
Ammar MianUniversité Savoie Mont Blanc | UdS · LISTIC Laboratory of Informatics, Systems, Information Processing and Knowledge
Ammar Mian
Doctor of Philosophy
About
32
Publications
3,936
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
102
Citations
Citations since 2017
Introduction
Associate professor (Maître de conférences) at Université Savoie Mont-Blanc in the LISTIC lab, group AFUTE.
I mainly work on statistical signal processing, Riemannian geometry and machine learning topics with an applicaiton to Remote Sensing problems.
Publications
Publications (32)
Graphical models and factor analysis are well-established tools in multivariate statistics. While these models can be both linked to structures exhibited by covariance and precision matrices, they are generally not jointly leveraged within graph learning processes. This paper therefore addresses this issue by proposing a flexible algorithmic framew...
Cet ouvrage traite des avancées en analyse des séries chronologiques d’images de télédétection par apprentissages statistique, automatique et/ou profond. Il présente un éventail de modèles mathématiques, de méthodes d’extraction d’informations spatio-temporelles et d’applications en observation de la Terre.Détection de changements et analyse des sé...
Change detection (CD) for remotely sensed images of the Earth has been a popular subject of study in the past decades. With the increase in the number of spatial missions with embedded synthetic aperture radar (SAR) sensors, the amount of readily available observations has now reached the "big data" era. This chapter introduces several families of...
This paper proposes two strategies to handle missing data for the classification of electroencephalograms using covariance matrices. The first approach estimates the covariance from imputed data with the $k$-nearest neighbors algorithm; the second relies on the observed data by leveraging the observed-data likelihood within an expectation-maximizat...
The information geometry of the zero-mean t-distribution with Kronecker-product structured covariance matrix is derived. In particular, we obtain the Fisher information metric which shows that this geometry is identifiable to a product manifold of S ++ p (positive definite symmetric matrices) and sS ++ p (positive definite symmetric matrices with u...
In recent years, the use of Riemannian geometry
has reportedly shown an increased performance for machine
learning problems whose features lie in the symmetric positive
definite (SPD) manifold. The present paper aims at reviewing
several approaches based on this paradigm and provide a
reproducible comparison of their output on a classic learning
ta...
Huber's criterion can be used for robust joint estimation of regression and scale parameters in the linear model. Huber's [1] motivation for introducing the criterion stemmed from non-convexity of the joint maximum likelihood objective function as well as non-robustness (unbounded influence function) of the associated ML-estimate of scale. In this...
Huber's criterion can be used for robust joint estimation of regression and scale parameters in the linear model. Huber's (Huber, 1981) motivation for introducing the criterion stemmed from non-convexity of the joint maximum likelihood objective function as well as non-robustness (unbounded influence function) of the associated ML-estimate of scale...
A new Riemannian geometry for the zero-mean Compound Gaussian distribution with deterministic textures is proposed. In particular, the Fisher information metric (up to a factor) is obtained, along with corresponding geodesics and distance function. This new geometry is applied on a change detection problem on Multivariate Image Times Series: a recu...
This paper derives a new change detector for multivariate Synthetic Aperture Radar image time series. Classical statistical change detection methodologies based on covariance matrix analysis are usually built upon the Gaussian assumption, as well as an unstructured signal model. Both of these hypotheses may be inaccurate for high-dimension/resoluti...
A new Riemannian geometry for the Compound Gaussian distribution is proposed. In particular, the Fisher information metric is obtained, along with corresponding geodesics and distance function. This new geometry is applied on a change detection problem on Multivariate Image Times Series: a recursive approach based on Riemannian optimization is deve...
This paper considers the problem of detecting changes in multivariate Synthetic Aperture Radar image time series. Classical methodologies based on covariance matrix analysis are usually built upon the Gaussian assumption, as well as an unstructured signal model. Both of these hypotheses may be inaccurate for high-dimension/resolution images, where...
Remote sensing data from Synthetic Aperture Radar (SAR) sensors offer a unique opportunity to record, to analyze, and to predict the evolution of the Earth. In the last decade, numerous satellite remote sensing missions have been launched (Sentinel-1, UAVSAR, TerraSAR X, etc.). This resulted in a dramatic improvement in the Earth image acquisition...
Ce papier considère la détection de changements dans une série temporelle d'images multivariées obtenues par radar à synthèse d'ouverture. Dans ce cadre les méthodologies classiques modélisent les données par une distribution gaussienne à moyenne nulle et une covariance non structurée. Ces deux hypothèses montrent leur limite lorsque les données so...
This paper considers the problem of detecting changes in mul-tivariate Synthetic Aperture Radar image time series. Classical methodologies based on covariance matrix analysis are usually built upon the Gaussian assumption, as well as an unstructured signal model. Both of these hypotheses may be inaccurate for high-dimension/resolution images, where...
A growing problem in the remote sensing community concerns the estimation of change-points in a time series of Synthetic Aperture Radar (SAR) images. Although the methodologies of change-point estimation have already been investigated in the literature, there are, to the best of our knowledge, no study on the expected performance for the estimation...
Testing the similarity of covariance matrices from groups of observations has been shown to be a relevant approach for change and/or anomaly detection in synthetic aperture radar images. While the term "similarity" usually refers to equality or proportionality, we explore the testing of shared properties in the structure of low rank plus identity c...
This paper explores the problem of change detection in time series of heterogeneous multivariate synthetic aperture radar images. Classical change detection schemes have modelled the data as a realisation of Gaussian random vectors and have derived statistical tests under this assumption. However, when considering high-resolution images, the hetero...
High resolution in synthetic aperture radar (SAR) leads to new physical characterizations of scatterers which are anisotropic and dispersive. These behaviors present an interesting source of diversity for target detection schemes. Unfortunately, such characteristics have been integrated and have been naturally lost in monovariate single-look SAR im...
In this paper, we study the problem of detecting and estimating change-points in a time series of multivariate images. We extend existent works to take into account the heterogeneity of the dataset on a spatial neighborhood. The classic complex Gaussian assumption of the data is replaced by a complex elliptically symmetric assumption. Then robust s...
In this paper, we propose new detectors for Change Detection between two multivariate images. The data is supposed to follow a Compound Gaussian distribution. By using Likelihood Ratio Test (LRT) and Generalised LRT (GLRT) approaches, we derive our detectors. The CFAR behaviour has been studied and the simulations show that they outperform the clas...
In this paper, we propose new detectors for Change Detection between two multivariate images. The data is supposed to follow a Compound Gaussian distribution. By using Likelihood Ratio Test (LRT) and Generalised LRT (GLRT) approaches, we derive our detectors. The CFAR behaviour has been studied and the simulations show that they outperform the clas...
Nous proposons, dans ce papier, une nouvelle méthodologie pour la Détection de Changement entre deux images SAR monovarié. Des outils d'analyse Temps-Fréquence Linéaire sont utilisés pour obtenir une diversité spectrale et angulaire. Cette diversité est utilisée dans uneprobì eme de détection sur vecteurs multivariés et le détecteur obtenu affiche...
Détection de changement pour des images SAR très haute résolution
In this paper, we propose a novel methodology for Change Detection between two monovariate complex SAR images. Linear Time-Frequency tools are used in order to recover a spectral and angular diversity of the scatterers present in the scene. This diversity is used in bi-date change detection framework to develop a detector, whose performances are be...
Projects
Project (1)