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Abstract

RNA interference (RNAi) screening is a state-of-the-art technology that enables the dissection of biological
processes and disease-related phenotypes. The commercial availability of genome-wide, short hairpin RNA (shRNA)
libraries has fueled interest in this area but the generation and analysis of these complex data remain a challenge.
Here, we describe complete experimental protocols and novel open source computational methodologies,
shALIGN and shRNAseq, that allow RNAi screens to be rapidly deconvoluted using next generation sequencing.
Our computational pipeline offers efficient screen analysis and the flexibility and scalability to quickly incorporate
future developments in shRNA library technology.

Background
RNA interference (RNAi) facilitates the assessment of
gene function by silencing gene expression using syn-
thetic anti-sense oligonucleotides or plasmids. It exploits
a physiological mechanism that represses gene expres-
sion, primarily by causing the degradation of mRNA
transcripts. In mammalian cells, physiological RNAi is
primarily mediated by non-protein-coding RNA tran-
scripts, known as microRNAs (miRNAs). miRNAs are
produced in a similar manner to mRNAs, but miRNAs
are processed into shorter RNA species containing a
hairpin structure, known as short-hairpin RNAs
(shRNAs). shRNAs are in turn processed into short dou-
ble-stranded pieces of RNA known as short interfering
RNAs (siRNAs). Within the multi-protein RNA-induced
silencing complex (RISC), one strand of a siRNA duplex
binds a protein-coding mRNA transcript that bears a
complementary nucleotide sequence. This interaction
allows a nuclease in the RISC to cleave and destroy the
protein-coding mRNA, therefore silencing the expres-
sion of the gene in a relatively sequence-specific
manner.

The experimental use of synthetic siRNAs and
shRNA-expressing plasmids has profoundly changed the
way in which loss of function experiments can be per-
formed. Previously, techniques that were either more
time consuming (gene targeting), or capricious (anti-
sense RNA), were used. Now libraries of RNAi reagents
can be purchased and used to silence almost any gene
at will. While siRNAs are typically used in multiwell
plate-based screening, shRNAs are commonly used for
pooled competitive screening approaches, often called
barcode screening.
Barcode screening offers improvements in speed and

scale compared to plate-based screening. In barcode
screening, a large population of cells is infected or trans-
fected with a pool of different shRNA vectors. Cells are
then split into two groups and one group is treated dif-
ferently from the other - for example, with a drug. After
this selective pressure is applied, cells are harvested
from both populations and integrated hairpins extracted
from the genomic DNA of each population by PCR.
The relative quantity of each hairpin in the two popula-
tions is then compared, to identify those genes that
modulate the response to the perturbation in question.
For example, in the case of drug screens, hairpins that
are over- or under-represented in the drug treated
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sample compared to the control sample could be con-
sidered as targeting genes that modulate sensitivity or
resistance to the drug, respectively.
Traditionally, Sanger sequencing has been used as a

readout for positive selection screens. However, this
approach is costly, time consuming and in general not
scalable. In the case of negative selection screens, micro-
array hybridization is frequently used as a readout [1,2].
This approach requires the production of custom micro-
array chips for each library, has a limited dynamic range
and is restricted by the varying effectiveness of indivi-
dual probes. Next generation sequencing (NGS) technol-
ogies have recently emerged as a cost-effective means of
generating large quantities of sequence data in a short
time. Using massively parallel sequencing in place of
Sanger sequencing or microarray-based approaches
offers several potential advantages in terms of flexibility
of input library, scalability and dynamic range.
Already, a small number of laboratories have used

shRNA screens coupled to NGS [1,3], but as yet detailed
methods for this form of analysis are not available,
despite the commercial availability of shRNA libraries
and the growing availability of access to NGS. Moreover,
one critical issue that limits the wider exploitation of
this technology is the absence of a freely available and
simple package for the analysis of shRNA NGS data.
With this in mind, we describe here detailed protocols
for pooled shRNA screening coupled to NGS screen
deconvolution. As part of our optimization of this tech-
nology, we have also developed a computational pipeline
to analyze NGS data from shRNA screens and describe
two open source analysis packages, shALIGN and
shRNAseq, designed to simplify barcode screen analysis.
Using shRNA pools with engineered depletion, we also
assess the sensitivity and reproducibility of this method.
As the cost of both shRNA libraries and NGS is rapidly
decreasing, these methods and analytical tools may aid
the wider adoption of this powerful technology.

Results and discussion
shRNA barcode screening is a lengthy procedure that
required considerable optimization. Here we describe
how methods were selected and optimized for the entire
shRNA barcode screening workflow from library pro-
duction to statistical analysis (Figure 1).

