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Heat exchangers are used in industrial processes to recover heat be-
tween two process fluids. The purpose of this paper is to develop
analytical solutions using mathematical techniques to work out the
two-dimensional (2D) temperature changes of flow in the passages of
a double-pipe heat exchanger in parallel flow arrangement. Although
the necessary equations for heat transfer in a double-pipe heat ex-
changer are available, using these equations the optimization of the
system cost is laborious. Also, the solution of the problem yields the
heat-transfer coefficient in inner and outer flows of double-pipe heat
exchangers. The results are then compared with the experimental data
available in other literature.
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INTRODUCTION

The simplest form of a two-fluid heat exchanger is a double-pipe heat exchanger
made of two concentric circular tubes (see Fig. 1). The heat transfer characteristics
and pressure drop for the flow through the circular tube and the concentric annular
duct have been analyzed for a variety of boundary conditions [1, 2]. Abdelmessih and
Bell [3] have taken a closer look to these exchangers recently. They found that both
forced and natural convection contribute to the heat transfer process according to the
following correlation:
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where all physical properties (except for μw) are evaluated at the local bulk tempera-
ture; Nu is the local peripheral average Nusselt number. The term representing the
force convection effect (4.36) will be recognized as the result for a fully developed
laminar flow with constant properties and a constant wall heat flux. The data used to
generate Eq. (1) covered the following ranges:

Kays and Sellar [4] and Tribus and Klein [5] calculated the total and average
Nusselt numbers for a laminar entrance region of a circular tube for the case of a
fully developed velocity profile. The results of their analyses are shown as the vari-
ation of the average Nusselt number in terms of the inverse Graetz number [6]. The
Sider–Tate [7] correlations have been used to design the double-pipe heat exchangers
since 1950 and they are strongly recommended by Kern [8] in his old but reliable
text. The Sieder–Tate [7] correlations can be used for predicting the film coefficients
of flow in both the inner tube side and the outer tube side of a double-pipe heat ex-
changer. They can be used for both heating and cooling of a number of fluids, prin-
cipally petroleum fractions, in horizontal and vertical tubes:

Fig. 1. Double-pipe heat exchanger.
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The Sieder–Tate correlation is for an isothermal wall and is applied to a laminar
flow (Re < 2100). Mehrabian and Mansouri [9] compared the outer and inner tube
side heat-transfer coefficients deduced from experimental data with those evaluated on
the basis of standard correlations. They showed that in the counter flow and parallel
flow conditions, all standard correlations predict lower heat-transfer coefficients com-
pared with experimental results. The outer tube side heat-transfer coefficients are
smaller than the inner side heat-transfer coefficient by a factor of almost 1.5 and 3.4
in the counter flow and parallel flow arrangements, respectively. The agreement is
very good for the counter flow arrangement, but not very good for the parallel flow
arrangement. The main purpose of this paper is to conduct an introductory analytical
investigation of temperature distribution and heat-transfer coefficients in double-pipe
heat exchangers using the Sturm–Liouville problem. The temperature distribution in
double-pipe heat exchangers is obtained based on a two-region Sturm--Liouville sys-
tem consisting of two equations coupled at a common boundary. The solutions of this
system form an infinite sequence of eigenfunctions with corresponding eigenvalues.
The plug flow model of the heat exchanger fluid flows is utilized in this paper with
the following idealizations:

1. At the inlet to the tube the temprature distributions within the fluids are constant.
2. Frictional heating is negligible.
3. Longitudinal heat conduction in the plates is negligible.
4. Physical properties are temperature independent.
5. Longitudinal heat conduction in the fluids is negligible.
6. The plug flow velocity distribution remains unchanged throughout the exchanger

channels.
The above idealizations are familiar and need little discussion. The first four ide-

alizations are reasonable in most heat exchanger applications. The fifth idealization
has been shown to be valid for a variety of special cases when Peclet numbers are
larger than 50 [10, 11], it seems reasonable to assume that this idealization is valid
for the particular cases of interest here where the Peclet number exceeds 50. The
sixth idealization is related to the plug flow assumption for the fluids. This is, how-
ever an accurate assumption when the Peclet number is less than 50 [10, 11]. We
used this assumption for mathematical simplicity, but finally, in order to alleviate this
difficulty, an approximation technique will be presented which increases the Peclet
number range over which the use of a plug flow model can be expected to give
fairly accurate results for turbulent flow.

