
Vol.:(0123456789)

Wireless Personal Communications
https://doi.org/10.1007/s11277-020-07243-z

1 3

A Novel Method to Detect and Prevent SQLIA Using Ontology 
to Cloud Web Security

K. Naveen Durai1 · R. Subha1 · Anandakumar Haldorai1

 
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Many modern day web applications deal with huge amount of secured and high impact 
data. As a result security plays a major role in web application development. The secu-
rity of any web application focuses on data the application handles. The web application 
framework should prevent and detect web application vulnerabilities. Data will be stored 
in a database, so the OWASP categorized vulnerability SQL Injection Attacks (SQLIA) is 
the most critical vulnerability for a web application. An Ontology based model for prevent-
ing and detecting SQLIA using ontology (SQLIO) is proposed which implements Ontol-
ogy Creation and prediction rule based vulnerabilities model. The proposed methodol-
ogy provides prevents and detects SQLIA web vulnerability to a greater extent in cloud 
environment.

Keywords  SQL injection attacks (SQLIA) · Hyper text transfer protocol (HTTP) · Open 
web application security project (OWASP) · SQL injection ontology (SQLIO)

1  Introduction

Data sharing is quickly expanded around the globe using the web application and web 
administrations, which enhances the productive development of the e-business [1]. This 
development does not only involve the output of e-business, but also the analysis of digital 
vulnerabilities due to web utilization. As a result, it affects the security objectives: Avail-
ability, Confidentiality and Integrity.

Various actions have been put in place to mitigate the vulnerabilities, which include 
security technologies likes the IDS scanners and web-based application firewall [2]. Nev-
ertheless, code-level security is vital for creating powerless-free applications [3]. During 

 *	 K. Naveen Durai 
	 naveendurai.k@sece.ac.in

	 R. Subha 
	 kris.subha@gmail.com

	 Anandakumar Haldorai 
	 anandakumar.psgtech@gmail.com

1	 Department of Computer Science and Engineering, Sri Eshwar College of Engineering, 
Coimbatore, TamilNadu, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-020-07243-z&domain=pdf


	 K. N. Durai et al.

1 3

the process of testing and improvements of these technologies, engineers have to familiar-
ize themselves with the dangers of data and the effects of attacks on profiles. As such, the 
ultimate goal is to distinguish the attacks and release the stretches. Therefore, formulating a 
secure and more enhanced website application is necessary. Moreover, the dependency on 
security experts to evaluate the web application and its security might be limited [4].

The security ontology that is available today provides scientific categorization of vul-
nerabilities, threat and attacks requires construing the data, which is relevant in foreseeing 
threats without grouping them. Based on an individual objective to measure these prob-
lems, the projected approach potentially evaluates the web application vulnerabilities and 
threats, which might be mishandled by attacks [5]. The projected approach uses the SWRL 
guidelines and the surmising procedures in foreseeing the vulnerabilities concerning the 
possible attacks [6]. These projected threats have been grouped in light of their seriousness 
level and the framework additionally recommends aversion and moderation techniques.

The sections are organized as follow Sect.  2 discussed detailed review procedure of 
SQLIA. In Sect. 3 the proposed approach elaborated and discussed. The result described in 
Sect. 4. Finally the Sect. 5 concluded with future recommendations.

2 � Literature Review

OWASP  The abbreviation is Open Web Application Security Project, which represents 
the 501c3 non-profit global charity organization [7]. The objective of the organization is to 
improvise the application software security.

DVWA  The abbreviation represents the Damn Vulnerable Web Application (DVWA), 
which is completely a PHP/MySQL-based practical tool. This tool is used for testing the 
security web developers’ and professionals’ tools in the legitimate practical environment 
utilized for the aid. Moreover, it trains users concerning the Secure Web Development. The 
Live CD and the Source Codes arefree-of-cost. Topics covered in this particular tutorial 
are XSS reflection, SQL Injection (Blind), well-stored XSS, Command Execution, Inclu-
sion of files, CSRF, Upload, and Brute Force. When there arises a comparison between 
the OWASP and DVWA, DVWA is less wide-ranging and covers up only the least count of 
topics. Regardless of all, they are even restricted in exposing hand full of information [8]. 
It reflects not only in straight topic narrations but also in solution providing, hints enhanc-
ing and delivering guidelines. In accordance, they afford information to the users via the 
hyperlinks on related websites.

Web Security Dojo  This can be described in short as, ‘free open-source self-contained 
training environment’ and this test is used for Application Security penetration. The term 
Dojo is abbreviated from Eq. (1),

In this scenario, the VMware image is free-of-cost. The attractive part is, it is download-
able by the users and allows them to install in their own machine with the rapidity they 
use and they also hand over the complete documentation to the downloaded users. It also 
comes out with providing some of the default targets like JSON demos, DVWA (Damn 
Vulnerable Web App) and REST Demos [9]. Other functions provided are Tools (Ex: burp 
suite), Hackme Casino vulnerable application, WebGoat, and Insecure Web App. Despite 

(1)Tools + Targets = Dojo



A Novel Method to Detect and Prevent SQLIA Using Ontology to Cloud…

1 3

all the above-mentionedadvantages, it has another positive point on efficiency to the envi-
ronment and its notable drawback is, beginners in security practice cant tend to choose this 
option as it is not meant for them of course.

Daffodil  For learning purposes, this open source web application project is proposed. 
This has much and more similarities as DVWA and OWASP applications. Its package con-
sists of exercises and solutions that are applicable to some chosen Web application vulner-
abilities [10]. The criteria faced are the same i.e. lack of appropriate topic discussions. 
Then it becomes the responsibility of the users to fetch the respective practical information 
for the practice they are intended into. If at all this is designed user-friendly then the case 
would have been vice-versa as it will be very useful to the beginners’ indeed.