Bacterial culture
One factor that could affect screen performance is the
variation of representation of individual hairpins within
a screening pool. Since library production relies on the
growth of thousands of bacterial cultures, it is inevitable
that there will be some variation in growth in individual
wells within a plate, and between plates within a screen-
ing pool. Consequently, it is important to be systematic

about the generation and pooling of bacterial cultures.
First, all liquid handling was performed robotically to
ensure that most errors are systematic and can be easily
traced. Second, growth temperatures and times were
tightly controlled. Culture plates were stacked evenly to
ensure even air circulation to all plates and wells. Hair-
pin plasmids were grown in small batches (ten plates) to
facilitate quality control. Since recombination was a pro-
blem in previous generations of shRNA libraries, the
quality of plasmid DNA was checked by restriction
enzyme digest following plasmid purification. Once
screening pools had been constructed, the plasmid pool
was sequenced on the Illumina Genome Analyzer IIx
(GAIIx) to determine hairpin representation (Figure 2a).
Although it is somewhat difficult to normalize the
representation of individual hairpins in large screening
pools, it is important to minimize the variation within
the population to reduce the chances that observed
screen results can be attributed to issues in starting
hairpin abundance. Although these issues can be par-
tially mitigated at the statistical analysis stage (see
below), careful library preparation and quality control
can minimize variance in shRNA representation.

Lentiviral packaging
Packaging of hairpin plasmid into lentiviral vectors
requires large numbers of packaging cells and high
transfection efficiency to ensure faithful representation
of the plasmid pool in the viral supernatant. We have
successfully employed two approaches to transfection of
shRNA plasmids into packaging cell lines, calcium phos-
phate- and lipid-based transfection. Both methods were
routinely used and returned viral supernatants of similar
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Figure 1 Workflow of a typical shRNA barcode screen. The
steps in blue boxes represent the experimental phase, whereas the
steps in red boxes represent the computational analysis phase.
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titer (data not shown). cDNA generated from viral
supernatant was sequenced and compared to the plas-
mid DNA to ensure good representation of the library
has been achieved (Figure 2a). Typically, cDNA from
viral supernatant showed slightly greater variance in
hairpin representation than the plasmid pool. Further-
more, hairpin representation at early time points post-
viral integration demonstrated better correlation with
plasmid representation than with virus (Figure 2a). This
suggested that the viral cDNA preparation step was a
considerable source of noise and thus plasmid shRNA
sequence most likely represents a better reference for
starting hairpin representation than virus. This analysis
also demonstrated a high concordance between techni-
cal replicates, where the same DNA library was
sequenced on different GAIIx runs.
Typically, lentiviral stocks were transduced using a

multiplicity of infection (MOI) of 0.7 to reduce the like-
lihood of multiple integrations per cell and the

emergence of combinatorial phenotypes. Accurate deter-
mination of viral titer in target cell lines allowed subse-
quent infection of screening cell lines at intended
efficiencies. We tested a wide range of breast tumor cell
line models and the majority infected at > 60% using
viral titers of 106 to 107 TU/ml (Figure 2b). Those that
did not infect at high efficiency were puromycin selected
to give a final green fluorescent protein (GFP)-positive
cell population of > 90% (Figure 2c).

Viral transduction and cell sampling
Regardless of the design of a particular screen, the man-
ner in which the viral transduction and subsequent cell
culture are performed is crucial to the success of the
screen. The maintenance of hairpin representation (the
number of cells infected with each shRNA) and logarith-
mic cell growth are of particular importance. Through-
out all shRNA barcode screens, we maintained an
average representation of 1,000 cells per shRNA
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Figure 2 GIPZ library plasmid/viral pool production and target cell line infection. (a) Scatter plots showing pair-wise comparisons of log2
normalized read counts from shRNA plasmid, virus and two technical replicates of shRNA constructs amplified from genomic DNA 3 days post-
infection of MCF7 and HeLa cells. Numbers indicate Pearson correlation between conditions. Technical replicates show high correlation. Plasmid
shows high correlation with infected cells in both cell lines. Virus shows weaker correlation with both plasmid and infected cells. (b) Test
infection of a panel of breast cancer cell lines. Most cell lines show > 60% green fluorescent protein (GFP)-positive cells 3 days after infection.
Those that did not were puromycin selected to increase the population of GFP-positive cells to > 90%. (c) Fluorescence-activated cell sorting
(FACS) profiles showing the percentage of GFP-positive cells before and after puromycin selection in A549 cells.
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construct to maximize the potential for phenotypic
effects from each shRNA being observed in the final
analysis. Since barcode screening is a competitive
growth screen, ensuring cells are in log growth at all
times during the screen is critical to minimize changes
in representation caused by localized restriction of cell
growth due to over-confluence. Consequently, we
recommend ensuring that cells are never allowed to
achieve more than 70% confluence.
After viral integration and puromycin selection were

complete, cultures were divided into two or more sets,
depending on the experimental design. For example, in
a typical drug sensitivity/resistance screen, cultures are
divided into reference (vehicle treated) and test (drug
treated) sets. Alternatively, in a simple viability screen, a
sample of cells can be taken and stored for analysis at
each passage, to generate a viability time-course. One of
the strengths of the lentiviral system is the stable inte-
gration of hairpins; this allows the use of longer experi-
mental time-courses than could generally be performed
using siRNA screening. As a consequence, final screen
results were typically assessed 2 to 3 weeks after divid-
ing the cells into two arms. Every time the cultures
were divided or sampled, aliquots were taken to assess
the cell number (to construct growth curves) and the

percentage of GFP-positive cells (to assess the number
of cells required to maintain hairpin representation). To
minimize screen variability, we use the same passage
cells for each screen replicate. We also maintain consis-
tent batches of media, serum, viral supernatant and tis-
sue culture plasticware for all screen replicates, again to
minimize experimental variation.

