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Abstract-The applications of Multiple Criteria Decision Making 

(MCDM) in dealing with the chemical engineering optimization 
problems are rapidly increasing. It has been inspired by 

increased computational resources and the effectiveness of the 

methods for solving the Multiple Objective Optimizations 

(MOO). Meanwhile the number of objectives in MOO of 

chemical applications, due to the inclusion of the new 

economical and environmental objectives to the processes, is 

increasing. As a result, the most recent utilized MOO methods 

cannot effectively deal with this expansion. However it is 

important that when selecting a method, the pros and cons set 

by the method are understood. Otherwise, the optimal results 

may not deliver the true impression about the problem. In this 

situation this paper aims to widen the awareness of the readers 

of the existence of interactive methods, in particular the 

NIMBUS method, which are capable of handling MOO 

problems with more than two objectives. For this reason some 

encouraging experiences and advantages of the NIMBUS 

method in recent chemical engineering applications are briefly 

reviewed following a brief introduction to the whole subject.  
Keywords- Interactive Methods, Optimization, 
Decision-Making Chemical Engineering 
 

I. INTRODUCTION   
Optimization, in general, is the process of obtaining the 

value of decision variables, which provides the optimal of  
requested  objectives. Optimization tools  in  chemical 

applications now exists more than the past especially, with 

the ever changing economic, energy and environmental 
situations which leads to the better design of chemical 

systems.  
Optimization has wide applications in chemical and its 

related industries, e.g., mineral processing, petroleum, oil 

and gas refinery, pharmaceuticals. The study of the chemical 
engineering applications of optimization in literature, for 

instance (Tawarmalani and Sahinidis, 2002; Diwekar, 2003; 

Reklaitis et al., 2006), shows that optimization of the 
chemical processes has been an interesting field of study for 

many decades. Moreover up until the 1980s the problems in 
chemical engineering were optimized utilizing just the 

single-objective functions. However, real life chemical 

engineering problems require the simultaneous optimization 
of several objectives which cannot be solved by single-

objective functions. Practical applications of chemical 

engineering can include many objectives such as cost, profit, 
selectivity, quality, recovery, conversion, energy required, 

efficiency, safety, hazard analysis, control performance, 
environmental quality, economic efficiency, complexity, 

speed, robustness, etc.  
The MOO refers to the simultaneous optimization of 

multiple, often conflicting objectives, which produces a set  
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of alternative solutions called the Pareto-optimal solutions 

(Deb, 2001). Many methods are available for solving the 
MOO problems but the main attention of optimization of 
chemical processes so far has been single-objective 
optimization or handling multiple objectives by combining 
them suitably into one objective. The MOO problems in 

chemical engineering presented by Seinfeld and MacBride 
(1970), Shieh and Fan (1980), Umeda et al., (1980) and 
Grossmann et al., 1982 have been solved by single-objective 
optimization. Yet, according to (Chankong and Haimes, 

1983; Haimes, 1977) by combining the multiple objectives 
in a single objective function, some optimal solutions might 
be lost.  
Problems containing multiple conflicting objectives are 
known as multiple criteria decision making (MCDM) 
problems. In the MCDM, solving the related MOO problem 
assists the Decision Maker (DM) in finding the right Pareto-
optimal solution (Miettinen, 1999). Additionally the solution 
process needs some involvement of the DM by providing 
some preferences. Several techniques are available to 
generate the Pareto-optimal solutions. Extensive researches 
on the algorithms used for the generating of Pareto-optimal 
solutions are described in several books and articles (Zeleny, 
1982; Cohon, 1978; Steuer, 1986; Clark and Westerberg, 
1983, Srinivas and Deb, 1995).  
MOO has attracted the researchers in chemical engineering, 
particularly in the past decade and has received wide 
attention in the literature and additionally according to 
Rangaiah (2009) the effectiveness of MOO in chemical 
engineering problems is increasing by applying the new 
effective methods.  
In the complex chemical processes, finding the optimum 
operating points of the multiple conflicting objectives given 
the various economical and environmental constraints is 
very important for the profitability of chemical plants. For 
this reason, MOO has been applied to many chemical 
process optimization problems. In this regard the motivation 
for this paper is to show that a variety of methods and 
approaches exists. In this way, people solving different 
problems are able to use the most appropriate approaches in 
the given situation. The new generation of chemical 
engineering problems requires better methods which can 
handle more than two objectives utilizing the minimum 
computation efforts. 
 

