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Abstract: Oxidative stress is one of the risk factors for the development of several chronic 

diseases, such as diabetes, cancer, cardiovascular and neurodegenerative diseases. Antioxidants 

are therefore highly sought and can be seen as a type of preventive medicine against several 

diseases. Myrica and Morella genus (Myricaceae) are taxonomically very close and their 

species are trees or shrubs with edible fruits that exhibit relevant uses in traditional medicine, 

for instance in Chinese or Japanese folk medicine they are used to treat diarrhea, digestive 

problems, headache, burns and skin diseases. Nearly 36 compounds were isolated from 

different morphological parts of Myrica and/or Morella species and their antioxidant and 

anti-inflammatory activities evaluated. Thirteen of these compounds exhibit greater effects 

than the positive controls used. Adenodimerin A was the most active compound reported  

(in a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay EC50= 7.9 ± 0.3 µM). These results are 

just one aspect of the antioxidant and anti-inflammatory evaluations reported regarding 

Myrica and Morella species, so a comprehensive overview on the current status, highlighting 

the antioxidant health promoting effect of these species, their key antioxidant compounds as 
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well as the compounds with protective effects against oxidative stress related diseases such as 

inflammation, is relevant. 
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1. Introduction 

Pro-oxidants can be of endogenous or exogenous origin and lead to oxidative stress by creating 

reactive oxygen species (ROS) such as superoxide radical anion (O2
•−), hydroxyl radical (OH•), peroxyl 

radical (ROO•) and hydrogen peroxide (H2O2), and/or reactive nitrogen species (RNS) such as nitric 

oxide radical (NO•) and peroxynitrite (ONOO−) [1,2]. ROS and RNS oxidize or nitrosylate proteins, 

unsaturated lipids, micronutrients and DNA (deoxyribonucleic acid) [3]. When at low levels, ROS and 

RNS have important physiological functions, such as in disulphide bond formation [4] and in a myriad 

of cellular signalling pathways [4,5]. For example, a recent review emphasizes the importance of  

these species in redox signalling pathways that mediate the immune response [6]. However, pathological 

oxidative stress arises when their concentrations exceed the maximum output of the cellular antioxidant 

enzyme systems (CAT (catalase), GPx (glutathione peroxidase), GR (glutathione reductase),  

Trx (thioredoxin), TR (thioredoxin reductase) and SOD (superoxide dismutase)), and other systems like 

small antioxidant molecules and apoptotic/repair mechanisms [4,7]. Due to the unspecific targets of  

ROS and RNS, it is unsurprising that a high levels of oxidative stress has been associated with increased 

risk for developing several chronic diseases in humans, such as chronic inflammatory response [8,9] 

cardiovascular [10,11], autoimmune and neurodegenerative diseases [12,13], cancer [9] and diabetes [14]. 

It is also responsible for faster aging due to telomere shortening [15], male infertility [16] and disuse 

muscle atrophy [17]. 

Antioxidants reduce oxidative stress and therefore play an essential role in improving well-being, 

preventing many of the pathological conditions listed above [7,14,16,18,19]. Antioxidant activity  

is usually related to direct scavenging of ROS and RNS. But it can also be related to inhibition of  

the enzymes that produce ROS and RNS, or the inhibition of NF-kB (nuclear factor kappa β) and  

the stimulation of Nrf-2 (nuclear factor erythroid 2-related factor 2, a regulator of cellular resistance to 

oxidants) [20]. Antioxidants can be used as functional foods, as dietary supplements, in complementary 

medicine systems and as additives in foodstuffs to maintain flavour [21,22]. Although they are generally 

harmless and have a massive importance in disease prevention, recent studies demonstrated that they 

can release acrylamide, a neurotoxin and carcinogen [23]. So care should be taken with their use because 

they can also be harmful [24]. 

In recent years secondary metabolites isolated and/or obtained by synthesis are considered more 

reliable [25] so the search for antioxidant secondary metabolites is a hot topic in the natural products 

research field. In this context, we will present the most recent developments on natural antioxidants 

isolated from Myrica and Morella species. 
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2. Myrica and Morella Genera 

The Myrica genus belongs to the Myricaceae family and, before 2002 comprised about 97 species 

widely distributed by both temperate and sub-tropical regions [26,27]. Macdonald et al. [28] stated 

reasons for dismembering this genus in two, Myrica and Morella, but only in 2002 his arguments were 

accepted and the genus was split [29]. To clarify the distinction a taxonomic key was published in 2005 [30]. 

Thus, many of the species previously belonging to the Myrica genus have been reclassified and are now 

in the Morella genus. This taxonomic reclassification has several consequences in the natural products 

research field. Several studies published before 2005 report the isolation of secondary metabolites from 

the Myrica species, which are now Morella species, and this can cause misleading reports on secondary 

metabolites found for the first time in the genus. But it can also result in more recent publications that 

still use the previous scientific name, and consequently not be detected properly in a literature survey. 

Thus, we decided in this work, to join both genera and report their secondary metabolites to which 

antioxidant activities were endorsed. 

Morella is by far the largest genus, having about 50 described species with a wide distribution in 

North America, Europe, Africa, and Asia [30]. All Myrica and Morella species are woody shrubs or tree 

pioneers in nitrogen-poor soils such as sandy soil or gravelly sites, because they are actinorhizal plants, 

and exhibit the ability to fix nitrogen through nitrogen-fixing root nodules induced by soil actinomycetes 

of the genus Frankia, with which it establishes a symbiotic relationship [31]. In addition to the economic 

interest of these species as source of paper and rope from the bark, as fuel wood, for biomass production 

and land reclamation, they are also appreciated because of their fruits that can be eaten raw, used in the 

production of jams, syrups and juices [27] and their applications in traditional medicine are also 

noteworthy. Indeed, several species of these genera are used as medicines in countries with relevant 

traditional medicine systems (see Table 1). Moreover, very important to remember, traditional medicine 

is either the mainstay of health care delivery or serves as its complement in many countries and  

the demand for its services is currently increasing [32]. 