Barcode recovery
We used next generation sequencing to identify the fre-
quency of each shRNA construct in screen cell popula-
tions. To facilitate this we used PCR amplification of
genomic DNA from screen cell populations. PCR pri-
mers complementary to constant regions found in all
shRNA constructs (Figure 3) were used to amplify the
shRNA target sequence that is specific to each indivi-
dual shRNA construct. The PCR primers also encom-
passed p5 and p7 sequences that allow sequence capture
and sequencing-by-synthesis on the Illumina GAIIx plat-
form (based on a modification of primer sequences
described in [4]).
To enable sufficient representation of each shRNA in

the screening pool, multiple PCR reactions were per-
formed in parallel to generate the sequencing library
from each shRNA pool. For example, to maintain a
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Figure 3 PCR amplification, quantitative PCR and Illumina sequencing schema. (a) Diagrammatic representation of the complete
integrated shRNA construct. LTR, long terminal repeat; Ze, zeomycin resistance bacterial selectable marker; tGFP, turbo GFP; IRES, internal
ribosome entry site; Puro, puromycin mammalian selectable marker; RRE, Rev response element; sinLT, self-interacting LTR. (b) The structure of
the shRNAmir construct. The sense and antisense shRNA sequences hybridize to form a hairpin loop structure. (c) PCR primer alignment to the
shRNA construct. The PCR primers incorporate p7 and p5 sequences to enable capture on an Illumina flowcell. (d) Sequencing primer,
quantitative PCR (qPCR) primer and qPCR dual label probe alignment to the shRNA PCR product. CMV, cytomegalovirus; DLP, dual-labeled probe.
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representation of 1,000 cells per shRNA in a pool of
10,000 shRNAs at an MOI of 0.7, PCR amplification
from 1 × 107 cells is required. Since a diploid human
cell contains approximately 6 pg genomic DNA, we per-
formed PCR amplification from 60 μg total genomic
DNA using 30 parallel PCR reactions, each with 2 μg of
genomic DNA.

DNA quantification for next generation sequencing
Accurate quantification of purified PCR products is
required to achieve optimal cluster densities (the density
of template clusters on the flowcell surface) in Illumina
sequencing. Insufficient or excessive template results in
poor sequencing yield with either scarce or overlapping
signals. Real-time PCR has previously been used in Illu-
mina sample preparation protocols to overcome the
detection limits of capillary electrophoresis (typically 10
to 0.1 ng/μl) and enable standardization of cluster num-
ber per tile [4]. This led us to develop two robust quan-
tification assays for Illumina DNA libraries (Figure 4).

First, we utilized the complement of the Illumina
adapter sequences (p5 and p7, common to all Illumina
sequencing libraries) as amplification primers in an
intercalating dye-based quantitative PCR (qPCR) assay
(SybrGreen). This is similar to an approach applied to
the quantification of 454 Roche pyro-sequencing sam-
ples [5]. Second, for the quantification of DNA con-
taining hairpin inserts in shRNA-derived Illumina
libraries, we established a second strategy that utilized
a dual-labeled probe (DLP) hydrolysis qPCR assay
(Taqman). Here we designed a DLP complementary to
a constant internal region in shRNA-specific Solexa
PCR products. We based this approach on a reported
alternative Taqman assay defined for an established
Illumina sequencing application, pair-end RNA
sequencing (RNAseq) [4]. Overall, the implementation
of both of these innovative strategies allowed us to
reliably quantify shRNA templates prior to massively
parallel sequencing, leading to high numbers of
mapped reads passing quality filters.

(a) (b)

(c)

qPCR Accurate Quanitification

Figure 4 Quantitative PCR quantification of PCR products. Quantitative PCR (qPCR) assay designed to detect and quantify all amplifiable
solexa molecules (using oligos p5/p7 and SybrGreen) or shRNA-specific PCR products (using Taqman, amplification primers p5/p7 and a dual-
labeled probe). (a) shRNA PCR products quantified against a library of known concentration. (b) Standard curve constructed using a ten-fold
dilution series covering 100, 10, 1 and 0.1 pM. (c) Agilent electrophoresis profile of reference library.
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Sequencing data analysis
Raw images from the Illumina GAIIx were processed
using the GApipeline (version 1.4 or higher) and result-
ing quality filtered short reads were aligned to the refer-
ence shRNA library using the shALIGN script. We
developed shALIGN to circumvent a number of issues
associated with other open source aligners commonly
used in NGS analysis. Aligners such as Bowtie [6] and
BWA (Burrows-Wheeler Aligner) [7] are specifically
designed to align short reads to large genome sequences,
rather than short shRNA sequences. Aligning reads to
the genome would cause complications in the down-
stream analysis. First, using a whole genome alignment,
reads could align to multiple genomic regions, which
could allow the same read to be counted multiple times,
or assigned at random to a particular location. Second,
when using a whole genome alignment, reads with PCR
or sequencing errors could align in different regions to
unaltered reads, again giving a false picture of the num-
ber of reads mapping to a particular target. In contrast,
shALIGN aligns reads directly to the target shRNA
library, aligns each read to a single library construct,
and ensures that all ambiguous reads are excluded from
the final analysis. Typically, > 90% of short reads aligned
to the reference shRNA sequence library using this
method. Resulting read counts per hairpin were statisti-
cally analyzed using a bespoke R-based package, shRNA-
Seq. This analysis revealed systematic pool-specific
biases in the log ratio of read counts from different
screen arms at different levels of read abundance (Figure