2.1 � SQLIA Detection Methods

Static Approaches In [11] proposed static approach, during compilation, the possibili-
ties for the occurrence of SQL injections are distinguished or neutralized by the Static 
approaches. The procedure in doing this is, initial step initiates in scanning the heuristics/ 
leverage information flow analysis/ application then by using this, SQL injection vulner-
able code(s) are identified. At the same time, this will prolong in lots of changes in the 
source code which will then stretch out as a huge burden to the programmers. Existing web 
applications will also have an uncomfortable feeling when the source codes are modified. 
Keeping all thismind, the researchers are trying to execute a dynamic analyze within users’ 
input through SQLs and among those the malicious attacks will be blocked during runtime. 
Such static analysis is narrated below:

SAFELI  To detect SQL Injection Vulnerabilities, a Static Analysis Framework is pro-
posed. The identification of SQL Injection attacks is executed during compiling. Two main 
rewards of this static framework tool include: (i) White box Static Framework and (ii) 
Hybrid Constraint Solver [12]. Inside the White Box Static Framework, the byte codes are 
considered to be numerous out of all and strings are meant as the core. While for Hybrid-
Constraint Solver, a string analysis tool that is efficient is implemented and the string, 
Boolean and integer variables are dealt with. These implementations are inherited through 
ASP.NET Web applications and the main advantage is, this can even detect the vulner-
abilities that actually the black-box vulnerability scanner cannot. Considering the string 
constraints, this mechanism is a fabulous approximation. Then the shortcoming is its facili-
tation only to the ASP.NET vulnerabilities.

In order to recognize the input manipulation vulnerabilities [12], an automated testing 
is undergone by the Static-analysis-based tool ‘SQLUnitGen’. When there arises a com-
parison between SQLUnitGen tool versus FindBugs, SQLUnitGen is confirmed as a static 
analysis tool. This is communicated as an outstanding mechanism as it concluded with 
constructive results in the phase of false positive as such crisis is lacking in all the con-
ducted experiments.

WebSSARI  This is all about checking/analyzing the sensitive functions that are conveyed 
as spoiled flows against preconditions and of course it also uses a static analysis [13]. 



	 K. N. Durai et al.

1 3

Dissimilar to other types, the input that passed out successfully from the whole predefined 
set of filters are considered as the vital point while this is accomplished.

Context Sensitive String Evaluation (CSSE)  Finding the root cause of SQLIA 
is the basic idea innovated behind this sort of approach. The data origin may be of any 
one among these either developer-provided or user-provided and that is the so-called root 
cause. They could definitely conclude that the data presented by a user are un-trusted and 
the presented by applications are trusted. Context-Sensitive String Evaluation (CSSE) acts 
as a base for syntactic analysis where the un-trusted metadata usage is determined. Another 
important cause for injection occurrence is development stage’s programming flaws [14]. 
CSSE flows like a syntactical analysis based one, where numerical constants and string 
constants are ultimately distinguished. Then non-numeric characters are eliminated from 
numeric identifiers and in alphanumeric identifiers, the unsafe characters are eliminated. 
The entire above-mentioned scenario will tentatively happen before queries are delivered 
to the server’s database. As such, the crisis in this approach is:

1.	 Unsafe characters’ initialization is web programmer dependent.
2.	 Application functionality restriction will vigorously happen while unsafe characters are 

removed

2.2 � Dynamic Approaches

The [15] proposed dynamic approach. There are far differences between Dynamic analysis 
and static analysis. None of the adjustments are done in the web applications while locating 
vulnerabilities of SQL injection attacks using dynamic analysis. All types of vulnerabili-
ties including SQLIAs vulnerabilities within the web application are scanned using Open 
source program Paros. There are two points that make Paros imperfect. They are (i) scan-
ning are done based on predetermined attack codes, (ii) for sparing the success-rate of the 
attack, HTTP responses are used. Dynamic approach category comprises many proposed 
techniques. Noticing the un-trusted data and their flows over the programs are tracked and 
these actions are performed as the security policies in the taint-based technique. It is the 
un-trusted input that is used in the creation of various types of SQL tokens in the SQL 
queries and such queries are rejected using context-sensitive analysis which is used in the 
taint-based technique. As this analysis method does not require any web application adjust-
ments it is considered one of the best advantageous methods. Of course, a few numbers of 
vulnerabilities can be rectified as they are of predefined attacks spontaneously other vul-
nerabilities are supposed to be sorted out and fixed manually by the developers. The pro-
posed method can be applied at websites developed using open source framworks. A listed 
set of dynamic approaches are given below:

Dynamic Candidate Evaluations Approach  [16] proposed CANDID. SQL Injection 
attacks are automatically prevented when this Dynamic Candidate Evaluations method is 
used. As per the developer’s design phase, query structures are extracted from every SQL 
query location vigorously in this framework. During the statement preparation, the applica-
tions are modified manually and this technique ruined out the altering issue. Statistically 
speaking, this tool might be considered so good in some of the cases while whereas in 
others actually it is not. Its inefficiency shall be reflected amongst applying the same at 



A Novel Method to Detect and Prevent SQLIA Using Ontology to Cloud…

1 3

a wrong level, during external functions dealing and most importantly when the scheme 
capability is limited.

Parse Tree Validation Approach  Parse tree framework is adopted by [17] proposed. 
The original statement and the parse-tree of a certain statement, which appear in the run-
time, are contrasted with each other. Until a match has been grasped the statement execu-
tion was not stopped. SQLGuard is used to experiment with this method in a Web applica-
tion (developed by a student). Perhaps it is determined highly about its efficiency, it has its 
own shortcomings as, Input lists (black or white) and additional overhead computation.

Positive Tainting and  Syntax Aware Evaluation  [18] proposed, tentatively in this 
form, to detect SQLIA valid input string are supplied originally to the system. Initializa-
tion plays a vital role as this would help in categorizing the input strings during the runtime 
and from those categorizations the trusted markings and un-trusted markings are circu-
lated. The propagated strings’ estimation is undergone through ‘syntax aware evaluation’ 
(dynamic analysis based). This evaluation acts as a firewall through which the query tres-
passing is prohibited into the database server for furthermore processing when un-trusted 
strings show up their availability within the query. If it is about the trusted strings then 
the case is, it will be identified and marked by considering the inputs in mind. The strings 
could be categorized as:

1.	 Hardcoded strings
2.	 implicitly Java created Strings
3.	 Strings initiated via external sources.

Evaluation of the syntax will be performed in the database interaction point as soon 
as the case illustrated is a syntax-aware evaluation. A web programmer defines the func-
tions and the functions are nothing but the trust policies as defined by the Syntax. A 
query receives a positive output and can be processed into the database server only after 
the pattern matching is performed by the functions. The crisis in using this method is:

1.	 Developers-dependent trusted strings’ Initialization
2.	 Chance for second-order attack arises due to the constant storage of trusted strings.

