Let M be an o-minimal structure or a p-adically closed field. Let $S'_n(M)$ be the space of complete n-types over M equipped with the following topology: The basic open sets of $S'_n(M)$ are of the form $\tilde{U} = \{ p \in S_n(M) : U \in p \}$ for U an open definable subset of M^n. $S'_n(M)$ is a spectral space. (For $M = K$ a real closed field, $S'_n(M)$ is precisely the real spectrum of $K[X_1, \ldots, X_n]$; see [CR].) We will equip $S'_n(M)$ with a sheaf of LM-structures (where LM is a suitable language). Again for M a real closed field this corresponds to the structure sheaf on $S'_n(M)$ (see [S]).

Our main point is that when $\text{Th}(M)$ has definable Skolem functions, then if $p \in S'_n(M)$, it follows that $M(p)$, the definable ultrapower of M at p, can be factored through M_p, the stalk at p with respect to the above sheaf. This depends on the observation that if $M \prec N$, $a \in N^n$ and f is an M-definable (partial) function defined at a, then there is an open M-definable set $U \subset N^n$ with $a \in U$, and a continuous M-definable function $g : U \to N$ such that $g(a) = f(a)$.

In the case that M is an o-minimal expansion of a real closed field (or M is a p-adically closed field), it turns out that $M(p)$ can be recovered as the unique quotient of M_p which is an elementary extension of M. (So this gives a sheaf-theoretic construction of definable ultrapowers.)

§1. In this section we work in a more general setting. Specifically, let M be a first order topological structure in the sense of [P], namely M has an “explicitly definable” topology which we assume to be Hausdorff. Assume in addition that every definable set $X \subset M^n$ is a Boolean combination of closed definable sets (where M^n is equipped with the product topology).

Let $S_n(M)$ be the set of complete n-types over M. We equip $S_n(M)$ with a topology, coarser than the usual Stone space topology, as follows: a basic open set is of the form $\tilde{U} = \{ p \in S_n(M) : U \in p \}$, where U is an open definable subset of M^n. It is easy to check that the \tilde{U} form the basis for a topology. We call the resulting space $S'_n(M)$.

Lemma 1.1. $S'_n(M)$ is a spectral space, i.e. it has a basis of quasicompact open sets and every irreducible closed set is the closure of a unique point.

Proof. Easily each set \tilde{U}, where U is open definable in M, is quasicompact. Conversely if $V \subset S_n(M)$ is open quasicompact then $V = \tilde{U}_1 \cup \cdots \cup \tilde{U}_m = (U_1 \cup \cdots \cup U_m)^\sim$. This proves the first part.
Now let \(F \subset S'_a(M) \) be closed and irreducible. Let \(\Phi = \{ X \subset M^n: X \text{ is closed, definable and } X \in q \forall q \in F \} \). Let \(\Phi^1 = \Phi \cup \{ \neg Y: Y \text{ closed, definable, } Y \notin \Phi \} \). By irreducibility of \(F, \Phi^1 \) is consistent and thus determines a type \(p \in S_n(M) \). Easily \(F \) is the closure of \(p \) and only of \(p \).

We now point out how one can construct a sheaf of structures on \(S'_a(M) \). These structures will be \(L_M \)-structures, where \(L_M \) is a language we now describe. Let \(L \) be the language of \(M \). For each \(L \)-formula \(\varphi(x, y) \) and \(m \subset M \), such that \(\varphi(x, m) \) defines a closed set in \(M^n \), let \(R_{\varphi(x, m)} \) be a new \(n \)-ary relation symbol. Then \(L_M \) is the set of all these \(R_{\varphi(x, m)} \). Note that in particular \(R_{x=m} \) and \(R_{x=y} \) are in \(L_M \). Note first that any elementary extension \(N \) of \(M \) (in particular \(M \) itself) can be canonically construed as an \(L_M \)-structure. Namely, interpret \(R_{\psi} \) in \(N \) as \(\{ b \in N^n: N \models \psi(b) \} \). Let \(T_M \) be the theory of \(M \) as an \(L_M \)-structure. Then moreover any model of \(T_M \) can be canonically construed as an \(L \)-structure which is an elementary extension of \(M \), by virtue of our assumption that any definable set in \(M \) is a Boolean combination of closed sets.