Table 1. Ethnopharmacological uses and distribution of Myrica and Morella species. 

Species Name a Distribution Traditional Uses 

Morella 

Morella adenophora 

(Hance) J. Herb. 
China and Taiwan Roots and bark to treat bleeding, diarrhea and stomach pain [33]. 

Morella nana (A. Chev.)  

J. Herb. 
China 

Fruits are beneficial for dyspepsia [34].  

Roots are used to treat bleeding, diarrhea, stomach pain, burns,  

and skin diseases [35]. Bark is used to treat enteritis [36]. 

Morella serrata (Lam.) 

Killick 

South Africa and 

Southern African 

countries extending 

into tropical Africa 

Used to treat asthma, coughing and shortness of breath [37].  

The decoction of the root is used to treat painful menstruation, cold,  

coughs and headaches and to enhance male sexual performance [38].  

It is also used in the management of sugar related disorder and as  

laxative to treat constipation. The stem bark is used to treat headache [39]. 

Morella arborea (Hutch.) 

Cheek 
Cameroon Bark decoction used to treat fevers and inflammation [40]. 
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Table 1. Cont. 

Species Name a Distribution Traditional Uses 

Morella cerifera (L.) 

Small 
North America 

Herb decoction or tincture used as astringent, diaphoretic,  

as a circulatory stimulant, to treat irritable bowel syndrome,  

ulcerative colitis, digestive system disorders, diarrhea, dysentery,  

leukorrhea, mucous colitis, colds, stomatitis, sore throat, measles  

and scarlet fever, convulsions, nasal catarrh and jaundice [41]. 

Morella salicifolia  

(Hochst. ex A.Rich.) 

Verdc. & Polhill 

Southeast Africa, 

Ethiopia and 

Saudi Arabia 

Roots infusion is used to treat gastro-intestinal disorder [42] while roots and bark used in 

the treatment of headache [43], pain, inflammation and respiratory diseases [44]. 

Myrica 

Myrica rubra (Lour.)  

Siebold & Zucc. 

China, Japan, 

Taiwan and Korea 

The various organs are used to treat gastrointestinal diseases, headaches,  

burns and skin diseases. Leaves are used to treat inflammatory diseases [45]. 

Myrica esculenta  

Buch.- Ham. ex D. Don 

India, South 

China, Malaysia, 

Japan, Vietnam 

and Nepal 

Ayuverdic medicine use decoction of bark to treat asthma, bronchitis, fever, lung 

infection, dysentery, toothache and wounds [46–48]; leaf, root, bark and fruits juice 

for worms, jaundice and dysentery [48]; Vietnamese folk medicine uses  

bark to treat catarrhal fever, cough, sore throat and skin disease [49]. 

Myrica gale L. 

Europe, Siberia, 

Canada and 

Northern USA 

Used in the treatment of ulcers, intestinal worms,  

cardiac disorders and aching muscles [50]. 

Myrica nagi Thunb. 

China, Malaya 

Islands, Pakistan 

and Nepal 

Bark finds its application in reducing inflammations [51] to treat cardiac diseases, 

bronchitis, gonorrhea, diuresis, dysentery, epilepsy, gargle, heamoptysis,  

hypothermia, catarrh, headache, menorrhagia, putrid sores, typhoid, face palsy  

and paralysis and wounds [51,52]. Fruit wax or oil is used for treating ulcers [53], 

bleeding piles, body ache, toothache and for regulating the menstrual cycle [52]. 

a, Accepted name as indicated by The International Plant Names Index (IPNI) database. 

Several of the traditional applications presented in Table 1, like the use of the oil from the flowers of 

Myrica species to treat inflammation, ear-ache and paralysis [27], are related to their potential to act on 

numerous oxidative stress effects being an important source of antioxidant and anti-inflammatory medicines. 

This potential unleashed the necessary and almost obligatory research to try to prove the beneficial 

effects suggested by traditional medicine as well as to look for the active ingredients responsible for  

the activities displayed. Herein are reviewed the most significant studies on the antioxidant and  

anti-inflammatory compounds isolated from species of the Morella and Myrica genera. 

3. Isolated Compounds from Morella/Myrica Species 

A revision of the literature published in the last 15 years, showed 116 compounds isolated from 

Myrica/Morella species, mostly cyclic diarylheptanoids, flavonoids and pentacyclic triterpenoids. It 

bears mentioning that there was little cross-species phytochemical variability to the point where some 

authors suggest that some cyclic diarylheptanoids, specially, myricanone 1 and myricanol 10, and some 

pentacyclic triterpenoids should be used as Myrica/Morella genus chemotaxonomic markers [54], while 

unusual C-methylated dihydrochalcones and flavonoids may support the segregation of some Myrica 

species to a new genus [55]. 
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Several new diarylheptanoids (e.g., in Table 2), which have a unique 1,7-diphenylheptane structure 

and are distributed in a few botanic genera [56], have been isolated over the years from the Myrica  

genus (e.g., Myrica rubra [45]). Diarylheptanoids are known for their remarkable anti-inflammatory, 

antioxidant, antitumor, estrogenic, leishmanicidal, melanogenesis, hepatoprotective and neuroprotective 

activities [56,57]. 

Table 2. Compounds isolated from Myrica and Morella species with antioxidant and  

anti-inflammatory activities. 

Compound Name 

(Number) 
Chemical Structure Current Species Name a, Part of Plant 

Diarylheptanoids

Myricanone (1) 

 

Mo. adenophora (Hance) J. Herb., roots [58]; Mo. arborea (Hutch.)  