SQLGuard  [19] proposed to mitigate the attacks on the SQL, injected threats, the SQL-
Guard technique utilizes a parse tree validation and this is also a runtime analysis tech-
nique. As discussed in the previous sections the SQL injections are highly dangerous that 
the programmers expected output query structure shall totally vary. The simplest rescue 
operation undergone to find out the SQL injection attacks insertion is by simultaneous 
checking of SQL query structure duly before and after the input values are submitted by 
the users. It is not so definite about capturing the query structure accurately during compile 
time using static analysis. All these controversies led us to a better view that the unfair 
part is the comparison done between the SQL query structure during Compile-time and 
runtime. During the execution time tree structures capturing and this is what SQLGuard 
is attempting for. The process proceeds by using a random key in wrapping a user input 
and then a single token replace the wrapped user input. Then the major part of SQL query 



	 K. N. Durai et al.

1 3

usage is in the generation of the proposed SQL query structure that is captured at some 
stage in runtime and it does not involve user input with it.

SQLProb  [20] proposed SQLProb. This is also one among the existing dynamic analysis 
approaches. Usage of MySQL Proxy (a customized one) in this approach is for: query col-
lection, user-input extraction, parse-tree generation and user-input validation. The initial 
stage is for the collection of data where queries are collected using the Query Collected 
whereby the programmer actually wanted them to be and are equivalently saved in the sys-
tem. Simultaneously sending the application generated query to both User Input Extrac-
tor module and Parse Tree Generator module is carried out in the query evaluation phase. 
JavaCC is used in the Parse Tree Generator module to generate a tree for the query. All the 
queries collected from the data collection phase are aligned by means of the Needleman-
Wunsch algorithm (an enhanced version) and this is the responsibility of the User Input 
Extractor module. The resemblance of the query and the all the collected queries are esti-
mated using the algorithm.

Prototype query is none but a query that possesses the highest similarity value amongst 
the collected queries. This technique turns out to be an absolute expensive technique as it 
requires as much number of comparisons as the number of queries. As a remedial meas-
ure for this size consumption in the query collection, the system will cordially work on 
the preprocessing tasks where the collected queries are aggregated and clustered. Needle-
man–Wunsch algorithm is exceedingly used to align the particular query versus its proto-
type query and then the user input portion is extracted. Thus extracted user input and tree 
generated via the Parse Tree Generator module are provided into the User Input Validator 
module. The collection oof leaf nodes shall be included into the parse tree and the user-
input, which is the same set of leaf nodes, N is equivalent to the collection of nodes. hen 
an upward depth-first search will be conducted for user input validation in all the nodes of 
N to find a path which intersects with the internal node. With the target of attaining all the 
leaves of the tree, the breadth-first search will be performed in the internal node. To reject 
the set of leaves with the reason they are malicious, the result of it should be a superset of 
N.

The motto [21] of improvising the user authentication mechanism this scheme adopts 
itself into the hash value approach. The hash value is equivalent to username and password. 
Development of the prototype SQLIPA (SQL Injection Protector for Authentication) is cer-
tified for framework testing. When the user account creation has successfully completed 
the password and username hash values are formed and calculated in the runtime process.

2.3 � Hybrid Approaches

The [22] proposed static analysis will be performed during development and such static 
analysis will be combined with some runtime dynamic monitoring and this shall be 
termed as a countermeasure. In each and every access point of the database the application 
involves in the generation of SQL query models and these models are put together during 
the phase of development considering the static evaluation according to its database util-
ity. The checking procedure will be carried during the runtime process whereby the SQL 
information is counterchecked with the inner SQL model before queries are transferred to 
the database. The Recovery logics are applied and may be executed by the system develop-
ers during the process of mismatching the queries, which are considered to be exceptions 



A Novel Method to Detect and Prevent SQLIA Using Ontology to Cloud…

1 3

and the SQL injections. These considerations appear to be another form of comparison 
between the runtime query parse tree and the parse tree of the initiate statement, which 
provides safe and sound vulnerable SQL statements. Considering the difference in both the 
types, in the original statement both are created during runtime whereas in other one input 
parse tree is created only during runtime as it is under the development phase.

2.4 � Collective Method of Static and Dynamic Enquiry

In [23] proposed this approach. In the progressive scan for SQL injection attack, this 
technique uses the merits of both the dynamic evaluation and static analysis techniques. 
In elaboration, web pages are analyzed and concurrently SQL queries are generated to 
examine the results. The tasks performed by SQL Check are (i) SQL injection attacks are 
defined and (ii) compiler parsing techniques and context-free grammars are used to pro-
pose a complete and healthy algorithm. All the potential SQL queries can be formed after 
the SQL queries found in the web applications are executed through hotspots and this is the 
AMNESIA proposed method. JSA library is used in the accordance to classify the static 
and the dynamic SQL queries. Before classification both the SQL queries had been evalu-
ated. Moreover, such hybrid approaches are described below.

2.5 � SQLIA Prevention Using Stored Procedures

The [24] proposed, Subroutines in the database are so-called stored procedures. Static 
analysis and runtime analysis are embedded together to implement the prevention in these 
stored procedures. Where, (i) static examination—applied for the identification of com-
mands (stored process parser helps in achieving these) and (ii) runtime analysis—for input 
identification SQL checker is used. Security of potential vulnerabilities will be fortified 
when there is a combination between runtime checking and static investigation and it is 
Huang et  al.’s proposition. SourceForge.net is utilized to Web application Security by 
Static Analysis and Runtime Inspection (WebSSARI). Talking about its drawback, they 
cannot deduct the SQL Injection Vulnerabilities (SQLIVs) and rather it can produce input 
lists (either White or black).

