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Chapter 14

Affinity Tags in Protein Purification and Peptide 
Enrichment: An Overview

Ana Sofia Pina, Íris L. Batalha, and Ana Cecília A. Roque

Abstract

The reversible interaction between an affinity ligand and a complementary receptor has been widely 
explored in purification systems for several biomolecules. The development of tailored affinity ligands 
highly specific towards particular target biomolecules is one of the options in affinity purification systems. 
However, both genetic and chemical modifications on proteins and peptides widen the application of affin-
ity ligand-tag receptor pairs towards universal capture and purification strategies. In particular, this chapter 
will focus on two case studies highly relevant for biotechnology and biomedical areas, namely, the affinity 
tags and receptors employed on the production of recombinant fusion proteins and the chemical modifica-
tion of phosphate groups on proteins and peptides and the subsequent specific capture and enrichment, a 
mandatory step before further proteomic analysis.

Key words Recombinant proteins, Fusion proteins, Affinity tags, Affinity purification, 
Phosphoproteomics

1 Introduction

The production of recombinant proteins became possible with the 
emergence of DNA technology in the 1970s [1], which contrib-
uted for the facile manipulation of DNA sequences and conse-
quently for the production of an encoded protein in different hosts 
(e.g., bacterial, fungal, and eukaryotic host cells) [2]. Bacterial hosts 
are usually more attractive due to their simplicity, well- established 
methods for genetic manipulation, high product yields, rapid 
expression, and cost-effectiveness [3]. However, a major drawback 
is that protein expression can lead to the formation of insoluble 
aggregates. These aggregates, termed inclusion bodies (IBs), are 
formed by unfolded or highly misfolded polypeptides [3]. In order 
to address these challenges, target proteins can be fused to affinity 
tags to enhance the fusion partner solubility and proper folding 
and also overcome problems as protein instability and host cell 
toxicity [4, 5]. However, the main purpose of introducing affinity 
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tags is to facilitate the purification of recombinant proteins (Fig. 1). 
The tag usually presents high affinity for a specific biological or 
chemical ligand immobilized onto a chromatographic matrix. 
Besides their main applications in purification and as solubility 
enhancers, affinity tags may be used in many other applications, 
including labeling for imaging and localization studies, protein-
protein interactions, and subcellular localization or transduction [4].

2 Affinity Tags in the Purification of Recombinant Proteins

Affinity tags vary in size, going from a single amino acid to whole 
proteins [6, 7]. The affinity tag can be placed at both ends of the 
protein of interest, with the majority being placed at the C-terminal 
[7]. These tags must exhibit some characteristics as stability, selec-
tivity, and formation of reversible molecular complex with inex-
pensive, physically and chemically stable ligands/binding partners 
[7, 8]. Ideally, the dissociation of the tag-receptor system should 
be performed at mild conditions to facilitate the recovery of the 
fusion protein [8].

Fragment DNA for the protein of interest
Fragment DNA for the affinity tag

1 2 3

4

5

678

Fig. 1 Production and purification of recombinant protein scheme, involving (1) insertion of recombinant DNA in 
host cells and transformation process, (2) cloning process, (3) selection of the host cells containing recombinant 
DNA, (4) growth of the host cells, (5) upscaling, (6) fusion protein purification through affinity chromatography, 
(7) recognition of fused protein by the affinity ligand through affinity tag, and (8) elution of the purified fusion protein
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Currently, there are a wide range of developed affinity tags to 
be used on the production and purification of recombinant pro-
teins, and it is possible to assemble these affinity tags in two main 
groups, the protein affinity tags and the peptide affinity tags. The 
protein affinity tags enclose enzymes (e.g., GST), polypeptide- 
binding proteins (e.g., SpA), and carbohydrate-binding domains 
(e.g., MBP, CBD) (Table 1). The use of small peptide tags presents 
advantages over larger tags in terms of metabolism of the host cell, 
as less energy is consumed [8]. Also, short tags are less likely to 
interfere with the structure and function of the target protein; 
therefore, they may not need to be subsequently removed [8]. The 
small peptides used as affinity tags fall into two categories: the pep-
tides that bind to small ligands (e.g., poly-arginine and poly- 
histidine) and the peptide tags that are recognized by proteins 
(e.g., FLAG) (Table 2). The affinity tags based on small peptides 
can also be categorized in (a) metal affinity tags, (b) charged pep-
tides, (c) epitope peptides, (d) protein-binding peptides, and (e) 
streptavidin-binding proteins [4, 6–8].