Cheek, twigs [54]; Mo. nana (A. Chev.) J. Herb, roots [34]; Mo. cerifera (L.) Small, 

bark [59], twigs [60]; My. gale L. (syn. My. gale var. tormentosa L.),  

branches [61]; My. rubra (Lour.) Siebold & Zucc., bark [62] 

5-Deoxymyricanone (2) 

 

Mo. adenophora (Hance) J. Herb., roots [58] 

Myricananin C (3) 

 

Mo. adenophora (Hance) J. Herb., roots [58];  

Mo. nana (A. Chev.) J. Herb., roots [63] 

12-Hydroxymyricanone (4) 

 

Mo. adenophora (Hance) J. Herb., roots [58]; Mo. nana (A. Chev.) J. Herb, roots [63]; 

My. gale L. (syn. My. gale var tormentosa L.), branches [61] 

Porson b (5) 

 

Mo. adenophora (Hance) J. Herb., roots [58]; Mo. nana (A. Chev.) J. Herb, roots [34]; 

My. gale L. (syn. My. gale var tormentosa L.), branches [61] 

Myricananin D (6) 

 

Mo. adenophora (Hance) J. Herb., [58]; Mo. nana (A. Chev.) J. Herb, roots [63] 

Alnusonol (7) 

 

Mo. nana (A. Chev.) J. Herb, roots [63] 

Actinidione (8) 

 

Mo. adenophora (Hance) J. Herb., roots [58];  

Mo. nana (A. Chev.) J. Herb, roots [63] 
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Table 2. Cont. 

Compound Name  

(Number) 
Chemical Structure Current Species Name a, Part of Plant 

Galeon (9) 

Mo. adenophora (Hance) J. Herb., roots [58];  

My. gale L. (syn. My. gale var tormentosa L.), 

branches [64] 

Myricanol (10) 

 

Mo. adenophora (Hance) J. Herb., roots [58];  

Mo. arborea (Hutch.) Cheek, root and stem barks [40], 

twigs [54]; Mo. cerifera (L.) Small, bark [59],  

root-bark [65]; My. esculenta Buch.-Ham. ex D.Don, 

leaves [66]; Mo. nana (A. Chev.) J. Herb, roots [34]; 

My. rubra (Lour.) Siebold & Zucc., bark [62] 

Myricanol 11-O-β-D-xylopyranoside (11) 
Mo. adenophora (Hance) J. Herb., roots [58];  

Mo. arborea (Hutch.) Cheek, root and stem barks [40] 

Myricanol 11-O-β-D-glucopyranoside (12) 

Mo. adenophora (Hance) J. Herb., roots [58];  

Mo. nana (A. Chev.) J. Herb, roots [35]; My. rubra 

(Lour.) Siebold & Zucc., bark [62] 

Myricanol 5-O-β-D-glucopyranoside (13) My. rubra (Lour.) Siebold & Zucc., bark [62] 

Myricanol 5-O-β-D-(6′-O-galloyl)-

glucopyranoside (14) 
My. rubra (Lour.) Siebold & Zucc., bark [62] 

Myricananin A (15) Mo. nana (A. Chev.) J. Herb, roots [63] 

Juglanin B-11(R)-O-sulphate (16) My. rubra (Lour.) Siebold & Zucc., leaves [67] 

Flavonoids 

Myricetin 3-O-(2-O-galloyl)-α-L-

rhamnopyranoside (17) 
My. rubra (Lour.) Siebold & Zucc., leaves [68] 

Myricetin 3-O-(2-O-galloyl)-β-D-

galactopyranoside (18) 
My. rubra (Lour.) Siebold & Zucc., leaves [68] 
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Table 2. Cont. 

Compound Name 

(Number) 
Chemical Structure Current Species Name a, Part of Plant 

Quercetin 3-O-(2-O-galloyl)-

β-D-galactopyranoside (19) 
My. rubra (Lour.) Siebold & Zucc., leaves [68] 

Myricetin (20) 

Mo. adenophora (Hance) J. Herb., roots [58]; My. rubra (Lour.)  

Siebold & Zucc., leaves [68], bark [62]; Mo. cerifera (L.) Small,  

root-bark [65]; My. esculenta Buch.- Ham. ex D.Don, leaves [66] 

Myricetin-3′-O-sulfate (21) My. rubra (Lour.) Siebold & Zucc., leaves [67] 

Ampelopsin 3′-O-sulfate (22) My. rubra (Lour.) Siebold & Zucc., leaves [67] 

Myricitrin (23) 

Mo. adenophora (Hance) J. Herb., roots [58];  

My. rubra (Lour.) Siebold & Zucc., leaves [68], bark [62];  

Mo. cerifera (L.) Small, root-bark [65];  

My. esculenta Buch.- Ham. ex D.Don, leaves [66] 

Quercitrin (24) Mo. adenophora (Hance) J. Herb., roots [58] 

Adenodimerin A (25) Mo. adenophora (Hance) J. Herb., roots [58] 

Myricitrin (23) 

Mo. adenophora (Hance) J. Herb., roots [58];  

My. rubra (Lour.) Siebold & Zucc., leaves [68], bark [62];  

Mo. cerifera (L.) Small, root-bark [65];  

My. esculenta Buch.- Ham. ex D.Don, leaves [66] 
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Table 2. Cont. 