2.6 � Automated Approaches

The [25] proposed automated approaches. Uses of automated approaches are highlighted 
by Mei Junjin. The two important schemes are Web-attack scanning and the Static exam-
ination to find bugs. The possible bugs in SQLIAs are noticed and variable made SQL 
query are warned about the same in this Static analysis Find Bugs approach. When the 
process of scanning is involved for Web vulnerability, for crawling software agents is used, 
Web applications are scanned and under the complete observation about the attack’s behav-
ior, the vulnerabilities are detected [26]. Scheme–Query values are separated from the SQL 
structure using the prepared statement which is supplied in SQL and this is a single line 
description about Thomas et al.’s Scheme. For instance, the programme will keep the SQL 
query pretty empty and it is narrated as ‘Skeleton’ and those unfilled spaces are filled in at 
runtime. As any changes in the SQL structure becomes impossible, the injection into SQL 
queries becomes pretty harder when prepare statement is used. An automated prepared 
statement generation algorithm is suggested by Thomas et  al. with his utmost concern 



	 K. N. Durai et al.

1 3

about removing SQL Injection Vulnerabilities. The Table 1 shows the overall comparison 
methods.

Thus, it is essential to a fundamental strategy for the injection of SQL whereby the 
model can decide not only whether to detect the SQL injection, but also whether to pre-
vent. In order to build such a model, it is desirable to develop better detection classifiers 
algorithm which would certainly improve the efficiency of SQL injection detection tech-
niques with less computation involved and improved scalability.

3 � System Architecture of SQLIAO

The proposed framework design as appeared in Fig. 1 differentiates into information gath-
ering, ontology creation, rules generation and interface creation. The rile generation and 
ontology-creation is major element that is used to formulate threat expectation guidelines. 
The data based is applicable to safeguard information for the web threats, attacks and the 
vulnerabilities as how the ontology displays them. The critical utility of the vulnerability 
ontology model is expandability and reusability in reference to the security necessities of 
the website applications. Each ontology display is considerable sub-isolated into the sub-
modules [27]. The architecture of SQLIA provides vulnerability model, threat model and 
attack model for ontology creation which improves data pre-processing. Figure 1 proposes 
the learning model for the system to learn the semantics and grammar of the SQL Injection 
attacks.

The projected basis can be used to gather the learning frameworks concerning the 
threats that mishandle the negatives to tamper with the security, and undertake conceivable 
mischiefs of the security agendas. The queries, in reference to the vulnerabilities, can be 
applied to differentiate the security defects in the web application, which allow the attack-
ers to attack. The potential outcomes are cause by the effects of the attacks, aversion meth-
ods and relief from the projected attacks, which have to be recovered. The proposed model 
detects web vulnerability for SQL Injection attacks based on web protocols (http/https). 
The model predicts the SQL Injection attacks on websites on http (insecure) protocol for 
the websites which are hosted on cloud. Cloud Service Providers like AWS, Azure have 
their own security system which prevents their network, while our system works on the 
application layer.

3.1 � Operating Methodology

The projected operating method includes four fundamental stages, which have been illus-
trated below.

Data Collection  To begin with the segment of the projected system is the data collec-
tion, whereby the capability of the section is to collected the required information into 
attacks, avoidance, vulnerability and the countermeasures from various sources such as the 
Open Web Application Security Project (OWASP) to effectively collect the threat informa-
tion, National Vulnerability Database (NVD) that is a mistake for the standardized vulner-
abilities, including the Common Vulnerability Scoring System (CVSS) that represents the 
scoring aspect that processes the vulnerability scores.



A Novel Method to Detect and Prevent SQLIA Using Ontology to Cloud…

1 3

Ta
bl

e 
1  

C
on

tra
st 

be
tw

ee
n 

di
ffe

re
nt

 S
Q

LI
A

 d
is

co
ve

ry
 a

nd
 d

et
er

re
nc

e 
ap

pr
oa

ch
es

/m
et

ho
ds

Te
ch

ni
qu

e/
 a

pp
ro

ac
h

SQ
L 

at
ta

ck
 

de
te

ct
io

n

SQ
L 

at
ta

ck
 p

re
ve

nt
io

n
A

dd
iti

on
al

 in
fr

as
tru

ct
ur

e
D

ra
w

ba
ck

s

H
yb

rid
 a

pp
ro

ac
h

Ye
s

Ye
s

N
/A

D
oe

s n
ot

 o
pe

ra
te

 fo
r t

he
 z

er
o-

da
y 

ex
pl

oi
t

SQ
LI

M
W

Ye
s

Ye
s

M
id

dl
ew

ar
e

O
pe

ra
te

 fo
r t

he
 si

gn
-in

 a
pp

lic
at

io
n

Ru
nt

im
e 

m
on

ito
rs

 fo
r t

au
to

lo
gy

Ye
s

N
ot

ifi
ca

tio
n

So
ftw

ar
e 

re
po

si
to

ry
 u

se
d 

to
 sa

fe
gu

ar
d 

so
ur

ce
 c

od
es

, p
at

hs
 a

nd
 c

rit
ic

al
 v

ar
ia

bl
es

Fo
r J

av
a 

ap
pl

ic
at

io
ns

, d
et

ec
ts

 ta
ut

ol
og

y 
at

ta
ck

s o
nl

y
A

ttr
ib

ut
e 

re
m

ov
al

 (S
Q

L 
qu

er
y 

ch
ec

ke
r)