1. PROBLEM FORMULATION   [Q1]

The double-pipe heat exchanger consists of channels separated by a common wall
with fluids flowing through the channels, as illustrated in Fig. 1.
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Based on the previous simplifications, the energy conservation and the Fourier law
of  heat conduction, for the heat exchanger channels shown in Fig. 1, are as follows:

where α 
k

ρc
, u1 and u2 are the absolute values of velocity. The boundary conditions

are

The heat balance equation at the interface of fluid 1 and the wall (r1 = a1) is

Equations (4) and (5) are special cases of the two-region Sturm–Liouville problem.

2. DIMENSIONLESS EQUATIONS

The dimensionless space variables are defined as follows:

For inner tube 1:

R1  =  
r1

a1
 . (9a)

For outer tube 2:

R2  =  
r2

a2
 . (9b)
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The dimensionless length Z for tubes 1 and 2, referenced arbitrarily to the proper-
ties of tube 1, is defined as

Z  =  
4

Pe1
 ( z

2a1
) , (10)

where Pe1 is the Peclet number for the inner tube defined as Pe1 = 
2a1u1

α1
. The in-

verse of Z is proportional to the Graetz number. Other dimensionless parameters are

and

ψ2   =  
1
2

 KH .

The dimensionless temperature for the inner and outer tube sides is defined as

The governing equations in terms of the dimensionless variables θi, Ri, and Z are:

For the inner tube:

For the outer tube:

Boundary conditions:

θ1(R1, 0) = 0 , (16)

θ2(R2, 0) = 0 , (17)
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3. SOLUTION

To solve the problem, separation of variables is used; for channel 1 separation in
the following form is assumed:

θ1(R1, Z)  =  N(Z)M1(R1) . (21)

Applying Eq. (21) to Eq. (14) yields

where λn is the eigenvalue, and

Thus

A similar method applied to Eq. (5) gives

Applying the new variables θ1 and θ2 into Eq. (14) and Eq. (15) yields

Applying the new variables θ1 and θ2 into Eqs. (18) to (20) gives
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3.1. Eigenvalue Equation

Assuming M1n (R1) =A.F (λn, R1) and M2n (R2) = B.G (λn, R2), where A and B
are arbitrary constants, Eq. (30) and Eq. (31) become

In order for this system of simultaneous homogeneous linear algebraic equations to
have nonzero solutions for A and B, the coefficient determinant must be made equal
to zero by a proper choice of λ. This gives the eigenvalue equation

Equation (32) gives

Since the system is homogeneous, either A or B can be chosen arbitrarily. Hence

A  =  Gx2
(λ, 1) (36)

The eigenfunctions M1n and M2n can be represented by
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3.2. Finding F(λn,X1) and G(λn,X2)

The solution for Eq. (26) along with the boundary condition, Eq. (28), is

Thus [Q12]

3.3. Orthogonality of the Eigenfunctions

The equivalent of an orthogonality condition for M1n and M2n will now be estab-
lished. Equation (26) is first manipulated for n = i and j in the same manner used to
derive the properties of the familiar Sturm–Liouville system. For example, Eq. (26) is
written for n = i and then for n = j with i ≠ j. The equation for n = i is multiplied
by M1j and the equation for n = j is multiplied by M1i. The resulting equations are
subtracted, simplified, and then integrated between R1 = 0 and R1 = 1. The following
equation results:

In a similar manner Eq. (27) gives

The integrals of Eq. (44) can be related to each other using the coupling boundary
conditions at R = 1. Thus, Eq. (30) gives

and Eq. (31) gives

Using these conditions in Eqs. (43) and (44) gives
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Equation (47) is the equivalent of an orthogonality for the eigenfunctions M1n and
M2n for the case of i = j = n and leads to a normalizing factor defined by

For the case of n = 0 with λ0 = 0, M10 = M20 = 1 must be included. Also, ap-
plication of Eq. (48) gives