5a). As a consequence, the log ratio was normalized to
the average hairpin abundance using loess regression,
and the normalized scores were re-scaled by the pool
median absolute deviation (MAD; a robust estimator of
variance) to ensure comparable distributions (Figure 5b).
In some cases, we observed considerable heterogeneity
in the distribution of normalized scores from biological
replicates from the same screen, prompting us to per-
form a rank normalization across replicates to ensure
identical distributions.

Screen performance
We performed a number of experiments to evaluate
screen performance in terms of sensitivity and reprodu-
cibility. To establish the sensitivity of the screening sys-
tem, we performed a series of engineered depletion
experiments (Additional file 1). To do this, we manually
altered the representation of subsets of hairpins in a sin-
gle screening pool, then performed a short-term screen
(long enough for viral integration, but minimizing hair-
pin viability effects) and examined the difference in hair-
pin representation between the non-manipulated
reference set and the systematically depleted set. These
experiments demonstrated that we could detect 75% or
50% depletion in hairpin abundance with high accuracy
in a single biological replicate (Figure 6a, b). Indeed, for
the 75% depleted shRNA set, only seven depleted hair-
pins (0.74% of total depleted) could not be distinguished
from the main population of non-manipulated hairpins
at a threshold that detected no false positives (Table 1).

(a) (b)

Figure 5 Processing screen data to remove biases associated with differential hairpin abundance. Plotting of the log ratio of paired
samples (for example, reference-depletion) frequently revealed biases with respect to average hairpin abundance. Consequently, the data were
normalized using loess regression to remove this bias. (a) The loess fit lines from four biological replicates of a 10 k pool viability screen in MCF7
cells when the log ratio is plotted against log mean hairpin abundance. (b) The same plot post-loess normalization showing the standardization
of the curves.
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The false negative rate was slightly increased in the 50%
depleted hairpin set. Even when the shRNA constructs
were depleted by 25%, half could still be distinguished
from the main hairpin population with a 0% false posi-
tive rate (Table 1). The majority of false negatives in the
50% and 75% depleted hairpin groups were in hairpins
with low starting representation. Filtering of the data to
remove hairpins with low representation in the reference
set resulted in a reduced false negative rate associated
with a 0% false positive rate (Table 1). This appears to
represent a considerable improvement in sensitivity in
comparison with microarray-based methods. Previous
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Figure 6 Assessing the sensitivity and reproducibility of the screening platform. We systematically depleted subsets of hairpins by 25%,
50% or 75% within a 10 k pool and compared them to a non-depleted reference set 3 days after infection of MCF7 cells (see also Additional
File 1). (a) Scatter plot of log2 normalized read counts from reference and depletion sets. (b) Density plot showing the distributions of the
depleted hairpin subsets: 25% depleted hairpins are plotted in red, 50% depleted in green and 75% depleted in blue. The screening
methodology was capable of detecting 50% depletion in hairpin representation with high accuracy in a single experiment. (c) Scatter plot of the
depletion-reference log ratio from two biological replicates, indicating a high correlation (r2 = 0.92) and thus a reproducible screening method.
(d) Plot depicting the false positive rate at a fixed false negative rate of 5% in a reference depletion experiment using different numbers of PCR
cycles, indicating a decrease in the false positive rate with decreased PCR cycles.

Table 1 Detection of depleted hairpins in reference
depletion screens

Un-filtered Filtered

Depletion Min FPR FNR Min FPR FNR

25% 0.00% 50.05% 0.00% 49.95%

50% 0.00% 4.21% 0.00% 2.89%

75% 0.00% 0.74% 0.00% 0.00%

The false positive and false negative rates at a range of log ratio thresholds
were calculated by comparing each depletion group to the non-depleted
hairpins. This was repeated for all hairpins and after filtering to exclude
hairpins with low representation < 100 raw reads) in the reference set. The
minimum false positive rate (Min FPR) found is shown along with the
associated false negative rate (FNR).
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work assessing the use of custom designed microarray
sets to deconvolute shRNA screens showed that even
the best-performing microarrays (barcode tiling arrays)
gave a mean test/reference ratio of 0.78 for a 50% deple-
tion [8], whereas our method offers a ratio of 0.54.
Furthermore, barcode tiling arrays detected an 80%
depletion with a test/reference ratio of 0.49 [8], whereas
our NGS method gave a ratio of 0.33 for a depletion of
75%. Thus, the NGS-based approach provides a greater
range of measurements and is better able to discrimi-
nate true depletions from background noise.
Although NGS performs better than microarray hybridi-
zation for screen deconvolution, the barcode screening
format is subject to a significant degree of stochastic
noise regardless of the hairpin frequency detection
method, and biological replication of screens is almost
certainly required to overcome this. We performed two
biological replicates of the reference depletion screen.
There was a good correlation between log normalized
read counts from replicate screens (reference arm r2 =
0.89). Similarly, a high correlation of depletion-reference
log ratios was observed between biological replicates (r2
= 0.92; Figure 6c), suggesting that screens are highly
reproducible. As expected, higher levels of noise were
observed between biological replicates than between
technical replicates.
Using the reference-depletion experimental frame-