Ye
s

Ye
s

D
ev

el
op

er
 le

ar
ni

ng
Pr

ob
ab

ili
tie

s o
f f

al
se

 p
os

iti
ve

s d
ep

en
de

nt
 o

f 
in

fo
rm

at
io

n 
in

 th
e 

sy
m

bo
l t

ab
le

s
CA

N
D

ID
N

o
Ye

s
N

/A
Pe

rfo
rm

an
ce

 p
ro

bl
em

s t
ha

t h
av

e 
to

 b
e 

m
iti

ga
te

d
O

bf
us

ca
tio

n
Ye

s
Re

po
rt 

G
en

er
at

io
n

N
/A

Re
nd

er
s i

ne
ffi

ci
en

t f
or

 th
e 

SQ
L 

qu
er

ie
s t

ha
t 

ar
e 

de
te

rm
in

ed
 a

t t
he

 ru
nt

im
e 

in
 th

e 
Ja

va
 

se
rv

le
t

Q
ue

ry
 to

ke
ni

za
tio

n
Ye

s
B

lo
ck

ed
N

/A
B

as
ed

 o
n 

le
ng

th
 fa

ct
or

 o
nl

y
H

id
de

n 
W

eb
 c

ra
w

le
rs

Ye
s

Er
ro

r m
es

sa
ge

s
A

dd
iti

on
al

 h
ar

dw
ar

e 
re

qu
ire

d 
to

 st
or

e 
au

th
or

iz
at

io
n 

re
co

rd
Re

qu
ire

 m
or

e 
m

ec
ha

ni
sm

 to
 d

ea
l w

ith
 th

e 
SQ

L 
in

je
ct

io
n 

pr
ob

le
m

s
SQ

L 
D

O
M

Ye
s

Ye
s

D
ev

el
op

er
 le

ar
ni

ng
M

or
e 

ru
nt

im
e,

 c
an

no
t d

et
er

m
in

e 
th

e 
sto

re
d 

pr
oc

es
s f

or
m

 o
f i

nj
ec

tio
n

A
M

N
ES

IA
Ye

s
Ye

s
N

/A
O

pe
ra

te
s f

or
 th

e 
JS

P-
ba

se
d 

ap
pl

ic
at

io
n

Se
cu

re
 p

re
pa

re
d 

st
at

em
en

ts
Ye

s
Ye

s
N

/A
Re

nd
er

s v
ul

ne
ra

bl
e 

to
 th

e 
ite

ra
tiv

e 
st

at
em

en
t

SC
C

 m
od

el
Ye

s
A

le
rt 

tri
gg

er
M

in
im

al
 u

se
r i

nt
er

ac
tio

n 
re

qu
ire

d
O

pe
ra

te
 e

ffi
ci

en
tly

 fo
r t

he
 U

ni
on

 a
nd

 th
e 

ob
fu

sc
at

ed
 in

je
ct

io
n

W
AV

ES
Ye

s
Re

po
rt 

ge
ne

ra
tio

n
N

/A
C

an
no

t d
et

ec
t a

ll 
vu

ln
er

ab
ili

tie
s

In
str

uc
tio

n-
se

t R
an

do
m

iz
at

io
n 

(J
D

B
C

 
ch

ec
ke

r)
Ye

s
B

lo
ck

ed
 q

ue
ry

, a
dd

i-
tio

na
l s

ou
rc

e 
co

de
 

su
gg

es
te

d

Pr
ox

y,
 d

ev
el

op
er

 k
no

w
le

dg
e 

an
d 

ke
y 

or
ga

ni
za

tio
n

Re
nd

er
s i

ne
ffe

ct
iv

e 
w

he
n 

th
e 

ra
nd

om
 v

al
ue

s 
ar

e 
re

ve
al

ed
. I

t d
oe

s n
ot

 o
pe

ra
te

 fo
r t

he
 

ill
eg

iti
m

at
e 

or
 il

lo
gi

ca
l o

bf
us

ca
te

d 
qu

er
ie

s
ID

S
Ye

s
Re

po
rt 

ge
ne

ra
tio

n
Tr

ai
ni

ng
 se

t
A

 lo
t o

f f
al

se
 n

eg
at

iv
es

 a
nd

 p
os

iti
ve

s a
s f

or
 

po
or

 tr
ai

ni
ng

 se
ts



	 K. N. Durai et al.

1 3

Ontology Formation  In this section, there exist three ontological frameworks which 
include the threat model, attack demonstration and weakness demonstration. There is reli-
ance to links between these frameworks used to focus on the vulnerabilities.

Model‑Threat  The attack ontology demonstration provides the basic used to create the 
defenceless ontology displays and it mostly fundamental to determine the attack conditions 
used to anticipate the vulnerability conditions. In this condition ontological framework, the 
web application-related attacks are illustrated. The category threats are the extreme cat-
egory of a certain web application attack are include the passive (dynamic) and the active 
(static) attacks, The framework includes the additional details for Data Disclosure, Eaves-
dropping, Side-channel Attacks, Malformed Inputs, Code Injections. Figure 2 descries the 
connection of various ideas and dangers.

Model‑Vulnerability  Vulnerability indication provides the foundation for creating a 
threat ontology framework that is vital in the process of focussing on the potential vulner-
able conditions. In the vulnerability ontology demonstration, the web applications and their 
vulnerabilities are shown. The category vulnerabilities are the majors segment of a certain 
web application attacks. The attacks are the Cross Site Request Forgery (CSRF), Cross Site 
Scripting (XSS), Content Spoofing, Insufficient Authentication, Insufficient Authorization, 
SQL Injection and Brute Force and so on.

Figure 3shows the interlinking of the attacks and the ideas. The attacks displaying 
includes more ideas.

Model‑Attack  The vulnerability demonstration shows less fundamental security word-
ings. It includes various ideas such as the web application vulnerabilities and threats that 
are used to foresee the vulnerabilities in the web applications. The disadvantages of the 
web applications are considered to escape clauses in the performance of attacks, and 
resources which are affected by the attacks. The influence of the web application and the 
applicable counter measures are used to moderate the vulnerabilities and aversion tech-
niques used to evade the vulnerabilities.

Fig. 1   Proposed system architecture of SQLIAO



A Novel Method to Detect and Prevent SQLIA Using Ontology to Cloud…

1 3

Fig. 2   Threats and their concepts

Fig. 3   Vulnerabilities and their concepts



	 K. N. Durai et al.

1 3

In the Web, the application attack is significantly developing whereby the model is 
equipped with the capability to be reutilized any moment. The major ideas and categories 
of the ontology framework in the Attack category with protest properties is affectedTo, 
avoidedBy and has Threats that are featured by the ideas/categories threats, assets, counter-
measures, impacts and the prevention techniques shows in Fig. 4.