Compound Name  

(Number) 
Chemical Structure Current Species Name a, Part of Plant 

Procyanidin B2 (26) My. rubra (Lour.) Siebold & Zucc., fruit pulp [69] 

(−)-Epicathechin (27) 
My. rubra (Lour.) Siebold & Zucc., fruit pulp [69]; 

My. gale L., aerial parts [70] 

Cyanidin 3-O-glucopyranoside (28) My. rubra (Lour.) Siebold & Zucc., fruits [45] 

Miscellaneous Compounds 

Myricalactone (29) 
Mo. adenophora (Hance) J. Herb., roots [58]; My. 

gale L. (syn. My. gale var tormentosa L.), stem [64] 

3β-Trans-p-coumaroyloxy-2α,23-

dihydroxyolean-12-en-28-oic  

acid (30) 

Mo. adenophora (Hance) J. Herb., roots [58] 

Rhoiptelenol (31) My. rubra (Lour.) Siebold&Zucc., bark [71] 

Ursolic acid (32) My. rubra (Lour.) Siebold&Zucc., bark [71] 

β-Sitosterol (33) 
Mo. adenophora (Hance) J. Herb., roots [58];  

My. esculenta Buch.- Ham. ex D.Don, leaves [72] 

6′-O-galloyl orbicularin (34) Mo. adenophora (Hance) J. Herb., roots [58] 



Int. J. Mol. Sci. 2015, 16 17168 

 

 

Table 2. Cont. 

Compound Name  

(Number) 
Chemical Structure Current Species Name a, Part of Plant 

Myricadenin A (35) Mo. adenophora (Hance) J. Herb., roots [58] 

Myricadenin B (36) Mo. adenophora (Hance) J. Herb., roots [58] 

6′-O-galloyl orbicularin (34) Mo. adenophora (Hance) J. Herb., roots [58] 

a, Always that the botanical name used by the authors is not the presently accepted name following the IPNI 

database, we report here the correct name where Mo. means Morella and My. means Myrica; and b, The original 

chemical structure was proposed for the first time in 1975 [73] but later was corrected to the one here depicted [61]. 

Flavonoids are common plant secondary metabolites (e.g., in Table 2), well known for having several 

biological activities in vitro and in vivo among which we can highlight their remarkable antioxidant 

activity, leading to lower chronic disease development [74]. However, some are pro-oxidants as 

structures with more hydroxyl groups actually lead to an increase in ROS by the Fenton reaction rather 

than antioxidant activity [74]. Flavonoids also have interesting anti-inflammatory activities against 

several markers in vitro, but in vivo studies are still lacking [75]. 

Pentacyclic triterpenoids are widespread through the plant kingdom and oleanane-type structures  

are commonplace [76]. Morella and Myrica genera proved to be no exception. Several activities and 

molecular targets are associated with this compound type, including antioxidant and anti-inflammatory [77]. 

From the 116 compounds isolated from Myrica/Morella species, about a third were evaluated from 

the point of view of antioxidant and/or anti-inflammatory activities and from these, only 36 compounds 

were considered in Table 2. Our choice was based on their higher activity and/or on those that allowed 

structure/activity relationship establishments. And those results will be discussed in the following points 

of this review. 

One important conclusion that arises from Table 2 analysis is that, although Myrica and Morella 

genera have several plants with edible fruits with medicinal applications (Table 1) most antioxidant and 

anti-inflammatory studies were done with secondary metabolites isolated from roots, bark and leaves 

(Table 2). Nevertheless, finding beneficial antioxidant effects in these species and assessing their 

usefulness as food supplements, additives or as coadjutants in certain treatments which imply severe 

ROS/RNS imbalance, not only enhances market interest in their exploration, but also allows the 

customer to know the health-promoting effects that they might have. 
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4. Biological Activities 

4.1. Antioxidant Activity 

Antioxidant activity is considered a key mechanism to prevent many diseases [78–80], including 

inflammation, diabetes, cancer and cardiovascular diseases. In fact some antioxidants are considered 

important nutraceuticals due to their beneficial health effects. 

Antioxidant activity assays are common and diverse; in recent remarks 407 variants of 29 different 

in vitro and in vivo methods for assaying antioxidant capacity were discussed [78]. These different 

approaches give rise to important issues involving the use of different positive controls, different reagent 

concentrations and reaction times [80]. Consequently comparisons are almost impossible and to disclose 

the quality of the reported results is very difficult. 

In this work, we decided to highlight and discuss the results (Table 3) obtained by the most common 

in vivo and in vitro methods whose trials were performed according to good practice suggestions [80] 

and that were considered trustworthy (i.e., that exhibit statistical treatment and use a positive control) in 

order to show the antioxidant potential of several compounds isolated from Myrica and Morella species. 

Not only we want to highlight the antioxidant potential of these secondary metabolites but also to  

discuss some weaknesses and/or strengths of the used methods, and in doing so we expect to stimulate 

our readers to be more careful and critical in their research methodologies. 

Table 3. Antioxidant activity of the isolated compounds from Myrica and Morella species. 

Compound Antioxidant Activity (Positive Control Used) 

1 
DPPH: EC50 = 202.7 ± 15.8 µM (Ascorbic acid EC50 = 22.25 ± 0.4 µM) [58]  

ABTS: EC50 = 19.6 ± 0.7 µM (Ascorbic acid EC50 = 23.3 ± 0.2 µM) [58] 

2 
DPPH: EC50 ≥ 250 µM (Ascorbic acid EC50 = 22.25 ± 0.4 µM) [58]  

ABTS: EC50 = 102.7 ± 12.4 µM (Ascorbic acid EC50 = 23.3 ± 0.2 µM) [58] 

3 
DPPH: EC50 = 16.3 ± 2.8 µM (Ascorbic acid EC50 = 22.25 ± 0.4 µM) [58]  

ABTS: EC50 = 12.0 ± 0.6 µM (Ascorbic acid EC50 = 23.3 ± 0.2 µM) [58] 

5 
DPPH: EC50 > 250 µM (Ascorbic acid EC50 = 22.25 ± 0.4 µM) [58]  

ABTS: EC50 = 73.7 ± 0.1 µM (Ascorbic acid EC50 = 23.3 ± 0.2 µM) [58] 

6 

DPPH: EC50 = 87.8 ± 0.0 µM (Ascorbic acid EC50 = 22.25 ± 0.4 µM) [58]  