work, we also titrated the number of PCR cycles
required to give faithful representation of the starting
material. This demonstrated that PCR amplification
acted as a source of noise in the experiment and that
reducing the number of PCR cycles resulted in a
decreased false positive rate at a set false negative rate
of 5% (Figure 6d). Consequently, we opted to use 26
PCR cycles as this generated a visible band on the gel
but still resulted in a relatively low error rate.
We also made use of the reference depletion dataset

to assess the minimum amount of sequencing reads
required to detect a reduction in shRNA representation.
Many of the more novel sequencing platforms, such as
the Illumina MiSEQ, are able to generate five million
reads in a single run, offering the potential to use these
cheaper platforms for shRNA screen deconvolution. We
sampled reads from one reference depletion experiment
to generate two additional datasets that contained either
approximately 5 million reads or approximately 2.5 mil-
lion reads, rather than the 10 million reads used in the
previous analysis. This analysis revealed that a 50%
reduction in shRNA representation could be detected
with high sensitivity and specificity even in 2.5 million
reads (Table 2; Additional file 2).
To test sensitivity in a genuine screen setting using

different screening pool sizes, we performed a series of
screens for viability in MCF7 cells. To assess screen

performance, we used a number of genes where pre-
vious observations had shown that siRNA silencing
inhibited MCF7 cells as measured using a viability assay
based on cellular ATP levels [9]. We validated the viabi-
lity effects of a set of GIPZ library shRNAs targeting
these genes using single hairpin GFP competition stu-
dies. We also validated a number of negative control
non-targeting shRNAs using this method. This revealed
a total of six shRNAs, which caused a > 50% depletion
in GFP-positive cells over 2 weeks, along with 11 non-
targeting hairpins that showed no viability phenotype in
the same period (Additional file 3).
Increased pool size leads to fewer reads per shRNA,

and reduces screen sensitivity and potentially reliability.
Therefore, we decided to compare the performance of
pools containing 10,000, 5,000 or 2,000 shRNA con-
structs in a 14 day cell viability screen. To facilitate
screen comparison, the 2,000 shRNA pool was a subset
of the 5,000 shRNA pool and the 5,000 shRNA pool
was a subset of the 10,000 shRNA pool, and the set of
validated positive and negative control shRNAs
described above were added to each pool. When the
2,000 shRNAs represented in all three pools were exam-
ined, there was a high correlation between different pool
sizes (Figure 7a). Furthermore, five out of six positive
control hairpins were identified as hits in all three
screening pool sizes (Figure 7b). There was a clear dis-
tinction between validated positive and negative control
scores in all screens (Figure 7b). However, there was a
larger than expected variation in the negative control
score, with validated controls changing representation
by up to 25%. This effect was also seen in the distribu-
tion of 101 non-targeting shRNAs within the 10,000
shRNA pool (Figure 7c). Furthermore, the depletion
observed in positive control hairpins was smaller than

Table 2 Comparison of reference-depletion screens at
different read depths

Total reads Depletion Min FPR FNR

10 million 25% 0.00% 49.95%

10 million 50% 0.00% 2.89%

10 million 75% 0.00% 0.00%

5 million 25% 3.41% 42.35%

5 million 50% 0.02% 1.28%

5 million 75% 0.00% 0.00%

2.5 million 25% 9.65% 49.95%

2.5 million 50% 1.70% 1.07%

2.5 million 75% 0.00% 0.00%

The false positive and false negative rates at a range of log ratio thresholds
were calculated by comparing each depletion group to the non-depleted
hairpins after filtering to exclude hairpins with low representation < 100 raw
reads) in the reference set. The minimum false positive rate (Min FPR) found
is shown along with the associated false negative rate (FNR). We were able to
consistently detect a 50% depletion in hairpin representation using a total of
only approximately 2.5 million reads.
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expected based on single hairpin GFP competition
assays (Figure 7b).
These results suggested that the scoring system per-

forms consistently regardless of pool size and the screen
is as sensitive in a 10,000 shRNA pool as in a 2,000
shRNA pool. Therefore, to maximize throughput and
minimize expense, we decided to use 10,000 shRNA
pools for screening. Since the genome-wide library
encompasses approximately 60,000 reagents, we rea-
soned that a pool size of approximately 10,000 shRNAs
would be an ideal choice for this library. This would
enable a genome-wide screen to be run on a single

eight-lane Illumina flow-cell along with appropriate
sequencing controls. Furthermore, a 10,000 shRNA pool
size would require approximately 15,000,000 cells to be
maintained in tissue culture over the course of the
experiment, assuming an MOI of 0.7 and a representa-
tion of 1,000 cells per hairpin. This pool size enabled us
to maintain the simplicity and reproducibility of the
associated tissue culture work, which might become
cumbersome in larger pool sizes.
To establish the reproducibility of the screening meth-

odology, we repeated the screen for cell viability in
MCF7 cells in a total of four biological replicates. The