A. Classification the MOO Methods  
 
Your Examples of surveys of MOO methods are available in 
Chankong and Haimes (1983), Marler and Arora (2004), 
Miettinen (1999), Sawaragi et al. (1985), Steuer (1986) and 
Vincke (1992). However the dimension of existing MOO 
methods still remains a major challenge because of the 
conflicting nature of the multiple objectives. On the other 
hand it is very important that at the time of the selecting a 
method its pros and cons are understood. Otherwise, the 
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optimal results may not deliver the true impression about 
the problem. In this regard studying the methods would help 
to give an overview of the existing approaches to chemical 
process engineers Rangaiah (2009).  
The available methods for MOO can be classified in 
different ways. One way is based on whether the Pareto-
optimal solutions are generated or not, and the further role 
of the DM in solving the MOO problem. This particular 
classification has been applied by Diwekar (2003), Hwang 
and Masud (1979), Miettinen (1999), and Rangaiah (2009). 
Based on this classification method the MOO methods are 
divided into two main groups: Generating methods and  
Preference-based methods. The Generating methods 
generate one or more Pareto-optimal solutions without any 
inputs from the DM. On the other hand, preference-based 
methods use the preferences provided by the DM in solving 
the MOO problem. Figure 1 shows the classification of the 
MOO methods. 
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interaction. The main specification of this method is its 
ability to deal with more than three objectives.  
From the existed interactive methods, using the interactive 
approach of NIMBUS (Miettinen, 1999; Miettinen and 
Makela, 2006) is suggested where the role of a DM is well 
emphasized and the method is able to satisfy more than two 
objectives by utilizing minimum computational efforts for 
the real-life chemical engineering applications which 
involve more than three objectives.  
However, a general MOO method suitable to all type 
problems does not yet exist, and the results from current 
methodologies can vary significantly in terms of the 
achieved Pareto-optimal solutions. For this reason, many 
standard benchmark test cases such as (Deb, 2001; Kursawe, 
1990; Poloni et al., 2000; Silva and Biscaa, 2003; Viennet et 
al., 1996) have been developed to allow researchers to 
compare their techniques to others. 
 

II. REVIEW 
 
According to the knowledge of the author of this paper there 
have been five reviews of the MOO made so far in the area 
of chemical engineering, including applications in process 
design and operation, biotechnology and food industry, 
petroleum refining and petrochemicals, pharmaceuticals 
polymerization. Bhaskar et al. (2000) presented the 
background of MOO, different methods and their 
applications until the year 2000 by reviewing the 30 journal 
publications covering most of areas in chemical engineering. 
MOO applications in polymerization are included in the 
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review of genetic algorithm (GA) applications in polymer 
science and engineering by Kasat et al. (2003). Applications 
of GA-based MOO optimization in chemical reaction 
engineering were reviewed by Nandasana et al. (2003). In 
addition nearly a hundred applications in chemical 
engineering were studied by researchers and reported in 
more than 200 journal publications so far which have been  

Figure 1. The classification of the MOO methods. 
 
The group of Generating methods is also divided into two 
groups of No-preference methods and Posteriori methods. If 

there is no DM involved but the preference information 
available, it is possible to use No-preference methods which 
find some neutral compromise solution without any 
additional preference information. On the other hand in the 
Posteriori methods, a representative set of Pareto-optimal 

solutions is generated and then the DM must select the 
preferred one. In this way, the DM gets an overview of the 
problem over the visualization on a two-dimension plane 
involving two objectives. Furthermore, generating the set of 