EC50 = 14.9 µM (α-Tocopherol EC50 = 27.1 µM) [62]  

ABTS: EC50 = 85.9 ± 2.7 µM (Ascorbic acid EC50 = 23.3 ± 0.2 µM) [58] 

8 
DPPH: EC50 = 195.4 ± 2.2 µM (Ascorbic acid EC50 = 22.25 ± 0.4 µM) [58]  

ABTS: EC50 = 89.1 ± 0.6 µM (Ascorbic acid EC50 = 23.3 ± 0.2 µM) [58] 

9 
DPPH: EC50 = 51.1 ± 2.9 µM (Ascorbic acid EC50 = 22.25 ± 0.4 µM) [58]  

ABTS: EC50 = 26.8 ± 1.6 µM (Ascorbic acid EC50 = 23.3 ± 0.2 µM) [58] 

10 
DPPH: EC50 = 198.9 ± 9.1 µM (Ascorbic acid EC50 = 22.25 ± 0.4 µM) [58]  

ABTS: EC50 = 22.3 ± 0.6 µM (Ascorbic acid EC50 = 23.3 ± 0.2 µM) [58] 

11 
DPPH: EC50 = 81.6 ± 3.7 µM (Ascorbic acid EC50 = 22.25 ± 0.4 µM) [58]  

ABTS: EC50 = 25.3 ± 2.6 µM (Ascorbic acid EC50 = 23.3 ± 0.2 µM) [58] 

12 

DPPH: EC50 > 250 µM (Ascorbic acid EC50 = 22.25 ± 0.4 µM) [58]  

EC50 = 12.9 µM (α-Tocopherol EC50 = 27.1 µM) [62]  

ABTS: EC50 = 19.6 ± 0.2 µM (Ascorbic acid EC50 = 23.3 ± 0.2 µM) [58] 
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Table 3. Cont. 

Compound Antioxidant Activity (Positive Control Used) 

13 DPPH: EC50 > 100 µM (α-Tocopherol EC50 = 27.1 µM) [62] 

14 DPPH: EC50 = 6.8 µM (α-Tocopherol EC50 = 27.1 µM) [62] 

17 NBT: EC50 = 0.48 ± 0.02 µM (Allopurinol EC50 = 1.23 ± 0.22 µM) [68] 

18 NBT: EC50 = 0.67 ± 0.03 µM (Allopurinol EC50 = 1.23 ± 0.22 µM) [68] 

19 NBT: EC50 = 1.57 ± 0.30 µM (Allopurinol EC50 = 1.23 ± 0.22 µM) [68] 

20 

DPPH: EC50 = 15.9 ± 0.0 µM (Ascorbic acid EC50 = 22.25 ± 0.4 µM) [58]  

EC50 = 2.0 µM (α-Tocopherol EC50 = 27.1 µM) [62]  

ABTS: EC50 = 15.6 ± 1.4 µM (Ascorbic acid EC50 = 23.3 ± 0.2 µM) [58]  

NBT: EC50 = 7.40 ± 0.24 µM (Allopurinol EC50 = 1.23 ± 0.22 µM) [68] 

23 

DPPH: EC50 = 2.2 µM (α-Tocopherol EC50 = 27.1 µM) [62]  

NBT: EC50 = 5.17 ± 0.23 µM (Allopurinol EC50 = 1.23 ± 0.22 µM) [68]  

Significantly inhibits acrylamide mediated ROS generation and cytotoxicity in  

Caco-2 cells (p < 0.05) at concentrations ranging from 5.4–21.6 µM (2.5–10 µg/mL) [81].  

Significantly attenuated intracellular ROS production at 0.1–10 µM and inhibits lipid 

peroxidation in brain mitochondria (EC50 = 3.19 ± 0.34 µM) [82] 

25 
DPPH: EC50 = 7.9 ± 0.3 µM (Ascorbic acid EC50 = 22.25 ± 0.4 µM) [58]  

ABTS: EC50 = 7.5 ± 0.4 µM (Ascorbic acid EC50 = 23.3 ± 0.2 µM) [58] 

26 DPPH: EC50 = 3.6 µM (BHA EC50 = 14.2 µM) a [69] 

27 DPPH: EC50 = 9.8 µM (BHA EC50 = 14.2 µM) a [69] 

28 DPPH activity is directly correlated with its concentration [45] 

29 
DPPH: EC50 > 250 µM (Ascorbic acid EC50 = 22.25 ± 0.4 µM) [58]  

ABTS: EC50 = 41.9 ± 0.6 µM (Ascorbic acid EC50 = 23.3 ± 0.2 µM) [58] 

30 
DPPH: EC50 > 250 µM (Ascorbic acid EC50 = 22.25 ± 0.4 µM) [58]  

ABTS: EC50 > 200 µM (Ascorbic acid EC50 = 23.3 ± 0.2 µM) [58] 

34 
DPPH: EC50 > 250 µM (Ascorbic acid EC50 = 23.3 ± 0.2 µM) [58]  

ABTS: EC50 = 29.3 ± 0.4 µM (Ascorbic acid EC50 = 23.3 ± 0.2 µM) [58] 

35 

DPPH: EC50 > 250 µM (Ascorbic acid EC50 = 23.3 ± 0.2 µM) [58];  

EC50 = 20.5 µM (α-Tocopherol EC50 = 27.1 µM) [62]  

ABTS: EC50 = 175.4 ± 3.9 µM (Ascorbic acid EC50 = 23.3 ± 0.2 µM) [58] 

36 
DPPH: EC50 > 250 µM (Ascorbic acid EC50 = 23.3 ± 0.2 µM) [58]  

ABTS: EC50 = 45.8 ± 1.7 µM (Ascorbic acid EC50 = 23.3 ± 0.2 µM) [58] 

DPPH, 2,2-diphenyl-1-picrylhydrazyl; ABTS, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid); EC50, 

Effective concentration for half maximal activity; NBT, nitroblue tetrazolium; BHA, Butylated hydroxyanisole;  
a, Values obtained by conversion of original units. 