The presence of the affinity tag may affect characteristics or 
functions of the target protein, and, depending on its final 

Table 1 
Summary of short peptides used as affinity tags

Type of affinity tag Size Ligand References

Enzymes

β-Galactosidase 116 kDa Thiogalactosidyl Sepharose [114]
Glutathione S-transferase 26 kDa Glutathione Sepharose [12]
Chloramphenicol acetyl transferase 24 kDa Chloramphenicol Sepharose [115]
Thioredoxin 12 kDa Require a purification tag [22]

Polypeptide-binding proteins

Staphylococcal protein A 14–31 kDa IgG [33]
ZZ domains 7 kDa Protein A [34]
Albumin-binding domain 75–25 kDa I-Albumin [116]
Phosphate-binding domain 34 kDa Hydroxyapatite [117]

Carbohydrate-binding domains

Maltose-binding domain 40 kDa Cross-linked amylose [19]
Cellulose-binding domain ~100 kDa Cellulose [118]
Starch-binding domain 133 aa Starch [119]
Exoglucanase CBD 128 aa Cellulose [120]

Other protein tags

N-Utilization substance (NusA) 55 kDa Require a purification tag [29]
Small ubiquitin modifier (SUMO) 11 kDa Require a purification tag [24]

[AU1]
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Table 2 
Summary of protein native domains as affinity tags

Type of affinity tag Tag sequence Ligand References

Metal affinity tags

Poly-His HHHHHH Ni2+NTA, CO2+CMA [39, 41]
FlAsH tag CCXXCC Bis-arsenical fluorescein 

dye FlAsH
[121]

HAT KDHLIHVHLEEHAHAHNK CO2+ CMA [122]

Charged peptides

Poly-Arg 5–15 aa (R) Anionic resins [123]
Poly-Asp 5–16 aa (D) Cationic resins [124]
Poly-Cys 4 aa (C) Thiopropyl Sepharose [125]
Glu 1 aa (E) Cationic resins [126]
Poly-Phe 11aa (E) IEC [127]

Epitope peptides

FLAG™ DYKDDDDK mAb M1, M2 [50, 128]
c-myc EQKLISEEDL mAb 9E10 [51]
T7 MASMTGGQQMG Anti-T7 9E10 [52, 53]

Protein-binding peptides

S-tag KETAAAKFERGHMDS S-protein [58]
Calmodulin- 

binding protein
KRRWKKNFIAVSAANRFKKISSSGAL Calmodulin [60, 63, 64]

Streptavidin-binding proteins

Bio tag LGIFEAMKMEWR Streptavidin/avidin [129]
Strep-tag SAWRHPQFGG Streptavidin [65, 66]
Strep-tag II WHPQFEK Strep-Tactin [70]
Avi tag GLNDIFEAQKIEWHE Streptavidin/avidin [129]
Nanotag DVEAWLGAR Streptavidin/avidin [130]

application, it might be necessary to remove the tag (Table 3) [8]. 
Specifically, in case of therapeutic proteins, there is a demand for 
tag cleavage as protein function can be lost and its integrity and 
biological activity are not achieved [5]. A variety of peptidases and 
other chemical methods are available for tag cleavage [9]. However, 
enzymatic methods may lead to unwanted consequences as the 
incomplete cleavage by the protease or the retention of additional 
amino acids in the fusion protein sequence from the cleavage site. 
Also, these enzymatic methods can contribute to increase the costs 
of the manufacturing process. Nowadays, there are other emerging 
alternatives such as self-cleaving tags [10, 11] used to overcome 
some drawbacks of the existent methods.
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3 Proteins as Affinity Tags

One of the classes of affinity tags consists of proteins or large pep-
tides. Protein affinity tags can be divided in solubility-enhancing 
tags and purification tags. The solubility of the target proteins pro-
duced in bacterial hosts is the bottleneck of the production of 
recombinant proteins. Therefore, a few fusion proteins are already 
used to enhance protein expression and solubility of the target. 
Examples of these tags include glutathione S-transferase (GST), 
maltose-binding protein (MBP), staphylococcal protein A (SpA), 
thioredoxin A (Trx), small ubiquitin-related modifier (SUMO), 
and N-utilization substance A (NusA) [5]. GST and MBP tags not 
only improve the solubility of their fusion partners but also increase 
the efficiency of protein purification. GST tag is a 26 kDa protein 
derived from Schistosoma japonicum and belongs to a family of 
enzymes that can modify toxic substances by transferring sulfur 
from glutathione [12]. The proteins fused to GST tag can be puri-
fied from crude extracts by using affinity chromatography through 
the glutathione immobilized on the solid support [12]. The bound 
fusion proteins can be eluted under mild conditions through a 
competitive elution with reduced glutathione [12, 13]. Other main 
advantages of this tag include the protection and stabilization of 
the recombinant protein against intracellular protease cleavage in 

Table 3 
Summary of enzymatic and chemical methods for tag removal 
(↓ = indicated chemical cleavage site; X = unspecific amino acid)