Let \(M_0, M_1 \) be \(L_M \)-structures. By a homomorphism \(h: M_0 \to M_1 \) we mean a map \(h \) such that \(M_0 \models R(a) \) implies \(M_1 \models R(h(a)) \) for each of the (basic) \(R \in L_M \). We call \(h \) a strict homomorphism if moreover \(M_1 \not\models R(h(a)) \) implies there is \(b \in M_0 \) with \(h(b) = h(a) \) and \(M_0 \models R(b) \). By a quotient of \(M_0 \) we mean a strict homomorphic image of \(M_0 \).

Now, let \(U \) be a definable open subset of \(M^n \). We define an \(L_M \)-structure \(M_U \) as follows: the elements of \(M_U \) are continuous functions \(U \to M \) which are definable (with parameters) in \(M \). If \(R_\varphi \) is a basic \(k \)-ary relation of \(L_M \) and \(f_1, \ldots, f_k \in M_U \) we say \(R_\varphi(f_1, \ldots, f_k) \) if for all \(x \in U, M \models \varphi(f_1(x), \ldots, f_k(x)) \). If \(U \subset V \) are open definable subsets of \(M^n \) then \(h_{U,V}: M_V \to M_U \) is the map defined by \(h_{U,V}(f) = f \upharpoonright U \). Clearly \(h_{U,V} \) is a homomorphism of \(L_M \)-structures.

Returning to \(S'_a(M) \), we can regard \(S'_a(M) \) as a special kind of site whose objects are the quasicompact open sets and whose morphisms are the inclusion maps. A sheaf \(F \) of \(L_M \)-structures over \(S'_a(M) \) is then the assignment to each quasicompact open \(\tilde{U} \subset S'_a(M) \) of an \(L_M \)-structure \(F(\tilde{U}) \), and to each pair \(\tilde{U} \subset \tilde{V} \) of a homomorphism \(F_{\tilde{U}, \tilde{V}}: F(\tilde{V}) \to F(\tilde{U}) \), satisfying the usual compatibility conditions—in particular, if \(U_i, i \in I \), is a covering of \(\tilde{U} \) and \(s_i \in F(\tilde{U}) \) for each \(i \in I \), and if, for \(i, j \in I, F_{\tilde{U}, \tilde{V}}(s_i, s_j) = F_{\tilde{U}, \tilde{V}}(s_j, s_i) \) for each \(i \in I \), then there is a unique \(s \in F(\tilde{U}) \) such that \(F_{\tilde{U}, \tilde{V}}(s) = s_i \forall i \in I \). Then for \(p \in S'_a(M) \) we can form the stalk \(F_p \), an \(L_M \)-structure which is the limit of the \(L_M \)-structures \(F(\tilde{U}) \) for \(p \in \tilde{U} \). We will be interested in the sheaf \(\mathcal{M} \) over \(S'_a(M) \), where, for \(\tilde{U} \subset S'_a(M), \mathcal{M}(\tilde{U}) = M_U \) and \(\mathcal{M}_{\tilde{U}, \tilde{V}} = h_{U,V} \). We denote the stalk \(\mathcal{M}_p \) by \(M_p \). \(M_p \) can be described more concretely as follows: the elements of \(M_p \) are germs of continuous definable functions at \(p \); namely for \(f \) a continuous definable function \(U \to M \), and \(g \) continuous definable \(V \to M \), where \(U, V \subset M^n \) are open definable and both are in \(p \), put \(f \sim g \) if there is an open definable \(W \subset M^n \), \(W \subset U \cap V \), \(W \in p \), such that \(f \upharpoonright W = g \upharpoonright W \). Then \(M_p \) consists of the equivalence classes \(f \sim \) of such \(f \), and for \(R_\varphi \) a basic \(k \)-ary relation in \(L_M \) we put \(R_\varphi(f_1, \ldots, f_k) \) if for some open definable \(U \in p, U \subset M^n \), on which each \(f_i \) is continuous, we have \(M \models \varphi(f_1(x), \ldots, f_k(x)) \forall x \in U \).