A glance at the results indicated in Table 3 shows that the most used positive control is ascorbic acid, 

a commercially available potent antioxidant with remarkable beneficial effects in human health [83]  

and the recommended standard for the DPPH antioxidant assay [80]. Another important assumption is 

that out of the 26 compounds assayed, 13 had higher activity than the tested positive controls being in 

some cases nearly three times more active than ascorbic acid. These interesting results can corroborate  

the plant traditional use. 

Following the DPPH assay results, it can be disclosed that the most active compound (2.8-fold more 

active than ascorbic acid) is adenodimerin A (25), a new proanthocyanidin type A recently isolated from 
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Morella adenophora roots [58]. Compound 14, a myricanol derivative, and compounds 20, 23 and 26, 

flavonoid derivatives, showed DPPH scavenging activity lower than 25 and also lower than α-tocopherol 

and BHA, other commercially available antioxidant references. However, the authors [62,69] did not 

present the associated errors and this lowers the credibility in their results. Regarding the error associated 

to EC50 values, it is negatively surprising that, beyond the cases where it is not shown [62,69], several 

other results showed standard deviation higher than 5% (compounds 1 and 9 in DPPH assay and 

compounds 9, 20 and 25 in ABTS assay) and even higher than 10% (compound 3 in DPPH assay and 

compounds 2 and 11 in ABTS assay). Such high margins of error make the results unreliable and 

therefore diminish their scientific interest. Authors, reviewers and editors must be more and more 

attentive to this so that published works have the greatest rigor and impact. 

We were confronted with another difficulty that result from the significantly fluctuating EC50 values, 

as an example we can highlight the EC50 results for compound 12 in two DPPH assays, moreover the 

authors [58,62] used the same method, only the positive control is different, and this cannot explain the 

very high variation. 

Table 3 analyses of the DPPH assay data also allowed interesting conclusions about diarylheptanoid 

antioxidant action: (a) diarylheptanoid derivatives are less active than flavonols, only compounds 3 and 

14, exhibit EC50 below 20 µM and are more active than ascorbic acid and α-tocopherol respectively;  

(b) a hydroxyl group at carbon C-11 instead of a carbonyl do not improve the activity (e.g., compounds 

1 and 10); (c) an extra hydroxyl group at carbon C-5 is also irrelevant (e.g., compounds 1 and 2); (d) on the 

other hand the loss of a methyl group (e.g., compounds 2 and 3) causes a strong increase in antioxidant 

effect; (e) it seems that the presence of a sugar moiety, the type of sugar and its localization, also interfere 

with the antioxidant activity (e.g., compounds 10 to 14). 

Nevertheless the results obtained with several flavonols in the NBT assays allowed some  

interesting conclusions: (a) the presence of an extra hydroxyl group at C-3′ increases the activity  

(e.g., compounds 18 and 19); (b) the presence of sugar derivative substituent at C-3 also increases the 

activity (e.g., compounds 17, 18, 20 and 23). 

From our literature survey and resumed in Table 3 it is noteworthy that the antioxidant evaluation 

against the most common ROS species are unusual. 

Although oleanane-type compounds are recognized as important scaffolds [76] the derivatives found 

in Morella/Myrica genus were almost inactive in the antioxidant evaluations performed. 

Our literature research herein presented and discussed revealed that in vivo antioxidant studies 

involving compounds isolated from Myrica/Morella genus were nor reported, naturally due to the difficulties 

inherent to the in vivo methodologies. However, the in vitro studies do not reflect the compound’s actual 

antioxidant activity. After their consumption, compounds can be metabolized and lose activity, but above 

all can generate unwanted metabolites that can be toxic. So greater effort from the scientific community 

to use in vivo methodologies as well as investigations of toxicity and side effects are highly recommended. 

It can also be noted that other species of these genera should be studied and more attention to their 

fruits is also needed. 

Recent works enhance the application of the Morella and Myrica species, as supplement and/or 

nutraceutical were not herein discussed because they are beyond the scope of this review; in fact they 

deal with extract mixtures and not with pure isolated compounds [45,84,85]. 
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4.2. Anti-Inflammatory Activity 

As referred at the beginning of this work, a high intracellular ROS level may activate various ROS-sensitive 

signaling pathways and promote inflammatory gene expression in a very large number of clinical 

situations involving very different symptomatology. In the inflammatory process there are several 

mediators, some of which have been used as the prime targets to find new anti-inflammatory agents.  

The most common are: (a) the pro-inflammatory cytokines such as IL-1β, IL-6, TNF-α, mediators of 

immune response that contribute for the activation and amplification of the inflammatory response 

pathway initiated with Th1 cells [86,87]; (b) nitric oxide, a mediator similar to neurotransmitters in  

the neuronal system, which can be produced by inducible nitric oxide synthase stimulated by cytokines 

and bacterial pathogens [88,89]; (c) PGE2 (prostaglandin E2), a known inflammatory mediator in chronic 

diseases, being a major compound in late/chronic inflammation and is also a common pharmaceutical 

target for both steroidal and non-steroidal anti-inflammatory drugs [90]. 

Compounds isolated from Myrica and Morella species were assayed for their anti-inflammatory 

activity and effect on some of the most common inflammatory markers, the most relevant data is  

gathered in Table 4. Again we excluded some results due to the fact that authors do not report IC50  

values and inhibition percentage do not provide reliable information. 

Table 4. Anti-inflammatory a7ctivities of isolated compounds from Myrica and Morella species. 