(c) 

(b) (a) 

(d) 
 

Figure 7 MCF7 viability screen performance in different pool sizes. (a) Scatter plots of 2,000 hairpins common to the 2,000, 5,000 and
10,000 shRNA pools showing high correlation of normalized scores (median of four replicates) between different pool sizes. Numbers indicate
Pearson correlation between pools. (b) Plot of observed barcode screen log ratios for validated positive and negative controls in the 2,000, 5,000
and 10,000 shRNA pools versus expected scores based on single hairpin GFP competition assay scores. Positive controls are in blue and negative
controls are in red. The horizontal dotted line indicates the threshold used for hit calling in the screen. Based on this threshold, 5 out of 6 valid
positive controls were called hits whereas 0 out of 11 negative controls did not score as hits. (c) Distribution of log ratios of 101 non-targeting
hairpins in the 2 k pool. (d) Scatter plots of z-scores from four biological replicates of the 10 k pool MCF7 viability screen, indicating a good
agreement between replicates. Numbers indicate Pearson correlation between replicates.
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replicates showed high correlation despite being per-
formed by different researchers at different times, sug-
gesting that the screening method is robust (Figure 7d).
Furthermore, > 98% of library hairpins were identified
in all screen replicates, compared to 49% of half-hairpin
probes and 82% of barcode tiling probes having intensity
above background in microarray-based approaches [8].
This suggests a greatly improved sensitivity for the NGS
profiling approach.

Conclusions
Here we describe detailed and optimized methods for
high-throughput shRNA screening using NGS. Using mas-
sively parallel sequencing in place of microarray hybridiza-
tion for deconvolution of shRNA barcode screen results
offers several advantages. Firstly, we demonstrate that
NGS profiling offers greater sensitivity, enabling more
hairpins to be detected above background. Secondly, we
show that NGS profiling has a better dynamic range when
compared to literature examples of microarray-based
approaches, since sequencing cannot be easily saturated in
the same way that hybridization can, thus enabling a
greater separation of true effects from background noise.
Thirdly, sequencing of tags is both scalable and flexible,
enabling new hairpins to be incorporated into the work
schema without having to print a new batch of custom
microarrays. Finally, our computational pipeline offers the
ability to identify sequences where bases are not called
due to sequencing errors, or mutated during PCR, since
short reads can be matched inexactly to the reference
library of shRNA barcode sequences.
We do note that one of the major limitations of any

shRNA library is the efficacy of gene silencing, an issue
we have not addressed here. However, the ability to
rapidly assess silencing capacity and thus develop algo-
rithms that would predict effective gene knockdown is
improving [10]. In addition, an increase in the redun-
dancy of shRNA libraries (the number of different
shRNA constructs per gene) will also improve the gen-
eral effectiveness of pooled RNAi screens. Finally,
improvements in sequencing technology will undoubt-
edly increase read number per lane; these developments
will thus enable the use of larger shRNA pool sizes that
could accommodate libraries with higher levels of
redundancy. Nevertheless, even with the existing com-
mercial shRNA libraries and also the ever-increasing
availability of cost-effective NGS, the methods we
describe here should enable the wider applicability of
this powerful technology.

Materials and methods
shRNA library
Although the following methods are suitable for most
viral shRNA libraries, the work described here used the

Thermo Scientific Open Biosystems GIPZ Lentiviral
human shRNAmir library (version 2). These methods
could be used for other shRNA libraries, such as the
RNAi consortium library [11], with altered PCR and
sequencing primers. The GIPZ Lentiviral human shRNA-
mir library we used encompasses 61,416 distinct hairpin
constructs targeting 15,739 human protein coding genes
(based upon the Ensembl 56 build). In the GIPZ vector
the 19-nucleotide siRNA sense sequence is inserted into
a human mir-30 backbone [12]. shRNA sequences are
designed to have destabilized 5’ ends in the antisense
strand to encourage stand-specific incorporation into the
RISC [12]. The vector backbone includes a GFP-coding
sequence that is transcribed as part of a bicistronic tran-
script with the shRNA sequence allowing the visualiza-
tion of shRNAmir expressing cells, and a puromycin
resistance marker for selecting infected cells.

Bacterial culture
LB media (1 ml) containing 50 μg/ml ampicillin was
added to 96-deep-well microplates using a multidrop
(Thermo Fisher, Waltham, MA, USA), and 1 μl of each
bacterial inoculant (extracted from fully thawed 96-well
glycerol stocks) was seeded per well using a Beckman
FX robot. Culture plates were stacked evenly in shaking
incubators (200 rpm) ensuring even air circulation. Fol-
lowing 16 hours of incubation at 37°C, cultures from a
single batch of plates were pooled and plasmid DNA
was isolated using a Plasmid Maxi kit (Qiagen, Crawley,
UK) and normalized to a standard concentration (0.5
μg/ml). Plasmid DNA pools were combined in equal
concentrations to create screening pools of different
complexities.