Pareto-optimal solutions may be computationally expensive. 
Evolutionary MOO (EMO) algorithms and GA-based 
methods belong to this class.  
The preference-based methods are also divided into two 
main groups of the Priori methods and the Interactive 
methods. In the Priori methods, the DM first gives 
preference information and then the method looks for a 
Pareto optimal solution satisfying the objectives.  
There are lots of interactive methods available but they are 
not still widely known among people solving real 
applications. In interactive approaches, a solution pattern is 
created and the DM can specify the preference of each 

 
thoroughly reviewed by Masuduzzaman and Rangaiah 
(2008) and Rangaiah (2009).  
According to Rangaiah(2009) on average, about 15 new 
applications of MOO in chemical engineering have been 
reported every year since 2000. These applications are from 
several industrial sectors and areas of interest to chemical 
engineers. Many of them were modeled using first principle 
models and employed two, to maximum, three objectives. 
Moreover most of the studies in chemical engineering 
focused on finding Pareto-optimal solutions and only a few 
studies considered ranking and selecting one or a few 
Pareto-optimal solutions for implementation. However more 
emphasis and studies on ranking and selection from among 
the Pareto-optimal solutions are expected in the future.  
The above mentioned excellent reviews indicate that optimal 
design of chemical processes e.g., selectivity, productivity 
and simple profit are mostly used alone in a single-objective 
for optimization. On the other hand environmental 
objectives as well as advanced economical objectives are 
gaining importance due to the increasing emphasis on 
environmental protection and sustainability, for more proof 
see chapter two of Rangaiah(2009). As the result of this fact, 
in the future we are expecting to face more objectives as 
well as complicated plants, dynamic optimization, and more 
uncertain parameters. 
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The above reviews show EMO approaches (which belong to 
posteriori approaches), in particular GAs, have been most 
popular for solving the chemical engineering applications 
mostly in two-objective optimization problems. EMO- based 

methods have been applied for more than 60% of the 
reviewed cases. Apart from the above reviews the recently 
solved chemical engineering problems, for instance Rajesh 
et al., 2001; Roosen et al., 2003; Subramani et al., 2003; 

Tarafder et al., 2005; Zhang et al., 2002 which are not 
included into the five mentioned reviews, also indicate that 
EMO methods have become very popular, but still only two 
or maximum three objectives have been considered due to 
the limitations of EMO approaches to visualize multiple 

objectives.  
By the increasing number of MOO problems in chemical 
engineering, interactive methods could be utilized as the 
alternatives to EMO. Moreover the interactive methods 
complement evolutionary approaches. More details about 
the relationship of the MCDM and EMO fields are available 
in Branke et al. (2008). 
 

III.  INTRODUCTION TO INTERACTIVE METHOD 
 
Interactive MOO methods have significant advantages over 

the methods mentioned above. For instance they overcome 
weaknesses of the Priori and Posteriori methods as the 
process avoids setting cognitive overload on the DM, which 
the comparison of many solutions typically implies. This 
causes the minimization of computational costs, which is a 

significant advantage. However, they have been used very 
rarely in chemical engineering applications which are briefly 
mentioned in surveys of Andersson (2000) and Bhaskar et 
al. (2000), and Rangaiah (2009). As Rangaiah (2009) 

mentions this might be because of the lack of the knowledge 
about the available methods or the lack of suitable packages. 
Also a few examples of interactive MOO methods and their 
applications in chemical engineering are available in Grauer 

et al. (1984) and, Umeda and Kuriyama (1980).  
The statements of interactive methods have been presented 

in Miettinen (1999); Stewart (1992); Vanderpooten and 

Vincke (1989); Haimes et al. (1990). In this kind of MOO 
method, a solution pattern is created and the DM specifies 

preference information progressively during the solution 
process. In other words, the solution process is iterative and 

the phases of preference elicitation and solution generation 

alternate. In brief, the main steps of a general interactive 
method according to Miettinen (1999) are the following: (1) 

initialization, (2) generate Pareto-optimal solutions, (3) ask 

for preference information from the DM, (4) generate new 
Pareto-optimal solution according to the preferences (5) If 

several solutions were generated, ask the DM to select the 

best solution (6) stop, or if the DM wants to do otherwise, 
go to step (3). In each interaction some information about 

the problem or solutions available are collected by DM and 
then it is supposed to answer some questions in order to 

provide adequate information. New solutions are generated 

based on the information specified. In this way, the DM 
directs the solution process towards such Pareto-optimal 

solutions that DM is interested in and only those solutions 

are generated.  
The advantage of interactive methods is that the DM can  
qualify the preferences during the solution process which is 
a very important state of interactive methods. Actually, 
finding the final solution is not always the only task but it is 

