Ana Verónica Domingues

Ana Verónica Domingues
University of Minho · Life and Health Sciences Research Institute

Master of Science

About

25
Publications
3,565
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
492
Citations
Additional affiliations
September 2019 - present
University of Minho
Position
  • PhD Student
Education
September 2016 - June 2018
University of Minho
Field of study
  • Health Sciences
September 2013 - July 2016
University of Minho
Field of study
  • Biochemistry

Publications

Publications (25)
Article
Full-text available
The nucleus accumbens (NAc) is a key brain region for motivated behaviors, yet how distinct neuronal populations encode appetitive or aversive stimuli remains undetermined. Using microendoscopic calcium imaging in mice, we tracked NAc shell D1- or D2-medium spiny neurons’ (MSNs) activity during exposure to stimuli of opposing valence and associativ...
Preprint
The nucleus accumbens (NAc) is a key brain region for motivated behaviors, yet how distinct neuronal populations encode appetitive or aversive stimuli remains undetermined. Using microendoscopic calcium imaging, we tracked NAc shell D1- or D2-medium spiny neurons’ (MSNs) activity during exposure to stimuli of opposing valence and associative learni...
Article
Full-text available
To survive, individuals must learn to associate cues in the environment with emotionally relevant outcomes. This association is partially mediated by the nucleus accumbens (NAc), a key brain region of the reward circuit that is mainly composed by GABAergic medium spiny neurons (MSNs), that express either dopamine receptor D1 or D2. Recent studies s...
Article
The nucleus accumbens (NAc) has been considered a key brain region for encoding reward/aversion and cue–outcome associations. These processes are encoded by medium spiny neurons that express either dopamine receptor D1 (D1‐MSNs) or D2 (D2‐MSNs). Despite the well‐established role for NAc neurons in encoding reward/aversion, the underlying processing...
Article
Background: The nucleus accumbens (NAcc) is a crucial brain region for emotionally relevant behaviours. The NAcc is mainly composed of medium spiny neurons (MSNs) expressing either dopamine receptor D1 (D1-MSNs) or D2 (D2-MSNs). The D1-MSNs project to the ventral tegmental area (VTA) and the ventral pallidum (VP), whereas the D2-MSNs project only...
Preprint
To survive, individuals must learn to associate cues in the environment with emotionally relevant outcomes. This association is partially mediated by the nucleus accumbens (NAc), a key brain region of the reward circuit that is mainly composed by GABAergic medium spiny neurons (MSNs), that express either dopamine receptor D1 or D2. Recent studies s...
Article
Full-text available
Daily, individuals select actions based on cost-benefit to allocate resources into goal-directed actions. Different brain regions coordinate this complex decision, including the nucleus accumbens (NAc), anterior cingulate cortex (ACC), and ventral tegmental area (VTA). In utero exposure to synthetic glucocorticoids (iuGC), such as dexamethasone, tr...
Preprint
The nucleus accumbens (NAc) is a crucial brain region for emotionally-relevant behaviors. The NAc is mainly composed of medium spiny neurons (MSN) expressing either dopamine receptor D1 (D1-MSNs) or D2 (D2-MSNs). D1-MSNs project to the ventral tegmental area (VTA) and ventral pallidum (VP), while D2-MSNs project only to the VP. In this work, we sel...
Article
Full-text available
Stress exposure has been shown to induce a variety of molecular and functional alterations associated with anxiety and depression. Some studies suggest that microglia, the immune cells of the brain, play a significant role in determining neuronal and behavioral responses to chronic stress and also contribute to the development of stress-related psy...
Article
The nucleus accumbens (NAc) is a key region in motivated behaviors. NAc medium spiny neurons (MSNs) are divided into those expressing dopamine receptor D1 or D2. Classically, D1- and D2-MSNs have been described as having opposing roles in reinforcement, but recent evidence suggests a more complex role for D2-MSNs. Here, we show that optogenetic mod...
Article
Full-text available
The transcription factor activating protein two gamma (AP2γ) is an important regulator of neurogenesis both during embryonic development as well as in the postnatal brain, but its role for neurophysiology and behavior at distinct postnatal periods is still unclear. In this work, we explored the neurogenic, behavioral, and functional impact of a con...
Article
Full-text available
The laterodorsal tegmentum (LDT) is a brainstem nucleus classically involved in REM sleep and attention, and that has recently been associated with reward-related behaviors, as it controls the activity of ventral tegmental area (VTA) dopaminergic neurons, modulating dopamine release in the nucleus accumbens. To further understand the role of LDT–VT...
Article
Full-text available
Prenatal exposure to stress or glucocorticoids (GC) is associated with the appearance of psychiatric diseases later in life. Microglia, the immune cells of the brain, are altered in stress-related disorders. Synthetic GC such as dexamethasone (DEX) are commonly prescribed in case of preterm risk labour in order to promote fetal lung maturation. Rec...
Article
Full-text available
Deficits in decoding rewarding (and aversive) signals are present in several neuropsychiatric conditions such as depression and addiction, emphasising the importance of studying the underlying neural circuits in detail. One of the key regions of the reward circuit is the nucleus accumbens (NAc). The classical view on the field postulates that NAc d...
Article
Full-text available
A correction to this paper has been published and can be accessed via a link at the top of the paper.
Preprint
Full-text available
The nucleus accumbens (NAc) is a key region in motivated behaviors. NAc medium spiny neurons (MSNs) are divided into those expressing dopamine receptor D1 or D2. Classically, D1- and D2-MSNs have been described as having opposing roles in reinforcement but recent evidence suggests a more complex role for D2-MSNs. Here we show that optogenetic modul...
Article
Full-text available
The laterodorsal tegmentum (LDT) is associated with reward considering that it modulates VTA neuronal activity, but recent anatomical evidence shows that the LDT also directly projects to nucleus accumbens (NAc). We show that the majority of LDT-NAc inputs are cholinergic, but there is also GABAergic and glutamatergic innervation; activation of LDT...
Article
Full-text available
Stress or high levels of glucocorticoids (GCs) during developmental periods is known to induce persistent effects in the neuroendocrine circuits that control stress response, which may underlie individuals’ increased risk for developing neuropsychiatric conditions later in life, such as anxiety or depression. We developed a rat model (Wistar han) o...
Data
Prenatal mild stress does not alter motivation for natural rewards or impulsivity. (A) Continuous reinforcement (CRF) and (B) fixed ratio (FR) trainings of male and female PS rats in the progressive ratio (PR) test, showing no differences in learning curves when compared to same-sex CTR group. (C) Breakpoint of PS and control animals, showing that...
Data
Number of pups per sex in each litter of stressed mothers (prenatal stress) and control mothers (control).
Data
Prenatal stress (PS) animals of both genders present similar exploratory activity in the open field (OF). (A) Similar time spent in the center and periphery of the open arena between CTR and PS rats (males and females). (B) No differences in the distance traveled in the center and the periphery of the arena between groups (nPS males = 9, nCTR males...
Article
Full-text available
The nucleus accumbens (NAc) plays a central role in reinforcement and motivation. Around 95% of the NAc neurons are medium spiny neurons (MSNs), divided into those expressing dopamine receptor D1 (D1R) or dopamine receptor D2 (D2R). Optogenetic activation of D2-MSNs increased motivation, whereas inhibition of these neurons produced the opposite eff...

Network

Cited By