Lentiviral packaging
For both calcium phosphate- and lipid-based transfec-
tion using lipofectamine 2000, 293T cells were seeded
onto 10 cm dishes (50 to 80% confluent), and co-trans-
fected with the desired shRNA library pool, along with
the packaging plasmids psPAX2 and pMD2.G [13], in a
Safety Category II facility. Thirty-six hours post-trans-
fection, supernatant was collected, supplemented with 4
μg/ml polybrene and filtered through a 0.45 μm mem-
brane. Viral supernatant from multiple 10 cm dishes
was pooled, aliquoted and stored at -80°C for future use.
Determination of viral titer allowed subsequent infection
of screening cell lines at intended efficiencies. For this,
both target and reference 293T cells were infected with
1:2 serial dilutions of the virus. Virus was removed 24
hours later and cells incubated for a further 48 hours at
37°C, after which the proportion of GFP-positive cells
was determined by fluorescence-activated cell sorting
(FACS) to provide an estimate of the fraction infected
and viral titer.
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Viral transduction and cell sampling
Cells were infected with viral pools using a MOI of 0.7
and media replenished after 16 hours. Seventy-two
hours post-infection, when viral integration was pre-
sumed complete, cells were exposed to 1 mg/l puromy-
cin for 2 days to select for cells with viral integration.
Following puromycin selection, cultures were divided
into two or more replica cultures, and continuously cul-
tured for 2 to 3 weeks, dividing cultures regularly to
ensure continued logarithmic growth and to maintain
hairpin representation at approximately 1,000 cells per
shRNA. Cells were harvested in suspension and either
stored frozen at -20°C or processed immediately as
described below.

Barcode recovery
Genomic DNA extraction and purification from cul-
tured cells was carried out using a Gentra Puregene kit
(Qiagen). shRNA sequences integrated into genomic
DNA were recovered by PCR amplification using the
following primers: p5+mir30, 5’-AATGATACGGCGAC-
CACCGACTAAAGTAGCCCCTTGAATTC-3’; p7
+Loop, 5’-CAAGCAGAAGACGGCATACGATAGT-
GAAGCCACAGATGTA-3’. PCR was performed on
PTC-225 3DNA Engine Tetrads (Bio-Rad, Hemel
Hempstead, UK) using Amplitaq Gold polymerase and
20 to 33 cycles of denaturation (95°C, 30 s), annealing
(52°C, 45 s) and extension (72°C, 60 s). In general, 2 μg
genomic DNA was used per 100 μl PCR reaction and 48
PCR reactions were performed per 10,000 shRNA pool.
PCR products from multiple parallel reactions were sub-
sequently pooled, concentrated and purified using a
QIAquick gel extraction kit (Qiagen).

Quantitative PCR DNA quantification
For absolute DNA quantification, real-time PCR was
performed using two alternative strategies: SybrGreen
and TaqMan. Both approaches used the appropriate
universal 2X PCR mix from Applied Biosystems and the
following oligonucleotides at 250 nM each: P5, AATGA-
TACGGCGACCACCGA (20-mer); and P7, CAAGCA-
GAAGACGGCATACGA (21-mer). For TaqMan
only, 250 nM of a 21-mer DLP was included
(CCCTTGAATTCCGAGGCAGTA), with 5’ reporter
(6FAM fluorescein) and 3’ quencher (tetramethylrhoda-
mine (TAMRA)) as detectors, and ROX passive refer-
ence dye. Forty-cycle measurements of triplicate 25 μl
reactions containing 10% template sample at a theoreti-
cal concentration of 10 pM (as defined by Agilent Bioa-
nalyzer) were carried out in an ABI 7900 instrument.
Solexa library concentrations were then inferred by
comparing measurements to the standard curve using
the Sequence Detection System (SDS) v2.2.1 software.
To generate the standard curve, a 10-fold dilution series

of a standard 100 nM sample (7.7 ng/μl for 117 bp) was
used (final range 0.1 to 100 pM).

Barcode sequencing
Following quantification, denatured shRNA-seq libraries
(3 pM in NaOH) were pumped through eight-lane flowcell
channels using the cluster station of an Illumina GAIIx
sequencing platform. Bridge PCR was executed using the
manufacturer’s protocol (Amplification-linearization-
blocking and multiple primer hybridization version 3).
The sequencing primer (TAGCCCCTTGAATTCC-
GAGGCAGTAGGCA) was designed to sequence from
two bases upstream of the 19 bp shRNA sense sequence.
Twenty-six cycles of sequencing-by-synthesis (single read)
were performed on an Illumina GAIIx according to the
manufacturer’s protocol (version 4).