Cleavage agent Cleavage specificity References

Enzymes

Exopeptidases
Carboxypeptidase A Poly H—↓—X [41]
Carboxypeptidase B Poly R—↓—X [131]
Aminopeptidase I EAE—↓—X [126]

Endopeptidases
Enterokinase DDDDK—↓—X [73]
Factor Xa IEGR—↓—X [75]
Thrombin LVPR—↓—X [76]
TEV protease EQLYFQ—↓—X [74]
SUMO SUMO tertiary structure [25]

Chemical

Cyanogen bromide XM—↓—X [132]
Hydroxylamine XN—↓—G [133]
Acetic acid XN—↓—P [134]
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the expression host, the cost-effectiveness of the affinity resins, and 
the use of mild conditions on the elution step [14]. Despite being 
considered a solubility-enhancing tag, when used as a partner of 
oligomeric proteins, hydrophobic regions enriched proteins, or 
with proteins larger than 100 kDa, the solubility of the target pro-
tein is poor, as the expression of the fusion proteins is a high meta-
bolic burden for the host cell, contributing for an insoluble form 
expression [15]. GST tag has been successfully used on protein- 
DNA binding studies and protein-protein interactions [16].

MBP is a 42 kDa periplasmic protein involved on the maltose 
transport system of E. coli, being responsible to transport maltose 
and maltodextrins across the cytoplasmic membrane [17]. The 
one-step purification is based on the strong affinity of MBP with 
cross-linked amylose—a low-cost matrix. Also the bound tag can 
be removed by using non-denaturing conditions (e.g., competitive 
elution with maltose) [18, 19]. One of the greatest advantages of 
using this tag is that MBP is an impressive solubilizing agent due 
to the evidence that this tag can act as general molecular chaperone 
preventing the self-aggregation of the fusion partner [20, 21].

The other solubility-enhancing tags already mentioned present 
a higher impact on the solubility of the fusion partner; however, the 
use of these tags requires additional affinity tags for use in protein 
purification. TrxA is a small protein with 11.675 kDa, belongs to a 
family of oxidoreductases, and presents in its active site a redox 
couple for a number of biological reactions [22]. This tag allows a 
high overall gene expression but lacks the formation of inclusion 
bodies. In particular, the production of wide variety of secreted 
mammalian cytokines and growth factors fused to the tag C-terminal 
was possible in a soluble form using E. coli as a host [13, 23]. 
Overall, TrxA presents robust folding properties that contribute for 
this tag to be a covalently joined molecular chaperone [13]. Also, 
TrxA is a cytoplasmic protein and presents an inherent thermal sta-
bility, and these characteristics become helpful purification tools, 
facilitating the recovery of the fusion partner of the cell by osmotic 
shock and enabling heat treatments [23]. However, the purification 
can be facilitated by using an extra affinity purification tag.

The SUMO protein is involved in posttranslational modifica-
tions in eukaryotic cells through the covalent binding to lysine side 
chains of the target protein, and this presents high relevance on 
various cellular processes (e.g., nuclear-cytosolic transport, apop-
tosis, and stability) [24, 25]. Once fused to the N-terminal of the 
partner, it greatly promotes the target protein correct folding and 
solubility when compared to untagged version [26]. Although this 
tag also needs an additional tag for purification, it presents an 
attractive feature that is the recognition by a SUMO protease (S. 
cerevisiae Ulp1). This SUMO protease recognizes SUMO confor-
mation, more specifically the conserved Gly-Gly motif [25]. 
Although this technology is an effective tool for prokaryotic hosts, 
in eukaryotic hosts there is the drawback of the natural occurrence 
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of SUMO-tag cleavage by the SUMO proteases in vivo [26, 27]. 
NusA is a 55 kDa transcription elongation and termination factor 
that modulates transcription by enhancing and pausing at some 
sites [28, 29]. Recently, it was reported that NusA is also involved 
in the coordination of cellular responses to DNA damage [30]. 
NusA is one of the largest proteins being used as carrier protein; 
however, it presents good solubilizing characteristics and high 
expression levels [31]. Moreover, this tag increases solubility of 
proteins (e.g., human interleukin-3) that were being produced as 
IBs by itself or fused to other tags (TrxA) [31]. This might be 
related with their biological activity. Once again, this tag is a solu-
bility tag and cannot be purified with a specific affinity matrix, 
requiring a purification affinity tag [31, 32].