Compound Anti-Inflammatory Activity (Positive Control Used) a Reference

1 
IC50 (iNOS) = 1.0 ± 0.1 µM (Nῳ-nitro-L-arginine IC50 = 39.5 ± 2.7 µM  

Aminoguanidine IC50 = 22.2 ± 3.6 µM) 
[58] 

3 

IC50 (iNOS) = 13.0 ± 0.9 µM (Nῳ-nitro-L-arginine IC50 = 39.5 ± 2.7 µM  

Aminoguanidine IC50 = 22.2 ± 3.6 µM) 
[58] 

IC50 (NO) = 63.51 µM (N-monomethyl-L-arginine IC50 = 64.24 µM) * [63] 

4 IC50 (NO) = 30.19 µM (N-monomethyl-L-arginine IC50 = 64.24 µM) [63] 

5 
IC50 (iNOS) = 46.9 ± 3.1 µM (Nῳ-nitro-L-arginine IC50 = 39.5 ± 2.7 µM  

Aminoguanidine IC50 = 22.2 ± 3.6 µM) 
[58] 

6 IC50 (NO) = 23 µM (Nῳ-nitro-L-arginine IC50 = 28 µM) [71] 

7 IC50 (NO) = 46.18 µM (N-monomethyl-L-arginine IC50 = 64.24 µM) [63] 

10 
IC50 (iNOS) = 7.5 ± 2.7 µM (Nῳ-nitro-L-arginine IC50 = 39.5 ± 2.7 µM  

Aminoguanidine IC50 = 22.2 ± 3.6 µM) 
[58] 

15 IC50 (NO) = 45.32 µM (N-monomethyl-L-arginine IC50 = 64.24 µM) [63] 

16 

IC50 (TNF-α) = 20.1 ± 2.14 µM (PDTC IC50 = 16.8 ± 2.13 µM;  

Quercetin IC50 = 13.6 ± 0.81 µM); IC50 (IL-1β) = 22.9 ± 0.75 µM  

(PDTC IC50 = 18.0 ± 1.74 µM; Quercetin IC50 = 16.9 ± 0.34 µM)  

IC50 (IL-6) = 22.7 ± 1.61 µM (PDTC IC50 = 16.8 ± 2.40 µM  

Quercetin IC50 = 16.8 ± 0.13 µM) 

[67] 
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Table 4. Cont. 

Compound Anti-Inflammatory Activity (Positive Control Used) a Reference

17 

IC50 (TNF-α) = 12.90 ± 0.84 µM (PDTC IC50 = 25.32 ± 0.51 µM)  

IC50 (IL-1β) = 18.06 ± 3.16 µM (PDTC IC50 = 23.61 ± 2.17 µM)  

IC50 (IL-6) = 7.69 ± 2.14 µM (PDTC IC50 = 21.41 ± 1.69 µM) 

[68] 

18 

IC50 (TNF-α) = 8.65 ± 1.62 µM (PDTC IC50 = 25.32 ± 0.51 µM)  

IC50 (IL-1β) = 18.97 ± 2.15 µM (PDTC IC50 = 23.61 ± 2.17 µM)  

IC50 (IL-6) = 13.14 ± 0.44 µM (PDTC IC50 = 21.41 ± 1.69 µM) 

[68] 

19 

IC50 (TNF-α) = 1.55 ± 1.15 µM (PDTC IC50 = 25.32 ± 0.51 µM)  

IC50 (IL-1β) = 17.84 ± 1.56 µM (PDTC IC50 = 23.61 ± 2.17 µM)  

IC50 (IL-6) = 8.63 ± 2.14 µM (PDTC IC50 = 21.41 ± 1.69 µM) 

[68] 

20 

IC50 (TNF-α) = 65.21 ± 3.11 µM (PDTC IC50 = 25.32 ± 0.51 µM) [68] 

IC50 (IL-1β) = 22.81 ± 2.51 µM (PDTC IC50 = 23.61 ± 2.17 µM)  

IC50 (IL-6) = 23.65 ± 6.14 µM (PDTC IC50 = 21.41 ± 1.69 µM)  

IC50 (NO) = 99 µM (Nῳ-nitro-L-arginine IC50 = 28 µM) 

[71] 

21 

IC50 (TNF-α) = 19.9 ± 2.45 µM (PDTC IC50 = 16.8 ± 2.13 µM  

Quercetin IC50 = 13.6 ± 0.81 µM) IC50 (IL-1β) = 20.2 ± 1.42 µM  

(PDTC IC50 = 18.0 ± 1.74 µM; Quercetin IC50 = 16.9 ± 0.34 µM)  

IC50 (IL-6) = 22.2 ± 1.14 µM (PDTC IC50 = 16.8 ± 2.40 µM  

Quercetin IC50 = 16.8 ± 0.13 µM) 

[67] 

22 

IC50 (TNF-α) = 20.1 ± 2.14 µM (PDTC IC50 = 16.8 ± 2.13 µM  

Quercetin IC50 = 13.6 ± 0.81 µM) IC50 (IL-1β) = 22.9 ± 0.75 µM  

(PDTC IC50 = 18.0 ± 1.74 µM Quercetin IC50 = 16.9 ± 0.34 µM)  

IC50 (IL-6) = 22.7 ± 1.61 µM (PDTC IC50 = 16.8 ± 2.40 µM  

Quercetin IC50 = 16.8 ± 0.13 µM) 

[67] 

23 

IC50 (iNOS) = 30.9 ± 2.1 µM (Nῳ-nitro-L-arginine IC50 = 39.5 ± 2.7 µM  

Aminoguanidine IC50 = 22.2 ± 3.6 µM) 
[58] 

IC50 (TNF-α) = 25.20 ± 0.54 µM (PDTC IC50 = 25.32 ± 0.51 µM)  

IC50 (IL-1β) = 25.04 ± 0.48 µM (PDTC IC50 = 23.61 ± 2.17 µM)  

IC50 (IL-6) = 13.41 ± 1.81 µM (PDTC IC50 = 21.41 ± 1.69 µM) 