Image analysis and base calling
Raw image data were analyzed using GA pipeline v1.4.
PhiX was run as a control to ensure correct phasing.
Base calling was performed by the Bustard package
using the Chastity filter with a threshold of 0.6. The
Chastity filter was applied to bases 3 to 21 of the 26
bases sequenced (the shRNA sense sequence) only. A
maximum of two uncalled bases were allowed in these
19 bases. FASTQ files from this study are available at
the ROCK web page [14] and at the European Nucleo-
tide Archive [15].

shRNA library alignment
FASTq files generated by the GA pipeline were mapped
to reference shRNA libraries using a bespoke Perl pro-
gram, shALIGN. shALIGN trims short reads to the 19
bp sense sequence based on user-defined base positions,
and groups identical reads disregarding sequence quality
scores. shALIGN employs a hamming distance algo-
rithm to align binned short read sequences to a user-
defined reference shRNA library provided in a standard
tab-delimited text format. The user is able to specify the
maximum number of mismatches permissible between
the short read and the reference. This alignment is
equivalent to using Bowtie with the flowing flags: –best
–strata -v 2 -m 1 -a. However, using shALIGN negates
the need to construct and index a specific Bowtie refer-
ence library by inserting the sense sequence of each
shRNA into a longer sequence. It also saves the need to
write a script to parse the Bowtie output to count the
number of reads mapped to each library construct at
each edit distance. For the GIPZ library this was set at
two mismatches as the vast majority of library sequences
were separated by an edit distance of greater than two.
All short reads that match to more than one library
sequence at the same distance were excluded from
further analysis, and logged as ambiguous. The

Sims et al. Genome Biology 2011, 12:R104
http://genomebiology.com/2011/12/10/R104

Page 11 of 13



shALIGN program outputs the total number of short
reads matching to each library hairpin in each lane. We
routinely load screen results into the ROCK breast can-
cer functional genomics database [16], where screen
reagents are fully annotated to the latest genome build.
ROCK provides a mechanism for the sharing and publi-
cation of raw and processed RNAi screen results. Source
code and linux binaries for the shALIGN program are
available from the ROCK web page [14].

Statistical analysis
To facilitate statistical analysis of screen results, we have
developed a novel R package, shRNAseq. This package
is based on the NChannelSet class in Bioconductor [17],
originally designed to handle microarray gene expression
data, and serves as a single user-friendly package
encompassing all of the steps required. shRNAseq reads
in matrices of short read counts per shRNA construct,
generated by shALIGN, along with annotations of
shRNA constructs and sequenced samples.
The package is designed to compare a pair of related

screen conditions. For example, in a viability screen one
would compare the hairpin representation in the start-
ing population (which could be from the plasmid, virus
or an early time point post-viral integration) to the hair-
pin representation at the end of the screen (for example,
after 2 weeks). Alternatively, for a drug screen one
would compare the drug and vehicle treated arms at the
same time point. The package can analyze multiple
screen replicates simultaneously. Each screen condition
is loaded into the package separately, and annotated
using files describing the shRNA constructs and the
sample treatments. After data loading, read counts per
hairpin are log2 transformed and then the ratio of the
two screen conditions is calculated. This log ratio is
normalized using a loess fit to the log mean read count
for each screening pool. The distribution of normalized
scores per pool is then rescaled by dividing by the pool
MAD. If appropriate, screen biological replicates can be
quantile (rank) normalized to ensure identical distribu-
tions, and scores can be summarized across replicates
using a variety of methods (for example, median, regu-
larized t-test). Finally, the package plots screen distribu-
tions before and after normalization and reports a table
of normalized scores. The R package is accompanied by
a detailed vignette describing the methodology and
usage at the ROCK web page [14].
Hit detection was performed using three different meth-

ods. In the first method, replicate scores for each hairpin
were summarized using the median and a hit threshold
estimated from a quantile-quantile plot, identifying hairpin
scores that significantly differed from the normal distribu-
tion. Second, the Gene Set Analysis R package [18] was
used to look for enrichment or depletion of sets of

hairpins targeting the same gene. This approach makes
use of the hairpin redundancy within the library and
works best in libraries containing multiple hairpins per
gene. Finally, the RIGER algorithm [19] in the GENE-E
java package [20] was also used to look for enrichment of
shRNAs targeting the same gene. Here we used the log
fold change metric and weighted average method. Source
code and documentation for the shRNAseq R-package are
available from the ROCK web page [14].

Supplementary methods
Full methods, including a detailed screening manual, are
provided in Additional file 4.

Additional material

Additional file 1: Engineered depletion of shRNAs. To establish the
sensitivity of the screening system, we performed a series of engineered
depletion experiments. We manually altered the representation of
constructs in a 10,000 shRNA screening pool so that approximately 1,000
hairpins were depleted by 75%, approximately 1,000 depleted by 50%
and approximately 1,000 depleted by 25%.

Additional file 2: Detection of hairpin depletion at reduced read
counts. Reads were sampled at random from an engineered depletion
experiment involving approximately 10 million reads to give datasets of
either approximately 5 million or approximately 2.5 million reads in total.
shRNA depletion was estimated from these new datasets to show that
depletion of 50% could be observed in datasets containing
approximately 2.5 million reads.

Additional file 3: Positive and negative controls for the MCF7
viability screen were established using a single hairpin GFP-
competition assay. The bar chart indicates the proportion of GFP
positive cells remaining after 2 weeks of culture. The bar represents the
average from three biological replicates. The error bars indicate the
standard deviation.

Additional file 4: Detailed shRNA screening protocols. This Word
document describes in detail all of the steps of the shRNA screening
protocol from library generation to massively parallel sequencing.

Abbreviations
DLP: dual-labeled probe; GAIIx: Genome Analyzer IIx; GFP: green fluorescent
protein; MAD: median absolute deviation; miRNA: microRNA; MOI:
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