N0 = 1 + H . (49)

3.4. Finding Cn

Consider the following expansions regarding Eqs. (24) and (25) at Z = 0

Multiplying Eq. (50) by 2R1M1n(R1)dR1 and Eq. (51) by HM2n(X2)dX2, adding the
resulting expressions and integrating between Ri = 0 and Ri = 1 using Eq. (48), the
following equation for Cn results:

Equations (49) and (52) give

3.5. Plug Flow Solutions

Analytical solutions for the mathematical problem specified by Eqs. (14) to (20)
will now be discussed briefly. Solution for the dimensionless temperature distribution
can be written as
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In this equation, Qin(Ri) are the functions of an eigenvalue λn and the dimension-
less distance variable Ri. The eigenvalues are the positive nonzero roots of an eigen-
value equation from Eq. (34):

The functions Qin(Ri) for the concentric tube heat exchangers when one recalls
from Fig. 1 that channel 1 identifies the circular tube and that channel 2 refers to the
narrow annular space are

and

where F′(λn) represents the derivative of F(λn) with respect to λ.

3.6. Heat-Transfer Coefficient

The local tube side heat-transfer coefficient is defined in the usual manner, which
in dimensionless form, becomes

where
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3.7. An Approximation for Turbulent Flow

The basis for the approximation is described for the case of turbulent convection
heat transfer for flow through a concentric tube. The appropriately simplified convec-
tion heat transfer equation for turbulent flow is

where the dimensionless distance variable R (0 ≤ XR ≤ 1) has been used, and sub-
scripts have been dropped for convenience. In this equation, ε represents a turbulent
diffusivity for heat transfer. The term k + cρε can be interpreted as an effective total
conductivity kt, and is written as

where v is the kinematics viscosity and Pr is the Prandtl number. Now an average ef-
fective conductivity km is defined by

The km approximation for a double pipe heat exchanger was tested by comparing
km values computed from Eq. (63) with the fully developed turbulent flow by Lyon
[12] and Shimazaki [13] as

The average effective conductivity, km, must be applied to the double-pipe heat ex-
changer problem of this paper; plug flow results as obtained from solutions to the
mathematical problem described by Eq. (11) can be converted to the turbulent flow
results using Eq. (63) with K and KW now being defined as follows:

4. RESULTS

The results are compared with the established experimental data available in the
literature using similar pipe dimensions and flow details [9]. The exchanger geomet-
rical data are shown in Table 1. The working fluid is water at atmospheric pressure.
Temperature was measured at the inlet and outlet of the two streams and also at an
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Table 1
The exchanger geometrical data

The inner tube inner diameter 16.5 mm

The inner tube outer diameter 21.5 mm

The outer tube inner diameter 27.5 mm

The inner tube height 650 mm

The outer tube height 600 mm

Total exchanger length 1500 mm

External tube area 0.10 mm

The tube material Steel

Table 2
Inner and outer tube heat transfer properties

μ (kg/m⋅sec) × 106 Re Pr k (WmoC)

1
Outer tube 863 1265 5.93 0.6107

Inner tube 480 11,510 3.08 0.6530

2
Outer tube 850 1131 5.82 0.6116

Inner tube 480 11,510 3.08 0.6530

3
Outer tube 822 1326 5.62 0.6145

Inner tube 439 12,585 2.80 0.6580

4
Outer tube 863 1475 5.93 0.6107

Inner tube 466 11,856 2.99 0.6550

Fig. 2. The outer tube side heat-transfer coefficient.
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intermediate point half way between the inlet and outlet by Mehrabian and Mansouri
[9]. [Q2] The heat-transfer coefficients are interfered from the measured data.

Calculating the temperature distribution and film heat-transfer coefficient for the
tube side flows requires one to know viscosity, Reynolds number, Prandtl number,
and conductivity of water. These data for the inner and outer tubes are listed in
Table 2. The results are listed in Table 3 for comparison with the experimental data
of Mehrabian and Mansouri [9]. 

The outer tube side heat-transfer coefficient based on the analytical solution of Eq.
(58), experimental data, and standard correlation are listed in Table 4. Also, the com-
parison is illustrated in Fig. 2.