 
also notable that the DM gets to know the problem with its 
all conditions.  
According to the reviewed applications, the interactive 
MOO methods have been shown to be well-suited for 
chemical process design problems because it takes the 
preferences of the DM into account that enables a focused 
search for the better Pareto-optimal solution, which is the 
best compromise between the conflicting objectives. For this 
reason, only those solutions that are of interest to the DM 
are generated which deliver computational efficiency to the 
workflow.  
Many interactive methods exist e.g., reference point 
approaches, classification-based methods, satisfying trade-
off method, interactive surrogate worth trade-off and the 
NIMBUS method. However none of them is preferable to 
the others but some methods may suit some particular types 
of applications better than others. Methods may differ from 
each other according to the style of included interactions and 
the technical matters, the given quality of information to the 
DM, the specified form of preference information by the 
DM, the condition of the scalarizing function and generally 
the Pareto-optimal solutions which are used (Miettinen, 
1999). 
 

IV. NIMBUS METHOD 
 
The NIMBUS method of the MOO is available on the 
WWW-NIMBUS system (Miettinen and Makela, 2000, 
2006) and has been operating via the internet at 
http://nimbus.it.jyu.fi since 1995. It can be used free of 
charge for teaching and academic purposes, just by applying 
a browser. All the computation is carried out on the server 
computer at the University of Jyvaskyla.  
Several variants of NIMBUS method exists. But here it is 
concentrated on the latest online available version, the 
synchronous version, (Miettinen and Makela, 2006), where 
several scalarizing functions can be used based on a 
classification once expressed.  
After creating an account it would be possible to save the 
defined problem as well as the resulted solutions on the 
system. The WWW-NIMBUS takes the user from one web 
page to another. The modeled problem can be initialized by 
filling in a web form. It first asks for the name and the 

dimensions of the problem. On the second web page, the 
user can type in the formulas of each objective and 
constraint function as well as the variables. Later on the 
interactive nature of NIMBUS method solution process 

naturally tries to set its own  essential condition. The system 
also has a useful tutorial that guides the user through the 
different phases of the interactive solution process. In 
addition, each web page provides individual help as well.  
As mentioned earlier by applying the NIMBUS, more than 
three objective functions can be easily considered only in 
the presence of more visualization efforts. As long as the 
comparison and evaluation of the solutions are concerned, 
the visualizations process is very important as the obtained 
solutions are presented to the DM via its capabilities. 
Therefore a good graphical interface tool is necessary in 
order to enable the interaction between the DM and the 
method. (Hakanen, 2006).  
The modeled MOO problem is initially converted into a 
scalarized problem using the classified information. Then 
the solved problem attempts to satisfy the goals which are 
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defined in the classification. (Miettinen, 1999; Miettinen 
and Makela, 2006)  
Once the DM has classified the objective functions, DM can 
decide how many Pareto-optimal solutions need to be 
compared. Then many scalarized problems are solved and 

the new solutions are shown to the DM. If the DM has found 
the most preferred solution, the solution process stops. 
Otherwise, the DM can select a solution as a starting point 
of a new classification. The DM frequently learns about the 
possible solutions available for the relevant problem. In 

other words the DM can learn much more about different 
solutions satisfying the objectives which best follows the 
preferences because they take the preference information 
into account in slightly different ways. (Miettinen and 

Makela, 2000)  
Unlike some other classification based methods, the 
favorable outcome of the solution processes are not 
dependent completely on the DM in managing the 
classification and the appropriate parameter values but 

 
 
 
partly on the process. This means the classification is a 
dynamic kind and the DM is free to explore the intermediate 
points. 
 

V.  NIMBUS FOR CHEMICAL ENGINEERING APPLICATIONS 
 
The MOO package of NIMBUS can successfully be applied 
in chemical process design problems. The researches on the 
application of NIMBUS in chemical engineering problems 
such as encouraging experiences related to papermaking and 

sugar industries have been reported in Hakanen (2006), 
Hakanen et al. (2004, 2005, 2006, 2007 and 2008) and 
Rangaiah (2009). These successful cases are described and 
summarized in Table 1. These studies have focused on 
offering the chemical engineering community an efficient 

and practical way of handling all the necessary objectives of 
the problem. In this regard NIMBUS method has delivered 
the ability of considering several conflicting objectives that 
affect the behavior of the problem. 