The XSS threat is a sub-category threat category, which is initiated by the XSS vulnera-
bility in the Web application. This threat uses the detached and dynamic threat, mishandles 
by the XSS defencelessness, client browser, and the aspect that brings about the page divert 
and adjustment, which is relieved through the counter measure using the HTTP treat hail 
avoided using the counter-active action methods. The model focusses on the SQLI attacks 
on websites. The proposed model has the ability to track vulnerabilities on any given day 
or traffic conditions.

3.2 � Generation of Instruction

The following sector includes the formation of the expected instructions that typically 
include the advances illustrated below:

1.	 Weakness ontology put aside in the RDF tuples and the ontology framework selected 
in the surmising procedure.

2.	 The obtained induced data is constructed based on certain run syntax and instruction 
formats.

3.	 Providing the forecast instructions based on querying the construed data. The queries in 
3-tuple is used to obtain that outcomes based on ontology frameworks and principles. 

Fig. 4   Attack model and their concepts



A Novel Method to Detect and Prevent SQLIA Using Ontology to Cloud…

1 3

The process of derivation is utilized to deliver novel standards like the capability to 
attain the customers’ requirements.

The instruction format can possibly be framed as shown in Fig. 5. It categorized the 
fundamental data streams based on the information provided by the customers, and the 
procedure of data used to foresee attacks. It critically demonstrates the attack informa-
tion that includes the impact variables and the web applications that denote the merits 
influence by the threats. The impact variable depicts the attack outcomes and the con-
dition variables utilized to focus on the threats in consideration to the contribution of 
the effected activities that include the countermeasures used in the attacks. This also 
includes the counter-active measure used in controlling the threats.

The rule layout additionally depicts the seriousness level of the web application 
attack. Keeping in mind the end goal to anticipate a particular attack circumstance the 
format is vital with the assistance of induced learning (attack and alleviation mecha-
nisms). Each control occasion indicates the status under which the vulnerabilities mis-
handled attacks are projected, including the moves executed as provided in Fig. 6. Gen-
erally, each aspect control the condition variable, which is composed of the incentives 
used to focus on certain attacks from the customers’ input, control activities and the 
related alleviations.

Inference Procedure  Considering the data base and the present link between the ideas 
makes it possible to create new arrangements. This summation process is used to formulate 
novel declarations. The prescient surmising guidelines are provided in Fig. 7.

Decide one expresses that how the web application is powerless and lead 2 speaks 
to a general scenario of attack expectation, moderation and counteractive action. Run 
3 denote the characterization of attack in light of their seriousness stage. The Semantic 
Rule Language (SWRL) is used to indicate the standards applicable in the process of 

Fig. 5   Rule template

Fig. 6   Instances of rules for 
attack prediction



	 K. N. Durai et al.

1 3

establishing the vulnerabilities and the Web applications initiated by the attacks. Based 
on the surmising process, information is accomplished; in this manner attack is forecast 
is performed viably.

Interface Formation  The final section includes the projected model of interface 
creation.

Design Edge  Considering the overall beans status and java, the interface is purpose for 
the process of connectivity. Jena API is used to initiate the ontology framework, applica-
tion interface and standards.

3.3 � Functionality

The interface is intended to help easy to understand as portrayed in Fig. 8. It comprises of 
two significant segments: The first segment includes obtaining the contributions from the 
customers while the second segment includes the showcasing of data. The predictions for 
SQLIA scenario is discussed below:

Fig. 7   Prediction rules based on 
vulnerabilities

Fig. 8   Application interface



A Novel Method to Detect and Prevent SQLIA Using Ontology to Cloud…

1 3

Fig. 9   Application interface with alert

Fig. 10   Predict and classify attacks



	 K. N. Durai et al.

1 3

The initial segment is utilized to obtain the client input: the weaknesses are selected 
by the user from the run-down question and box. The ontology demonstration, SPARQL, 
tenets inquiries are used to foresee the possible attacks. The alarming messages appear in 
Fig. 9 with some attacks.

The second segment is used to focus on the group threat in reference to the contribu-
tions posed by the client as shown in Fig. 10. These countermeasures are projected to 
deal with the vulnerabilities, which initiate the implementation of the preventive meas-
ures used to safeguard the Web application attacks.

4 � Experimental Evaluation

Considering the final goal of this evaluation to enhance the assessment of the projected 
model, the Web application was initiated with the objective of dealing with the attacks 
and executing the counter-measures over the projected attacks. The Web applications 
were counterchecked to show some vulnerability. The retrieved information was evalu-
ated based on parameters such as the forecast rate, actuality of the retrieved data, accu-
racy reviews and F-measures.

These are evaluated through the application of:

where,

•	 Correct: The amount of projected records is retrieved from the additions of insignifi-
cant data based on the methodology and added human.

•	 Wrong: The amount of projected records is retrieved from the addition of the unessen-
tial data based on the methodology, but not through human.

•	 Missed: The amount of projected records are retrieved from the addition of a significant 
amount of unessential information through human, but not based on the framework.

The projected rate of the projected methodology structured for the vulnerability is 
indicated in Fig. 11 and denotes that every threat is projected to the high. This enables 

Accuracy = Correct∕(Correct + Wrong)

Review = Correct∕(Correct + Missed)

(2)F-Measure = (2 ∗ (Precision ∗ Recall))∕Precision + Recall

Fig. 11   Prediction rate of the 
proposed system



A Novel Method to Detect and Prevent SQLIA Using Ontology to Cloud…

1 3

the aggressors to effectively comprehend the possible outcomes of the threats based on 
Web application that has been formed.

The forecast rate of the proposed framework comes about are analysed based on the 
security ontology structure shown in Table 2. From the Table 2 unmistakably the pro-
posed framework anticipate more attacks with the assistance of the deduction procedure 
than the current framework.

4.1 � Discussion

The attack order is additionally contrasted and the current framework. The Fig. 12 demon-
strates the outline looking at the level of attack grouping. The capacity of attack arrange-
ment of existing framework is low.