Table 3
Temperature distribution, TE: Experimental data [9], T: Local temperature

of the double-pipe heat exchanger from Eqs. (59) and (60)
with turbulent approximation

TEh1 (oC) TEh2 (oC) Th2 (oC) TEhm (oC) Thm (oC) Wh (kg/sec)

1 63.7 57.3 59.2 60.1 61.7 0.72

2 64.4 57.5 59.9 60.4 62.4 0.72

3 68.4 62.6 63.3 66.3 66.4 0.72

4 66.1 58.9 61.0 62.2 63.9 0.72

TEc1 (oC) TEc2 (oC) Tc2 (oC) TEcm (oC) Tcm (oC) Wc (kg/sec)

1 22.3 32.3 30.1 27.2 27.8 0.042

2 21.7 33.6 30.5 27.8 27.9 0.037

3 26.9 35.7 34.7 30.1 32.4 0.042

4 21.5 31.6 29.0 26.9 26.8 0.049

Table 4
Comparsation between the analytical solution based on Eq. (58), experimental data, 

and standard correlation

h0 [W/m2, oC]
Eq. (58)

h0 [W/m2, oC] 
Experimental data [9]

h0 [W/m2, oC]
Eq. (3)

h0 [W/m2, oC]
Kays [4]

1 881.5 933 624 489

2 846 1054 607.2 459

3 881 741 626.4 481

4 927.5 974 646.8 499

13



CONCLUSIONS

The outer tube side heat-transfer coefficients deduced from Eq. (58) are compared
with experimental data and those are evaluated based on standard correlations. All
standard correlations predict lower heat-transfer coefficients compared with the ex-
perimental data and the analytical solution. The Sider–Tate [7] correlation predicts the
highest values among other standard correlations. The discrepancy may be because of
the standard correlations which are, generally, presented for the smooth heat transfer
surface, while in a real exchanger the heat transfer surfaces are not smooth and this
results in higher heat transfer; where Eq. (64) interferes this effect to our solution.
The mathematical model of the heat transfer phenomenon in a double-pipe heat ex-
changer with parallel flow has been developed and investigated theoretically in this
study. The analytical solution is obtained based on a two region Sturm–Liouville sys-
tem consisting of two equations coupled at a common boundary. In order to provide
mathematical simplicity, plug flow models of the heat exchanging fluids were utilized
for analysis and an approximation method was developed for application of plug flow
resulting in general to the turbulent flow conditions. The mathematical method per-
formed in this study can be applied to prediction of the temperature distribution in
one or two-dimensional form.

NOMENCLATURE

a1 radius of inner pipe 1, m
a2/2 radius of outer pipe 2, m
b wall thickness, m
ci heat capacity of fluid i, J/kg⋅K
ki thermal conductivity of fluid i, W/m⋅K
kw thermal conductivity of wall, W/m⋅K
kt thermal conductivity for turbulent flow, W/m⋅K
km average effective conductivity, W/m⋅K
qi heat-flux density at the wall in channel i, W/m2

r coordinate normal to the heat transfer surface, m
Ti local temperature of fluid i, oC
Tc(in) inlet temperature for channel 1, oC
Th(in) inlet temperature for channel 2, oC
Th(out) outlet temperature for channel 2, oC
ui velocity of fluid i
z axial coordinate or heat exchanger length, m

Greek symbols

αi thermal diffusivity of fluid i, m2/sec
ε turbulent diffusivity for heat transfer, m2/sec
λ eigenvalue
ν kinematic viscosity, m2/sec

14



Dimensionless quantities

H heat capacity flow rate ratio
K relative thermal resistance of fluid
KW relative thermal resistance of wall
Pe Peclet number
Pr Prandtl number
Re Reynolds number
θi local temperature of fluid i
R dimensionless radius
Z dimensionless length
M 
.

mass flow rate of fluid, kg/sec

Subscripts

B bulk temperature
c cold
h hot
i channel, i = 1 or 2 
m 0 for parallel flow, 1 for counter flow
n 0, 1, 2, 3, ...
t turbulent.
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