Other protein tags used to increase solubility or to facilitate 
purification include SpA and its derivatives (Z domain or Z tag) 
[5]. The SpA protein is present on the surface of the gram-positive 
bacterium Staphylococcus aureus and mainly interacts with the con-
stant region (Fc) of most mammalian class G immunoglobulins 
(IgG) [33]. This protein tag has been used for the purification of a 
variety of fusion proteins produced in different hosts such as E. 
coli, yeast, CHO cells, baculovirus-infected insect cells, and plant 
cells, by using IgG affinity chromatography [34, 35]. The use of 
this tag presents several advantages, namely, proteolytic stability, 
the absence of disulfide bonds, and the presence of inherent high 
solubility [34]. The major drawback is related with the fragility of 
IgG as a ligand, contributing for ligand leakage and consequently 
end-product contamination [34]. The Z domain tag emerged as a 
mutated version of B domain, which is a homologous domain of 
SpA with high affinity for IgG. This affinity tag has been developed 
to improve the resistance of undesirable cleavage of the purified 
fusion protein when using chemical tag removal strategy [36]. Also 
in this case, the main disadvantages associated with this technology 
are regarding the immobilized binding partner (e.g., IgG) which 
presents high costs of production and purification, poor stabiliza-
tion under sterilization and cleaning-in-place conditions, as well as 
potential leakage and end-product contamination.

The Z domain was also engineered to create the Z tag (basic or 
acidic), a highly charged domain to be used on the purification of 
recombinant protein through ion-exchange chromatography [37, 
38]. The Zbasic tag has been employed on matrix-assisted refolding 
strategies of proteins that were solubilized with chaotropic agents 
after being produced as inclusion bodies [37].

4 Peptides as Affinity Tags

Immobilized metal affinity chromatography (IMAC) was intro-
duced in 1975 by Porath and co-workers, being this type of chro-
matography based on the affinity between proteins and heavy metal 

4.1 Metal Affinity 
Peptides
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ions (Zn2+, Cu2+, Ni2+) [39]. This type of chromatography exploited 
the formation of stable complexes in aqueous solution between 
histidine (His) and cysteine (Cys) residues and zinc and copper 
[39]. After this, Hochuli et al. developed a new metal chelate affin-
ity resin that once charged with nickel ions (Ni2+-NTA) presents 
selectivity for neighboring His of proteins or peptides [40].

Subsequently, Hochuli et al. were also the pioneers on using a 
poly-histidine peptide (His-tag) genetically fused to the mouse 
dihydrofolate reductase protein and then produced in E. coli and 
purified on Ni2+-NTA adsorbent with a subsequent His-tag removal 
by carboxypeptidase A [41]. Nowadays, the purification by using 
His-tag is one of the most used methodologies for protein purifica-
tion and has been extensively described (Fig. 2) [42–44]. The main 
advantages of IMAC technology are related with high protein 
loading capacity, ligand stability, and lower costs. Also, this tech-
nology can be easily scaled up with reproducibility and affordable 
costs [42]. Other advantage of using IMAC for the purification of 
recombinant proteins is the compatibility with denaturant agents 
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Fig. 2 Principle of protein purification through histidine affinity tag
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for the solubilization and refolding of insoluble protein aggregates 
produced in E. coli host. IMAC technology has been described as 
a successful strategy for the one-step refolding of His- tagged pro-
teins [45]. The major drawback of using a metal affinity tag is the 
metal ion leakage that leads to metal contamination of the end 
product. These metal ions are toxic, and therefore additional steps 
of purification are required, especially for therapeutic proteins. 
Moreover, the metal resin disposal constitutes an environmental 
problem [42].

Although IMAC has been used mainly for protein purification, 
different applications have been explored such as protein refolding 
and solubilization [45], protein microarrays [46–48], and phage 
display [49]. In this last application, phage display-derived peptide 
sequences were developed to bind to a novel class of chelating 
ligands complexed with Ni2+ [49]. These chelating agents are based 
on 1,4,7-triazacyclononane (TACN) structure and have been cho-
sen to overcome ligand leaching in IMAC purification.

Epitope peptides are used as tags but usually not for purification 
purposes because the affinity matrices are antibody based, which 
contributes for higher purification costs [4]. The most frequently 
antigenic peptides used are Flag-tag [50], c-myc [51], T7 epitope 
tag [52, 53], and Softags [54].

The Flag-tag is an eight-amino acid peptide with a hydrophobic 
sequence consisting of DYKDDDDK [50]. The Flag technology 
allows a rapid purification of fusion proteins in a mild, highly specific, 
and calcium-dependent affinity chromatography procedure with an 
Anti-Flag M1 monoclonal antibody immobilized on the affinity sup-
port [50]. One of the features of this tag is the recognition of the five 
C-terminal amino acids of the peptide sequence by the protease 
enterokinase, facilitating tag removal [50]. Main drawbacks of this 
system are related with ligand leakage and stability due to their own 
natural character and low scalability. Also, this system cannot be used 
for the purification of fusion proteins produced as IBs because dena-
turant agents are required. Although this tag presents a highly spe-
cific sequence for enterokinase recognition, unwanted cleavage may 
occur in the presence of contaminant proteases [50].