[68] 

IC50 (NO) > 100 µM [71] 

24 
IC50 (iNOS) = 45.4 ± 0.89 µM (Nῳ-nitro-L-arginine IC50 = 39.5 ± 2.7 µM  

Aminoguanidine IC50 = 22.2 ± 3.6 µM) 
[58] 

28 IC50 (NO) = 30.19 µM (N-monomethyl-L-arginine IC50 = 64.24 µM) [63] 

31 IC50 (NO) = 24 µM (Nῳ-nitro-L-arginine IC50 = 28 µM [71] 

32 IC50 (NO) between 3–10 µM (Nῳ-nitro-L-arginine IC50 = 28 µM) [71] 

33 
IC50 (iNOS) = 39.5 ± 2.7 µM (Nῳ-nitro-L-arginine IC50 = 39.5 ± 2.7 µM  

Aminoguanidine IC50 = 22.2 ± 3.6 µM) 
[58] 

35 

IC50 (iNOS) = 18.1 ± 1.5 µM (Nῳ-nitro-L-arginine IC50 = 39.5 ± 2.7 µM  

Aminoguanidine IC50 = 22.2 ± 3.6 µM) 
[58] 

IC50 (NO) = 23 µM (Nῳ-nitro-L-arginine IC50 = 28 µM) [71] 
a, iNOS, Inducible nitric oxide synthase; TNF-α, Tumour necrosis factor α; IL, Interleucine; NO, nitric oxide 

production in lipopolysaccharide-stimulated RAW 264.7 cells; PDTC, Pyrrolidine dithiocarbamate; IC50, 

Inhibitory concentration for half maximal enzyme activity. 
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The anti-inflammatory potential of Myrica/Morella species seems to be effective, since from the 43 

assays whose results are shown in Table 4, 13 exhibited higher activities than the positive control tested 

which is quite remarkable. The diarylheptanoids myricanone 1 and myricanol 10, are very active iNOS 

inhibitors, since they are, respectively, 20 and four times more active than the most active control tested 

(aminoguanidine IC50 = 22.2 µM), while the flavonols myricetin 3-O-(2-O-galloyl)-β-D-galactopyranoside 

18 and quercetin 3-O-(2-O-galloyl)-β-D-galactopyranoside derivatives 19 are able to reduce significantly 

the release of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6). 

Despite the high anti-inflammatory potential revealed by the results shown in Table 4, some of them 

have unusually high standard deviation values (>10% activity value) and their higher activity should be 

considered with caution. For instance we can indicate three particularly surprising cases, the inhibitory 

effect of compound 17 on IL-6 (7.69 ± 2.14 µM) [68], of compound 10 on iNOS (7.5 ± 2.7 µM) [58] 

and of compound 19 on TNF-α (1.55 ± 1.15 µM) [68], where errors are displayed from 28% to 74%.  

Also results without any statistical evaluation were reported [71]. This limits the impact of these results, 

and again indicates that results should always be evaluated critically. 

In view of the structure/activity relationship, it is noteworthy that Kim et al. [67] also tested  

the inhibitory effect on TNF-α, IL-1β and IL-6 of the compounds 16, 21 and 22 aglycones, however their 

results did not reveal significant changes in the activity. These results are important to demonstrate  

that the 3′-O-sulfate group in a flavonoid structure can be used to improve the compound solubility in 

water, without affecting its anti-inflammatory action. As far as we are aware, these authors were also the 

only ones that simultaneously measured RAW 264.7 cell viability at a concentration greater than the 

IC50 value. In fact, only with this methodology is it possible to conclude that anti-inflammatory effect is 

not due to cytotoxicity of the compounds tested. 

The results also showed that compound 20 is less active to inhibit the TNF-α and IL-6 cytokines than 

its 3-O-rhamnoside derivative 23 and even less effective than derivatives 17 and 18. On the other hand, 

compound 19, whose structure differs from compound 18 only in an additional 3′-OH group, reduces 

the release of pro-inflammatory cytokines TNF-α and IL-6 more than any of the foregoing compounds. 

These facts suggest that: (a) the non-free 3-OH group is an important structural scaffold to show 

inhibitory activity on cytokines TNF-α and IL-6; (b) once more the presence of a galloyl group, seems 

to have a positive effect on the activity. 

In Table 4 are included results where the compound tested is not more active than the positive control, 

meaning that the tested compounds are not good enough. But their activity can provide some scientific 

support for the traditional uses reported in Table 1. 

Again we can conclude that more in depth studies are lacking, for instance toxicity evaluations and 

in vivo studies. 

5. Conclusions 

Secondary metabolites with unusual structures and exhibiting antioxidant and anti-inflammatory 

activities, high enough to capture the attention of researchers and to be considered as potential drug 

leads, were isolated from Myrica/Morella species; some of the traditional medicine uses of these species 

are adequately justified. It is nonetheless curious that, while the fruits of Morella and Myrica species  
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are edible, and therefore commercially quite valuable, most of the relevant studies on antioxidant and 

anti-inflammatory activities of the compounds tested were isolated from bark, leaves and roots. 

Clearly, much has been done, but much remains to do. From the biological evaluation point of view: 

(a) toxicity testing is lacking; (b) more specifically in-depth studies on the mechanisms of action are 

needed; (c) in vivo evaluations are necessary; (d) standardization of the methodologies; and (e) more 

compounds should be tested to elaborate the more detail structure-activity relationships. From the chemical 

point of view: (a) more species should be phytochemicaly analyzed; and (b) more detailed analysis in  

the compounds structure characterization is necessary, since for example some compounds are reported 

and tested without their stereogenic centers properly elucidated. 

This review hopes to raise awareness and drive interest for further research on these genera with 

minds set on ensuring the quality of traditional uses and maybe turning them into pharmacological 

alternatives to the ones that already exist on the market. 
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