§2. An arbitrary structure \(M \) for a language \(L \) is said to have definable Skolem functions if for each formula \(\varphi(x, y) \) of \(L \) (with maybe parameters from \(M \)), there is a formula \(\psi(x, y) \) such that \(M \models \forall x (\exists y \varphi(x, y) \to (\exists y)(\varphi(x, y) \land \psi(x, y))) \) and

\[\]
We call the (partial) function which takes suitable a to the unique b such that $M \models \psi(a, b)$ an (M)-definable function, f or f_ψ. The same formula ψ will of course define a function in any $N \succ M$, and we call this function f^N.

If M has definable Skolem functions it follows that for any $p \in S_n(M)$, there is a model $M(p) \prec M$ with the feature that there is an $a \in (M(p))^n$ realizing p, and for every $b \in M(p)$ there is an M-definable function f such that $f^M(p)(a) = b$. $M(p)$ is unique up to isomorphism over M, and can also be obtained as a “definable ultrapower” of M.

If M is an o-minimal expansion of an ordered divisible abelian group or M is a p-adically closed field, then M has definable Skolem functions (see [D] for the latter).

In order to show that in the “topological” cases we are interested in, $(M(p))$ is a quotient of M, the stalk at p, we clearly have to at least show that there are “enough” continuous definable functions on open sets $U \subset M^n$. To do this we make use of the facts on definable functions and cell decompositions given in [KPS] for o-minimal structures and in [SD] for p-adically closed fields.

Proposition 2.1. Let M be an o-minimal structure or p-adically closed field. Let $M \prec N, a \in N^n$ and f an M-definable partial function on N^n, defined at a. Then there is an open (in N^n), M-definable set U containing a and an M-definable continuous function $g: U \to N$ such that $g(a) = f(a)$.

Proof. First note that for any of the structures we are concerned with we have the notion of a basic open neighborhood in 1-space over M, i.e. for o-minimal M this is an interval, and for p-adically closed fields this is $\{x: \nu(x - a) \geq i\}$ for some $a \in M$ and $i \in$ (value group of M). A basic open neighborhood in n-space over M will then be a product of such neighborhoods in 1-space.

Now as f is M-definable and defined at a, there is an M-definable $X \subset N^n, a \in X$, such that f is defined on X. By [KPS] for the o-minimal case and [SD] for p-adically closed fields there is an M-definable $X_1 \subset X$ containing a such that:

(i) X_1 is homeomorphic by a projection Π along certain coordinate axes to an open set in N^k for some $k \leq n$. (We will assume the projection Π is along the first k coordinate axes.)

(ii) $f \upharpoonright X_1$ is continuous.

Claim. For each $b \in X_1$ there is a basic open neighborhood $I = I_1 \times \cdots \times I_n$ of b in N^n such that for each $(c_1, \ldots, c_n) \in I$ there are (unique) $c_{k+1}, \ldots, c_n \in N$ such that $(c_1, \ldots, c_k, c_{k+1}, \ldots, c_n) \in I \cap X_1$.

Proof of Claim. First let $J_1 \times \cdots \times J_n$ be a basic open neighborhood of b in N^n. As $\Pi^{-1}: \Pi(X_1) \to N^n$ is continuous, there is a basic open neighborhood $I_1 \times \cdots \times I_k$ of (b_1, \ldots, b_k) in N^k such that for all $(c_1, \ldots, c_k) \in I_1 \times \cdots \times I_k$

$$\Pi^{-1}(c_1, \ldots, c_k) \subset J_1 \times \cdots \times J_k \times \cdots \times J_n.$$ It is then clear that $I = I_1 \times \cdots \times I_k \times J_{k+1} \times \cdots \times J_n$ works for the claim.