Softags are epitope tags used for immunoaffinity chromatogra-
phy which present high affinity for “polyol-responsive” monoclo-
nal antibodies (mAbs) [54]. These mAbs present a particular 
feature regarding the elution conditions, being possible to use 
mild conditions supplemented with a low molecular weight polyol 
(e.g., ethylene glycol) and a non-chaotropic salt [5, 54]. Softag 1 
is a 13-amino acid sequence near the C-terminal of the β′ subunit 
of E. coli RNA polymerase [55]; Softag 2 is a repeat heptapeptide 
found on C-terminal of RNA polymerase I [56]; and Softag3 is an 
epitope near the N-terminal of human transcription factor [57].

4.2 Epitope Peptides
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S-peptide tag is a 15-amino acid sequence polypeptide resultant 
fragment from the cleavage of ribonuclease A by the protease sub-
tilisin. The other remaining product is S-protein [58]. S-peptide 
binds to S-protein with high affinity, and this interaction allows the 
efficient affinity purification of recombinant proteins [58, 59].

Calmodulin-binding protein (CBP) is a calcium-binding pro-
tein that plays a key role as a regulator on a wide range of calcium- 
dependent intracellular processes [60, 61]. Calmodulin-binding 
unit is a 26-amino acid peptide derived from the carboxyl-terminal 
of rabbit skeletal muscle myosin light chain kinase [62, 63]. This 
peptide binds to calmodulin with a nanomolar affinity and is also 
calcium dependent [60–63]. The elution can be carried out under 
milder conditions and requires a calcium-chelating agent such as 
ethylene glycol tetraacetic acid (EGTA) [60, 63]. This tag was 
found out to be a versatile tag for antibody fragments [64]. 
However, its use in eukaryotic cells is hampered by its interference 
in calcium signalling pathways [5].

The Strep-tag is a nine-peptide sequence (AWRHPQFGG) and 
was originally developed by selection from a genetic peptide library 
for its capability to bind to streptavidin protein in a highly specific 
and reversible manner [65, 66]. Strep-tag recognizes the same 
pocket of streptavidin as biotin, the natural ligand, allowing one- 
step purification on immobilized streptavidin columns. However, 
the original Strep-tag is needed to be fused only to the C-terminal 
of the recombinant protein [67, 68]. A new improved version—
Strep-tag II, an eight-residue-peptide sequence (WSHPQFEK)—
was developed and optimized to overcome this constrain and also 
presents affinity for streptavidin [67, 69]. Simultaneously, pro-
gresses have been made to optimize the respective chromato-
graphic matrices, and an engineered streptavidin support with 
improved binding capacity (Strep-Tactin) has been developed 
[70]. The main advantages of these systems are the resistance to 
host cell proteases, the fact that the binding is not dependent on 
metal ions, the elution that can be carried out at mild conditions, 
and the biological inertness of this tag [70].

A new streptavidin-binding protein (SBP) was also developed 
for the purification of recombinant proteins [71, 72]. This SBP tag 
presents a sequence of 38 amino acids long with a nanomolar affin-
ity for streptavidin. The main applications of this tag are in high- 
throughput protein expression and purification procedures, 
existing already in several streptavidin-derivatized materials (plates, 
beads, enzymes, fluorophores, etc.) commercially available [71].

5 Tag Removal

The removal of the affinity tag can be carried out by harsh chemical 
treatments (e.g., cyanogen bromide or hydroxylamine) or by enzy-
matic cleavage, with the latter being preferred since it can be 

4.3 Protein-Binding 
Peptides

4.4 Streptavidin- 
Binding Peptides
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performed under physiological conditions [6]. The chemical treat-
ment presents significant drawbacks such as protein denaturation 
and side chain modification of amino acids in the target protein 
[6]. Several endoproteases have been utilized for tag removal [9], 
such as enterokinase [73], tobacco etch virus (TEV) [74] Factor Xa 
[75], thrombin [75, 76], and SUMO protease [25]. Enterokinase 
(EK) is a serine proteinase constituted by a high chain and a light 
chain linked by a disulfide bond. This enzyme presents high speci-
ficity for the (Asp)4-Lys sequence, which contributes for a useful 
tool for fusion protein cleavage [73, 77]. Factor Xa and thrombin 
are trypsin-like serine proteases, and both recognize specific amino 
acid sequences (Table 3) [75]. TEV is a 49 kDa proteinase of 
tobacco etch virus (TEV) that cleaves the polyprotein derived from 
the TEV genomic RNA at five locations [74]. Most of these 
enzymes are able to cleave without requiring a specific sequence at 
the C-terminal, allowing for the complete removal of the tag [6, 
9]. The major drawback associated with these enzymes is related 
with the high enzyme/protein ratios and the long incubation times 
required. Moreover, for an efficient tag removal, it is also necessary 
to take into account the absence of cryptic sites recognized by 
endoproteases in the native protein sequence [9].

