V (r)1/2ẽ3 ,

B• =
n

r2 + n2
V (r)1/2ẽ• .

The Hodge dual of the three-dimensional spatial component of the on-shell Weyl tensor reads

P3 = −σ⊥2F (r)ẽ3 , P• = σ⊥F (r)ẽ• (76)

where

F (r) =
Mr (r2 − 3n2) + n2

(
σ⊥κ + 4n2

ℓ2

)
(3r2 − n2)

(r2 + n2)3
.

To extract the proper boundary data we use the general argument above that applies in this

case too. Setting as before r/ℓ = eρ/ℓ the boundary data are read from the leading terms of the

expansions of ẽα and Pα. The boundary vielbein is given by

E3 = dτ + σ , E• = ℓ eγdw , (77)

which is a sort of a nontrivial line bundle with base manifold the same Bκ as in the previous black

hole case. Despite being conformally flat the boundary manifold is rather nontrivial due to the

presence of the NUT charge. Its most striking feature is the presence, for some values of the the

NUT parameter, of closed timelike curves (CTCs) [42]. In order to see this consider spherical

coordinates on the base Bκ and hence we have

dΩ2
κ = dθ2 + fκ(θ)

2dφ2 , σ = 4nfκ(θ/2)2 ,

where

fκ(θ) =





sin θ if κ = 1

θ if κ = 0

sinh θ if κ = −1

In all three cases φ is an angular coordinate and we can see that

gφφ = fκ(θ)
2 − 16

n2

ℓ2
fκ(θ/2)4

becomes negative for certain values of θ and n/ℓ. For these values the vector ∂φ, which generates

closed curves parameterized by the angle φ, becomes timelike. In particular for κ = −1 this three-

dimensional spacetime is a 3D slice of the Gödel spacetime [42], but it encodes all the features of

such a manifold. Therefore these bulk metrics could be used to study three-dimensional quantum
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field theories (at least endowed with conformal invariance) on spacetimes with causal pathologies.

For F α
[3] we obtain the following results

F 3
[3] = −2Mℓ2

3
E3 , F •

[3] =
Mℓ2

3
E• , (78)

and hence the tangent components of the boundary energy-momentum tensor are the same as

before (74). What changes here is the background where the NUT charge introduces a nontriviality,

nevertheless keeping it conformally flat. From the initial value problem point of view, these

spacetimes are generated by the evolution of the 3D metric described by (77) with the same initial

velocity as before.

References

[1] C. P. Herzog, P. Kovtun, S. Sachdev and D. T. Son, “Quantum critical transport, duality,

and M-theory,” Phys. Rev. D 75 (2007) 085020 [arXiv:hep-th/0701036].

[2] S. A. Hartnoll and P. Kovtun, “Hall conductivity from dyonic black holes,” Phys. Rev. D 76

(2007) 066001 [arXiv:0704.1160 [hep-th]].

[3] S. A. Hartnoll and C. P. Herzog, “Ohm’s Law at strong coupling: S duality and the cyclotron

resonance,” Phys. Rev. D 76 (2007) 106012 [arXiv:0706.3228 [hep-th]].

[4] S. A. Hartnoll, C. P. Herzog and G. T. Horowitz, “Building an AdS/CFT superconductor,”

arXiv:0803.3295 [hep-th].

[5] S. S. Gubser and S. S. Pufu, “The gravity dual of a p-wave superconductor,” arXiv:0805.2960

[hep-th].

[6] J. Bagger and N. Lambert, “Modeling multiple M2’s,” Phys. Rev. D 75 (2007) 045020

[arXiv:hep-th/0611108].

[7] J. Bagger and N. Lambert, “Gauge Symmetry and Supersymmetry of Multiple M2-Branes,”

Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955 [hep-th]].

[8] J. Bagger and N. Lambert, “Comments On Multiple M2-branes,” JHEP 0802 (2008) 105

[arXiv:0712.3738 [hep-th]].

[9] A. Gustavsson, “Algebraic structures on parallel M2-branes,” arXiv:0709.1260 [hep-th].

[10] O. Aharony, O. Bergman, D. L. Jafferis and J. Maldacena, “N=6 superconformal Chern-

Simons-matter theories, M2-branes and their gravity duals,” arXiv:0806.1218 [hep-th].