The exploratory outcomes demonstrate that the expectation capacity and attack charac-
terization rate of the proposed framework is fundamentally superiorto the current frame-
work. The framework effectively anticipatesthe Web application threats; typical projection 
rate, which is of high contrast based on the available framework.

Moreover, the proposed framework attack order rate is likewise high contrasted with 
the existing framework. This is on the grounds that the framework is equipped for foresee 
advanced attacks viably by examining the vulnerability that may abuse the attacks and the 
threat that was utilized.

A deduction procedure is to procure new learning and standards, used to foresee the 
most extreme attacks.

Table 2   Comparison of prediction rate

Web application attacks Proposed system Existing system

Cross Site Scripting (XSS) 92.3 86.9
SQL Injection (SQLI) 91.05 87.09
Denial of services (Dos) 84.56 63.04
Cross Site Request Forgery (CSRF) 84.56 63.04
Content Spoofing (CS) 82.57 72.43
Information Leakage (IL) 74.09 70.08
Insufficient Authentication (IAuth) 84.23 66.89
Insufficient Authorization (lAuthi) 83.45 64.23
Bmte Force (BF) 84.67 60.56

Fig. 12   Comparison of attack 
classifications



	 K. N. Durai et al.

1 3

5 � Conclusion

The endurance shows that e-business and data sharing is significantly advancing, which 
means that the security of users is vital. Based on Web application programming, secur-
ing clients’ data is consistently becoming a significant objective of mitigating adventure 
threats. The analysers and designers of Web applications do not have the access to the data 
concerning the vulnerabilities, attacks and threats, which makes them to unpin uncertain 
applications. Various innovations have been accessed to control this potential issue. How-
ever, they are insufficient to provide complete security responses used to establish secure 
Web applications. The ontology-based frameworks are used to foresee and categorize the 
Web application vulnerabilities. The projected model effectively dissected the vulnerabili-
ties and threats, which might mishandle the Web application attacks. Ontology showcases 
the weaknesses, threat and rules that project sophisticated attacks more effectively. The 
process of deduction motor, considering the Web application vulnerability information, 
assures the rundown of the potential attacks. These attacks have been designed consider-
ing the degree of seriousness of these attacks in accordance to the security intentions. The 
projected model also offers recommendations to effectively alleviate counteractive actions 
for the attacks. The retrieved data is significant for the analysers and designers to control 
the attacks, which means that the secure application process is well-planned. In future, the 
projected ontology framework can be reutilized to identify the Web application vulnerabil-
ity in its testing level. The projected model is vital to track the SQLI Attacks on websites.

Compliance with Ethical Standards 

Conflict of interest  The authors have declared to have no confliect of interest.

Human and Animal Rights  This research includes no studies involving animals or humans controlled by the 
authors.

References

	 1.	 Azfar, A., Choo, K. R., & Liu, L. (2019). Forensic taxonomy of android productivity apps. Multimedia 
Tools & Applications, 76, 3313–3341.

	 2.	 Nguyen-Tuong, A., Guarnieri, S., Greene, D., Shirley, J., & Evans, D. (2003). Automatically hardening 
web applications using precise tainting. In Security & privacy in the age of S. Christensen, A. Moller, 
& M. I. Schwartzbach. Precise analysis of string expressions. Static Analysis, Proceedings, Vol. 2694, 
pp. 1–18.

	 3.	 Yeole, S., & Meshram, B. B. (2011). Analysis of different technique for detection of SQL injection. In 
Proceedings of the International Conference & Workshop on Emerging Trends in Technology (ICWET 
’11) (pp. 963–966). Mumbai: ACM.

	 4.	 Sharma, A., & Sheth, J. N. (2004). Web-based marketing: The coming revolution in marketing thought 
& strategy. Journal of Business Research, 57(7), 696–702.

	 5.	 Alserhani, F., Akhlaq, M., Awan, I., & Cullen, A. (2011). Event-based alert correlation system to 
detect SQLI activities. In 2011 IEEE international conference on Advanced Information Networking & 
Applications (AINA) (pp. 175–182). IEEE.

	 6.	 Avireddy, S., et al. (2012). Random4: An application specific randomized encryption algorithm to pre-
vent SQL injection. In 2012 IEEE 11th international conference on Trust, Security & Privacy in Com-
puting & Communications (TrustCom). IEEE.



A Novel Method to Detect and Prevent SQLIA Using Ontology to Cloud…

1 3

	 7.	 Pankaj, P., Nagle, M., & Pankaj, K. K. (2012). Prevention of buffer prevention of buffer f buffer over-
flow attack overflow attack overflow attack blocker blocker blocker using IDS. International Journal of 
Computer Science & Network (IJCSN), 1(5). www.ijcsn​.org. ISSN 2277-5420.

	 8.	 Benedikt, M., Freire, J., & Godefroid, P. (2002). VeriWeb: Automatically testing dynamic web sites. In 
Proceedings of 11th International World Wide Web Conference (WWW’2002). Citeseer.

	 9.	 Bertino, E., Kamra, A., & Early, J. (2007). Profiling database application to detect SQL injection 
attacks. In IEEE International Performance, Computing, & Communications Conference, 2007. 
IPCCC 2007 (pp. 449–548). IEEE.

	10.	 Buehrer, G., Weide, B. W., & Sivilotti, P. A. G. (2005). Using parse tree validation to prevent SQL 
injection attacks. In Proceedings of the 5th international workshop on Software engineering & mid-
dleware. ACM.

	11.	 Anley, C. (2002). Advanced SQL injection in SQL server applications. White Paper Next Gen-
eration Security Software Ltd. 2002, 9. Oracle SQL injection in web applications. Red-Database-
Security GmbH Company, Germany, 2009. https​://www.red-datab​ase-secur​ity.com/white​paper​/
oracl​e_sql_injec​tion_web.html. Accessed 16 March 2010.

	12.	 Gould, C., Su, Z., & Devanbu, P. (2004). JDBC checker: A static analysis tool for SQL/JDBC appli-
cations. In Proceedings of the 26th International Conference on Software Engineering (ICSE 2004) 
Formal Demos, pp. 697–698.