Tag cleavage by using enzymatic or chemical methods always 
requires additional purification steps that contribute for the higher 
costs. In this way, other emerging technologies have been devel-
oped, namely, self-cleaving tags. There are different types of self- 
cleaving tags, such as inteins, sortase A, N-terminal protease, and 
FrpC module [10, 11]. In this particular case, these tags present 
inducible proteolytic activity under certain conditions as pH and/
or temperature shift and addition of specific reagents (e.g., dithio-
threitol (DTT), ethylenediaminetetraacetic acid (EDTA), Ca2+) 
[11]. Although these self-cleaving tags seem to be attractive from 
the economic point of view, there are still a few drawbacks associ-
ated with premature cleaving and consequently target-protein losses 
and minor product compatibility with cleaving conditions [10].

6 Affinity Tags for the Enrichment of Phosphorylated Proteins and Peptides

Posttranslational modifications (PTMs) are involved in the regula-
tion of several cellular processes, such as gene expression, signal 
transduction, metabolism, homeostasis, cell division, and apopto-
sis, by modulating protein folding and function [78, 79]. Over 
300 types of PTMs are known, but only a few play determinant 
roles in biological processes [80, 81]. Protein phosphorylation is 
one of the most common PTMs and exhibits a transient and revers-
ible character, being regulated by the dynamic action of kinases 
and phosphatases. There are more than hundred thousand poten-
tial phosphorylation sites in the human proteome, being estimated 
that 30–50 % of all proteins are phosphorylated at some point 
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during their lifetime. In eukaryotic systems, phosphorylation 
occurs essentially at serine and threonine residues, followed by 
tyrosine, with a ratio of 1,800:200:1 [79, 82, 83]. Phosphorylation 
events have been associated to a variety of diseases, such as cancer 
[84], type II diabetes [85], cystic fibrosis [86, 87], neurological 
diseases such as Parkinson’s [88] and Alzheimer’s [89], and neu-
ropsychiatric disorders (e.g., schizophrenia) [90]. The degree of 
phosphorylation and the localization of specific phosphosites pro-
vide meaningful insights to better understand disease-associated 
signalling pathways, contributing for the development of novel 
biomarkers and drug targets.

Currently, the characterization of phosphoproteins and corre-
spondent chemical or proteolytic digests is generally performed 
using mass spectrometry (MS) techniques. However, this analysis 
is not always straightforward since phosphopeptides present lower 
ionization efficiency than their non-phosphorylated counterparts, 
which results in lower signal intensities in positive ion mode. 
Moreover, phosphorylated species are usually present at sub- 
stoichiometric levels and are easily adsorbed by plastics and metals 
during sample handling [80, 91]. These problems can be partially 
overcome by using materials with low protein-binding properties 
and efficient enrichment methods before MS analysis.

Enrichment methods are generally based in the affinity capture 
of the phosphate groups, either by charge interactions (e.g., chro-
matofocusing, ion-exchange chromatography), chelation (e.g., 
IMAC, metal oxide affinity chromatography (MOAC), hydroxy-
apatite, phosphate-binding ligands), or molecular recognition (e.g., 
immunoaffinity chromatography, affinity chromatography based in 
phosphoprotein-binding domains) (Fig. 3). For further details on 
this subject, the reader should consult recent reviews [79, 92, 93]. 
However, strategies consisting on the chemical modification or 
replacement of the phosphate moieties by affinity tags are also via-
ble alternatives (Fig. 4). Table 4 summarizes the chemical tags used 
for phosphoprotein and phosphopeptide enrichment.

Both phosphoserine (p-Ser) and phosphothreonine (p-Thr) 
residues undergo β-elimination of phosphoric acid under  
strong alkaline conditions, yielding dehydroalanine and 
β-methyldehydroalanine, respectively [94]. These analogues are 
susceptible to Michael addition by several nucleophiles, such as 
amine, alcohol, and thiol groups [95]. Oda et al. replaced phos-
phate moieties of p-Ser and p-Thr by a biotin affinity tag via a 
maleimide group, using ethanedithiol (EDT) as a Michael donor 
and cross-linker. These biotin-labeled peptides were then enriched 
using avidin chromatography [96]. A similar approach using a 
phosphoprotein isotope-coded affinity tag (PhIAT) allows the 
determination and comparative quantification of the phosphoryla-
tion sites of proteins, by using either EDT or its deuterated version 
and a biotinylation reagent—(+)-biotinyliodoacetamidyl-3,6- 
dioxaoctanediamine. One of the advantages of the latter method 
is that it does not use maleimide group, which undergoes partial 
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Enrichment
Methods