Now let U be the union of all such I in the claim as b varies over X_1. Clearly $U \subset N^n$ is open M-definable and includes X_1. Define g on U as follows: let $(c_1, \ldots, c_n) \in U$. There will be unique $c_{k+1}, \ldots, c_n \in N$ such that $(c_1, \ldots, c_k, c_{k+1}, \ldots, c_n) \in X_1$. Put $g(c_1, \ldots, c_n) = f(c_1, \ldots, c_k, c_{k+1}, \ldots, c_n)$.

It is easily checked that g is continuous on U and M-definable. Moreover g agrees with f on X_1, so $g(a) = f(a)$, completing the proof.
Note that $U \cap M^n$ is a definable open set which is in $p = \text{tp}(a/M)$, and that the graph of g intersected with M^{n+1} is the graph of a continuous definable function $U \cap M^n \to M$.

Proposition 2.2. Let M be an o-minimal structure with definable Skolem functions or a p-adically closed field. Let $p \in S_n(M)$. Then $M(p)$ is a quotient of M_p.

Proof. Let a realize p in $M(p)$ such that $M(p) = \text{dcl}(M \cup a)$; that is, $\forall b \in M(p), b = f(a)$ for some M-definable function f. Put $N = M(p)$.

First some notation. Suppose f is a definable (partial) M-valued function on M^n and let f^N denote the function on N^n defined by the same formula defining f.

Define $h: M_p \to N$ as follows.

If $f^- \in M_p$ then $h(f^-) = f^N(a)$. h is clearly well-defined and is a homomorphism of L_M-structures. ($R_\varphi(f_1^-, \ldots, f_k^-)$ in M_p is for some open $U \subset M^n$, $U \in p = \text{tp}(a)$, $M \models \forall x \in U \varphi(f_1(x), \ldots, f_k(x)) \Rightarrow N \models \forall x \in U \varphi(f_1(x), \ldots, f_k(x))$.

As in the proof of 2.1 we can choose X homeomorphic by projection along certain coordinate axes to an open set in M^r for some $r \leq n$, and such that $f_i|X$ is continuous for each i. As in the proof of 2.1 again, we can find open definable $U \subset M^n$, $X \subset U$, continuous definable $g_i: U \to M$ such that $g_i|X = f_i|X$ and $\forall x \in U \exists x^1 \in X (h_i(x) = f_i(x^1))$ for all i. Then clearly $h^- \in M_p$, $h^N_i(a) = f^N_i(a) = d$, and $R_\varphi(h_1^-, \ldots, h_k^-)$ in M_p. This completes the proof of 2.2.

§3. Finally we consider the question of whether M_p has a unique quotient which is canonically an elementary extension of M. We first point out a situation in which this fails.

Proposition 3.1. Let M be o-minimal with definable Skolem functions. Let $a \in M$ be such that for every c in M with $c > a$ and every definable $f: (a, c) \to M$, $\lim_{x \to a^+} f(x) \in M$ (i.e. this limit is not $\pm \infty$), let $p = \text{tp}(a/M)$ (an isolated type) and let $q \in S_1(M)$ be determined by $\{a < x < b: b \in M, a < b\}$. Then $M(p) \not\cong_M M(q)$, but nevertheless $M(q)$ is a strict homomorphic image of M_p.

Proof. Note first that $M(p) = M$, and $M(q) \supset M$ and $M(q) \neq M$; so $M(p) \not\cong_M M(q)$.

Let c realize q in $M(q)$ such that $M(q) = \text{dcl}(M \cup c)$. Again write $N = M(q)$.

Define $h: M_p \to N$ by $h(f^-) = f^N(c)$ for $f^- \in M_p$.

(a) h is a homomorphism of L_M-structures. Note $M_p = \{f^-: \text{for some } b_1 < a < b_2 \in M, f \text{ is definable and continuous } (b_1, b_2) \to M\}$. So clearly if $f_1^-, \ldots, f_k^- \in M_p$ and $R_\varphi \in L_M$ then $R_\varphi(f_1^-, \ldots, f_k^-) \Rightarrow \forall x \in (b_1, b_2) \varphi(f_1(x), \ldots, f_k(x))$.