	13.	 Blanco, C., Sheras, J., Fernández-Medina, E., Valencia-García, R., & Toval, A. (2011). Basis for 
an integrated security ontology according to a systematic review of existing proposals. Computer 
Standards & Interfaces, 33(67), 372–388.

	14.	 Pinzón, C. I., De Paz, J. F., Herrero, Á., Corchado, E., Bajo, J., & Corchado, J. M. (2013). idMAS-
SQL: Intrusion detection based on MAS to detect & block SQL injection through data mining. 
Information Sciences, 231(10), 15–31.

	15.	 Ezumalai, R., & G. Aghila. (2009). Combinatorial approach for preventing SQL injection attacks. 
In IEEE International Advance Computing Conference. IACC 2009. IEEE.

	16.	 Abdoli, F. & Kahani, M. (2009). Ontology-based distributed intrusion detection system. In Pro-
ceedings of the 14th International CSI Computer Conference.

	17.	 Valeur, F., Mutz, D., & Vigna, G. (2005). A learning-based approach to the detection of SQL 
attacks. In Detection of intrusions and malware, and vulnerability assessment, Proceedings, Vol. 
3548, pp. 123–140.

	18.	 Valeur, F., Mutz, D., Vigna, G. (2013). A learning-based approach to the detection of SQL Attacks. 
In Conference on detection of intrusions & malware and vulnerability ass (Vol. 55, No. 10, , pp. 
1767–1780). Elsevier.

	19.	 Shar, L. K., & Tan, H. B. K. (2013). Predicting SQL injection & cross site scripting vulner-
abilities through mining input sanitization patterns. Information & Software Technology, 55(10), 
1767–1780.

	20.	 Cova, M., Felmetsger, V., & Vigna, G. (2007). Vulnerability analysis of web applications. In L. 
Baresi & E. Dinitto (Eds.), Testing & analysis of web services. Berlin: Springer.

	21.	 El-Moussaid, N. E. B., & Toumanari, A. (2014). Web application attacks detection: A survey & 
classification. International Journal of Computer Applications, 103(12), 1–6.

	22.	 Bisht, P., Madhusudan, P., & Venkatakrishnan, V. N. (2010). CANDID: Dynamic candidate evalu-
ations for automatic prevention of SQL injection attacks. ACM Transaction on Information System 
Security, 13, 14.

	23.	 Pietraszek, T., & Berghe, C. V. (2006). Defending against injection attacks through context-sensi-
tive string evaluation. Recent Advances in Intrusion Detection, 3858, 124–145.

	24.	 Haldar, V., Chandra, D., & Franz, M. (2005). Dynamic taint propagation for Java. In Proceedings 
21st Annual Computer Security Applications Conference.

	25.	 García, V. H., Monroy, R., Quintana, M. (2006). Web attack detection using ID3. In workshop 
International Federation for Information Processing Santiago, Chile, pp. 323–332.

	26.	 Chung, Y.-C., Ming-Chuan, Wu, Chen, Y.-C., & Chang, W.-K. (2012). A Hot Query Bank approach 
to improve detection performance against SQL injection attacks. Computers & Security, 31(2), 
233–248.

http://www.ijcsn.org
http://www.red-database-security.com/whitepaper/oracle_sql_injection_web.html
http://www.red-database-security.com/whitepaper/oracle_sql_injection_web.html


	 K. N. Durai et al.

1 3

	27.	 Su, Z., & Wassermann, G. (2006). The essence of command injection attacks in web applications. 
ACM SIGPLAN Notices., 41, 372–382.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Dr. K. Naveen Durai  Professor (Assistant) and Training Head in 
Department of Computer Science and Engineering, Sri Eshwar Col-
lege of Engineering, Coimbatore, Tamilnadu, India. He has received 
his Ph.D. in Information and Communication Engineering from GCT 
Coimbatore under, Anna University, Chennai. His research areas 
include Web security, Java Full Stack, Spring MVC, SpringBoot, 
Hibernate, SQL injection, Django framework.

Dr. R. Subha  had obtained B.E in Computer Science and Engineering 
from Periyar university in 2002 and M.E. in Software Engineering 
from Anna University, Chennai in 2006. Also, she had received her 
Ph.D. from Anna University, Chennai in 2014. She has more than 
15 years of experience in teaching and currently she is working as Pro-
fessor and Head in the Department of Computer Science and Engi-
neering at Sri Eshwar College of Engineering, Coimbatore. Her 
research interests include Software Engineering, Theory of Computa-
tion and Data Mining.

Dr. Anandakumar Haldorai  Professor (Associate) and Research Head 
in Department of Computer Science and Engineering, Sri Eshwar Col-
lege of Engineering, Coimbatore, Tamilnadu, India. He has received 
his Master’s in Software Engineering from PSG College of Technol-
ogy, Coimbatore and Ph.D. in Information and Communication Engi-
neering from PSG College of Technology under, Anna University, 
Chennai. His research areas include Big Data, Cognitive Radio Net-
works, Mobile Communications and Networking Protocols. He has 
authored more than 82 research papers in reputed International Jour-
nals and IEEE conferences. He has authored 7 books and many book 
chapters with reputed publishers such as Springer and IGI. He is editor 
of Inderscience IJISC and served as a reviewer for IEEE, IET, 
Springer, Inderscience and Elsevier journals. He is also the guest edi-
tor of many journals with Elsevier, Springer, Inderscience, etc. He has 
been the General Chair, Session Chair, and Panelist in several confer-
ences. He is senior member of IEEE, IET, ACM and Fellow member 
of EAI research group.


	A Novel Method to Detect and Prevent SQLIA Using Ontology to Cloud Web Security
	Abstract
	1 Introduction
	2 Literature Review
	2.1 SQLIA Detection Methods
	2.2 Dynamic Approaches
	2.3 Hybrid Approaches
	2.4 Collective Method of Static and Dynamic Enquiry
	2.5 SQLIA Prevention Using Stored Procedures
	2.6 Automated Approaches

	3 System Architecture of SQLIAO
	3.1 Operating Methodology
	3.2 Generation of Instruction
	3.3 Functionality

	4 Experimental Evaluation
	4.1 Discussion

	5 Conclusion
	References