25



[11] C. P. Burgess and B. P. Dolan, “Particle-vortex duality and the modular group: Applications

to the quantum Hall effect and other 2-D systems,” arXiv:hep-th/0010246.

[12] E. Witten, “SL(2,Z) action on three-dimensional conformal field theories with Abelian sym-

metry,” arXiv:hep-th/0307041.

[13] R. G. Leigh and A. C. Petkou, “SL(2,Z) action on three-dimensional CFTs and holography,”

JHEP 0312 (2003) 020 [arXiv:hep-th/0309177].

[14] S. de Haro and A. C. Petkou, “Instantons and conformal holography,” JHEP 0612 (2006)

076 [arXiv:hep-th/0606276].

[15] S. de Haro and P. Gao, “Electric-magnetic Duality and Deformations of Three-Dimensional

CFT’s,” Phys. Rev. D 76 (2007) 106008 [arXiv:hep-th/0701144].

[16] S. de Haro, I. Papadimitriou and A. C. Petkou, “Conformally coupled scalars, instantons and

vacuum instability in AdS(4),” Phys. Rev. Lett. 98 (2007) 231601 [arXiv:hep-th/0611315].

[17] S. de Haro and A. C. Petkou, “Holographic Aspects of Electric-Magnetic Dualities,” J. Phys.

Conf. Ser. 110 (2008) 102003 [arXiv:0710.0965 [hep-th]].

[18] G. Compere and D. Marolf, “Setting the boundary free in AdS/CFT,” arXiv:0805.1902 [hep-

th].

[19] ”Gravity in the 3+1-Split Formalism II: Self-Duality and the Emergence of Gravitational

Chern-Simons in the Boundary”, D. Mansi, A. C. Petkou and G. Tagliabue, to appear.

[20] R. G. Leigh and A. C. Petkou, “Gravitational Duality Transformations on (A)dS4,” JHEP

0711 (2007) 079 [arXiv:0704.0531 [hep-th]].

[21] R. Arnowitt, S. Deser and C. W. Misner, “The dynamics of general relativity,” arXiv:gr-

qc/0405109.

[22] V. Balasubramanian and P. Kraus, “A stress tensor for anti-de Sitter gravity,” Commun.

Math. Phys. 208, 413 (1999) [arXiv:hep-th/9902121].

[23] S. de Haro, S. N. Solodukhin and K. Skenderis, “Holographic reconstruction of spacetime and

renormalization in the AdS/CFT correspondence,” Commun. Math. Phys. 217 (2001) 595

[arXiv:hep-th/0002230].

[24] R. Aros, M. Contreras, R. Olea, R. Troncoso and J. Zanelli, “Conserved charges for gravity

with locally AdS asymptotics,” Phys. Rev. Lett. 84 (2000) 1647 [arXiv:gr-qc/9909015].

[25] P. Mora, R. Olea, R. Troncoso and J. Zanelli, “Finite action principle for Chern-Simons AdS

gravity,” JHEP 0406, 036 (2004) [arXiv:hep-th/0405267].

26



[26] R. Olea, “Regularization of odd-dimensional AdS gravity: Kounterterms,” JHEP 0704 (2007)

073 [arXiv:hep-th/0610230].

[27] G. W. Gibbons and S. W. Hawking, “Action Integrals And Partition Functions In Quantum

Gravity,” Phys. Rev. D 15 (1977) 2752.

[28] ”Torsion vortices and Holography”, R. G. Leigh, N. N. Hoang and A. C. Petkou, to appear

[29] Robert M. Wald, “General Relativity”, The University of Chicago Press, 1984.

[30] A. Ishibashi and R. M. Wald, “Dynamics in non-globally-hyperbolic static spacetimes. II:

General analysis of prescriptions for dynamics,” Class. Quant. Grav. 20 (2003) 3815 [arXiv:gr-

qc/0305012].

[31] A. Ishibashi and R. M. Wald, “Dynamics in non-globally hyperbolic static spacetimes. III:

anti-de Sitter spacetime,” Class. Quant. Grav. 21 (2004) 2981 [arXiv:hep-th/0402184].

[32] C. Fefferman and C. R. Graham, “Conformal invariants,” in Élie Cartan et les Mathématiques
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