(b) h is onto N. Let $d \in N$. So $d = f^N(c)$ for some M-definable f, and moreover we can choose f to be continuous on some interval $I = (b_1, b_2)$, $b_1, b_2 \in M$, which contains c (in N). If $a \in (b_1, b_2)$ then $f^- \in M_p$ and $d = h(f^-)$. Otherwise $I = (a, b_2)$. Now by our assumptions $\lim_{x \to a} f(x) = d^1 \in M$. Let us define f' on M as follows:
for $x \in M$, $x \leq a$, $f'(x) = d'$, and for $x \in (a, b_2)$, $f'(x) = f(x)$. Thus f' is continuous on an open set containing a, and so $(f')^N(c) = f^N(c) = d$. So $h((f')^N) = d$.

(c) h is strict. Let $R_\phi \in L_M$, $d_1, \ldots, d_k \in N$ and $N \models \phi(d_1, \ldots, d_k)$. We must find $g_1^\sim, \ldots, g_k^\sim \in M_p$ such that $d_i = g_i^N(c)$ and $R_\phi(g_1^\sim, \ldots, g_k^\sim)$ in M_p.

First we can easily obtain (see [KPS]) M-definable functions f_1, \ldots, f_k and $e \in M$, $e > a$, such that $d_i = f_i(c) \forall i$ and $M \models \forall x \in (a, e) \phi(f_1(x), \ldots, f_k(x))$ with moreover each f_i constant or an order preserving or reversing isomorphism on (a, e). (*)

Let $d'_i = \lim_{x \to a^+} f_i(x)$ in M. Define g_i on M as follows: $g_i(x) = d'_i$ if $x \leq a$, and $g_i(x) = f_i(x)$ if $x > a (x < e)$. So g_i is continuous on its domain, which is an open interval in M containing a. So $g_i^\sim \in M_p \forall i$. Moreover as $g_i \upharpoonright (a, e) = f_i \upharpoonright (a, e)$, $g_i^N(c) = d_i \forall i$ (**)

To show that $R_\phi(g_1^\sim, \ldots, g_k^\sim)$ in M_p, it suffices to see that $M \models \phi(d'_1, \ldots, d'_k)$. But this follows immediately from (*) and (**) by the continuity of the g_i and the fact that ϕ defines a closed set in M^k.

Note that the hypotheses of 3.1 hold for any ordered divisible abelian group (e.g. $(\mathbb{R}, +, 0)$). On the other hand:

Proposition 3.2. Let M be an o-minimal expansion of a real closed field, or a p-adically closed field. Let $p \in S'_q(M)$. Then M_p is a local ring. More precisely, $0, 1$, and the graphs of addition and multiplication on M are closed definable relations and thus in L_M, and with respect to these relations M_p is a local ring.

Proof. It is first easy to see that M_p is a commutative ring with respect to the relations $0_M, 1_M, +_M, \cdot_M$ in L_M. Now let c realize p in $N > M$. Let $I = \{ f^\sim \in M_p : N \models f(c) = 0 \}$. Clearly I is an ideal in M_p. If $f^\sim \in I$ then clearly f^\sim is a nonunit in M_p. On the other hand, if $f^\sim \notin I$ then $N \models f(c) \neq 0$. So there is $U \subset M^n$ open, $U \in p$, and g definable continuous $U \to M$ such that $M \models g(x) \neq 0 \forall x \in U$ and $g^\sim = f^\sim$. Then $(1/g)^\sim$ shows that f^\sim is a unit in M_p. So I is the unique maximal ideal of M_p.

Corollary 3.3. With the hypotheses of 3.2, let $p \in S(M)$. Then $M(p)$ is the unique quotient of M_p which is an elementary extension of M. Moreover $M(p) \cong M_p/m_p$, where m_p is the maximal ideal of M_p.

References

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF NOTRE DAME
NOTRE DAME, INDIANA 46556