Charge 
Interactions

Chromatofocusing

Ion Exchange 
Chromatography

Chelation

IMAC

MOAC

Phosphate-
binding ligands

Hidroxyapatite

Molecular
Recognition

Immunoaffinty
Chromatography

Phosphoprotein-
binding domains

Chemical
Derivatization

β-Elimination/
Michael Addition

Carbodiimide
Condensation

Fig. 3 Phosphoprotein and phosphopeptide enrichment methods. The most common are based in charge 
interactions, chelation, molecular recognition, and chemical derivatization
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Fig. 4 Phosphopeptide enrichment using chemical tags. B-elimination/Michael addition and phosphoramidate 
chemistry are the most common chemical derivatization strategies
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hydrolysis [97]. Biotin-avidin chromatography presents some 
drawbacks associated with the nonspecific binding of samples con-
taining endogenous biotin and biotin-binding proteins and the 
harsh conditions used during elution, which might denature target 
proteins. The utilization of monomeric avidin, which has lower 
affinity towards biotin, allows the employment of milder elution 
conditions. Yet, a weaker biotin-avidin interaction may lead to an 
inefficient capture of biotinylated molecules in the presence of 
strong detergents, which are often used to solubilize hydrophobic 
molecules, such as membrane proteins [98]. Adamczyk et al. used 
a pyridyldithiol-activated biotinylation reagent—biotin-HPDP 
(N-[6-(biotinamido)hexyl]-3′-(2′-pyridyldithio)propionamide)—
which conjugates via a cleavable disulfide bond, allowing the 
reversible biotinylation of the phosphopeptides [99]. However, 
this type of reagents may be unstable in some biological condi-
tions. Van der Veken et al. developed an alternative approach by 
introducing an acid-labile linker within a biotin-based tag, allow-
ing full recovering of affinity-purified material and elimination of 
affinity tag prior to MS analysis [100].

Several other tags were developed as alternatives to the biotin- 
based ones but still using β-elimination/Michael addition protocols. 
Biotin-HPDP can be substituted by different pyridyldithiol-acti-
vated resins, presenting similar reaction mechanisms. Thiol-activated 
peptides displace the thiopyridyl group by disulfide exchange, which 

Table 4 
List of chemical tags used in phosphoproteomics and their correspondent solid supports

Chemistry Chemical tag Solid support Elution References

Β-Elimination/ 
Michael  
addition

Ethanedithiol (EDT)  
coupled to biotin

Avidin resin Trifluoroacetic acid (TFA) [96, 97, 100]
Dithiothreitol (DTT) [99]

Engineered biotin tag Triethylamine (TEA) [109]
EDT Thiol-activated 

resins
DTT [101]

Propanedithiol [102]
EDT PhISTa UV light [103]
Cysteamine PEG-PS resinb TFA [104]
Guanidinoethanethiol (GET) – – [105, 106]
Fluorescent affinity tag (FAT) Anti- rhodamine 

antibodies
TFA [107]

Engineered His-tag Ni2+-IMAC Factor Xa [108]

Carbodiimide 
condensation

Cystamine Glass beads with 
iodoacetyl 
groups

TFA [111]

Cystamine Glass beads with 
maleimide 
groups

[112]

Dendrimer – [113]
aPhIST—aminopropyl beads with a photosensitive linker, a stable isotope-coded leucine moiety, and a thiolate-reactive group
bPEG-PS resin—polyethyleneglycol-polystyrene copolymer base resin with cystamine as the benzyl carbamate
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rearranges to form a thione [101, 102]. Thaler et al. used propane-
dithiol as a Michael donor, possessing six hydrogen atoms instead of 
the four of EDT, which when replaced by deuteriums provide a 
higher difference in mass [102]. Using a similar protocol, McLachlin 
and Chait observed a problematic side reaction in which 1–2 % of 
the thiol tag was incorporated into non- modified serine residues, 
since some of these residues undergo β-elimination of water to form 
dehydroalanine. This will lead to sample enrichment in both phos-
phorylated and non- phosphorylated species [101].

A phosphoprotein isotope-coded solid-phase tag (PhIST) was 
introduced as an improvement of the PhIAT. The biotin tag was 
replaced by a photosensitive linker covalently bound to aminopro-
pyl glass beads, a leucine isotope-coded linker containing six 12C 
and one 14N (light) or six 13C and one 15N (heavy), and a thiolate- 
reactive group. Β-elimination, Michael addition, tryptic digestion, 
and solid-phase labeling may be all performed in the same vial. 
Moreover, the reaction is not affected by the presence of denatur-
ants or detergents, and the beads can be thoroughly washed with-
out the risk of sample losses, leading to high reaction yields. The 
bound peptides are simply released by UV photocleavage of the 
photosensitive linker [103].

Knight et al. converted p-Ser and p-Thr residues into lysine 
analogues, aminoethylcysteine and β-methylaminoethylcysteine, 
respectively. As aminoethylcysteine and lysine are isosteres, the 
modified peptides are then easily cleaved using a LysC endoprote-
ase. They successfully enriched the samples in p-Ser by using a 
polyethyleneglycol-polystyrene (PEG-PS) resin functionalized 
with a methoxybenzylcarbamate spacer and cystamine. The 
methoxybenzylcarbamate linkage is stable under the alkaline con-
ditions used during β-elimination reaction but is highly acid-labile, 
allowing peptide release at acidic pH. This methodology allows 
direct enzymatic cleavage of the peptides at the site of phosphory-
lation, which facilitates phosphorylation site mapping [104].

In a different work, p-Ser residues were converted into gua-
nidinoethylcysteine (Gec), by adding a guanidinoethanethiol 
(GET) tag to β-eliminated peptides. Gec is recognized as a trypsin 
cleavage site, providing selective enzymatic digestion and thus 
facilitating the assignment of phosphorylation sites. Also, the basic 
guanidine moiety of the tag possesses superior proton affinity, 
increasing peak intensities in MS [105, 106].

In a one-step reaction, a fluorescent affinity tag (FAT) consist-
ing of rhodamine conjugated to a cysteamine moiety selectively 
modifies p-Ser and p-Thr through a β-elimination/Michael addi-
tion strategy. FAT-labeled peptides may then be enriched simply by 
using commercially available anti-rhodamine affinity columns [107].

His-tag may also be used to chemically derivatize p-Ser- and 
p-Thr-containing peptides. An engineered His-tag possessing six 
histidines, a specific recognition site of protease Factor Xa (IEGR), 
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a glycine spacer, and a sulfhydryl-containing cysteine residue was 
used to enrich phosphopeptides by Ni2+-IMAC. The thiol group of 
the side chain of cysteine functioned as a nucleophile in Michael 
addition reaction. His-tag peptides were then cleaved at the 
C-terminal side of arginine of the recognition sequence [108]. 
A chemically engineered biotinylated tag, consisting of a biotin 
group, a base-labile 4-carboxy fluorenylmethoxycarbonyl group, 
and a sulfhydryl moiety, was developed as a refinement of the pre-
viously described His-tag. This engineered biotin tag is smaller and 
easier to couple and requires mild alkaline conditions instead of the 
expensive Factor Xa upon release of the peptides [109].

Although β-elimination/Michael addition reactions are very 
well established and straightforward procedures, there are some 
drawbacks related to their application in phosphoproteomics. First, 
tyrosine residues are not able to undergo β-elimination. Second, 
cysteine residues need to be protected by oxidation or alkylation to 
prevent side reactions. Third, O-glycosylated residues also undergo 
β-elimination to form dehydroanalanyl residues, and therefore enzy-
matic deglycosylation is recommended to reduce nonspecific label-
ing. Fourth, deamidation of asparagine may occur, especially under 
strong alkaline conditions. Finally, Michael addition might occur at 
both Cα and Cβ, leading to the formation of epimers [80, 96].

Combining both IMAC and β-elimination methods minimizes 
their individual limitations. Phosphopeptides can be captured 
using an IMAC resin, which discriminates them from O-glycosylated 
residues, and then directly eluted by β-elimination. Several chemi-
cal tags can be reacted with the β-eliminated peptides, making 
them easily distinguishable from non-modified peptides that were 
also bound to the resin [110].

Phosphoramidate chemistry is a standard alternative to 
β-elimination/Michael addition procedures. Zhou et al. used a 
series of six chemical reactions, involving two carbodiimide- 
catalyzed condensations. Phosphate groups of the peptides were 
derivatized with sulfhydryl groups and then captured using iodo-
acetyl groups immobilized on glass beads. This method is highly 
selective and allows the identification of p-Ser, p-Thr, and p-Tyr 
residues. However, it presents a low recovery yield of approxi-
mately 20 % [111].

Using a different approach, phosphate groups can be activated 
using carbodiimide and imidazole and reacted with cystamine to 
form phosphoramidate bonds in a single step, eliminating the need 
to protect amine groups on the peptides. After the generation of 
free thiol groups by reduction, the peptides can be captured using 
maleimide groups immobilized on glass beads [112]. Using the 
same chemistry and as an alternative to the solid-phase strategies, 
phosphorylated peptides can be coupled to a soluble synthetic 
polyamine (dendrimer), allowing for homogenous reaction [113].
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