 
Table 1. Applications of NIMBUS in chemical engineering problems 

 
No Application   Objectives Reference(s)  

1 Heat  recovery Minimization of (1) steam needed in summer, (2) steam needed Hakanen et al.  

 system  design in  a in winter, (3) area of heat exchangers and (4) cooling/heating (2005and 2006)  
 paper mill   needed for the effluent. Miettinen et al 
      2009   

2 A co-generation Minimization of energy loss  and  total  cost  while  maximizing Hakanen et al. 
 plant to produce shaft power. (2006)   

 shaft power and     

 steam        

3 Glucose-Fructose Four   objectives:   (1)   maximization   of   throughput,   (2) Hakanen et al.  

 separation  using minimization  of  solvent  consumption  indesorbent  stream,  (3) (2007)   

 Simulated Moving maximizing  product  purity,  and  (4)  maximizing  recovery  of    

 Bed and Varicol valuable component in the product stream.    

 Processes       

4 Water Allocation Three objectives : the goal is to minimize the amount of fresh Hakanen et al.  

 Problem   water taken into the process and also to minimize the amount of (2007),   

     dissolved  organic  material  in  critical  parts  of  the  process  by Miettinen et al 
     determining the right recycling of water (2009)   

5 Simulated Moving Four   objectives:   (1)functions   represented   throughput,   (2) Miettinen et al 
 Bed Processes  consumption of desorbent, (3) purity and (4) recovery (2009   

 
The solution of the Simulated Moving Bed design problem 
described in Hakanen et al. (2007) and Miettinen et al 
(2009), including four highly conflicting objective functions, 
is a novel approach. However, previously only two or 
maximum three objective functions could be considered 
(Subramani et al., 2002 Zhang, Z., 2003). This enabled full 
utilization of the properties of the problem without any 
unnecessary simplifications. In addition, the DM via 
NIMBUS gained more understanding of the considered 
objectives' interactions and therefore learned more about the 
problem.  
The solution for the Water Allocation problem, as it is  
represented in Hakanen et al. (2007) and Miettinen et al 
(2009) is a MOO problem by nature. The other available 
approaches can produce only one solution at a time 
corresponding to the upper bounds set for the new inequality 
constraints. It is also difficult to set correct upper bounds to 
find the most desirable solution without knowing the 

 
behavior of the problem and the roles of the objective 
functions and the constraints. In this condition according to 
the preferences of the DM and the study of the 
interrelationships of the different objective functions by 
utilizing the NIMBUS design tool, different solutions can be 
generated. The NIMBUS in Hakanen et al. (2007) and 
Miettinen et al (2009) first of all provided a better 
understanding of the interrelationships of the objective 
functions when compared to the previous solutions and 
secondly dealt with more objectives utilizing less 
computational recourses.  
In the other application, heat recovery system design, there 
are four objective functions involved. Solving it doesn‟t 
cause any troubles for an interactive method like NIMBUS. 
In a detailed description of the interactive solution process 
presented by Hakanen et al. (2005, 2006) a new insight into 
the problem obtained and a satisfactory solution found. 
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VI. CONCLUSION 

 
The interactive methods, in particular NIMBUS, for reason 
of solving the MOO problems of the MCDM in chemical 
engineering applications have introduced and following it 
the advantages of applying the NIMBUS in such 
applications were discussed.  
Interactive approaches in general allow the DM to learn 
about the problem considered and the interrelationships in it. 
As the result, deeper understanding of the phenomena in 
question is achieved. Because the DM can manage the 
search for the most preferred solution, only interesting 
solutions are generated which means savings in computation 
time which is a significant advantage. For taking the true 
nature of the problem into account specially by including the 
environmental and economical objectives into the process 
the interactive methods can easily be applied.  
However, when the problem has more than two objectives, 
the visualization is no longer simple. In this situation the 
interactive approaches offer a viable alternative to solve the 
problem without artificial simplifications.  
Because interactive methods rely heavily on the preference 
information specified by the DM, it is important to select 
such a user-friendly method, NIMBUS, where the style of 
specifying preferences is convenient for the DM. The 
presented applications have shown how interactive MOO 
can be utilized in chemical process design by demonstrating 
of their benefits. In all the cases, it was possible to solve the 
problems in their true multi-objective character and an 
efficient tool was created to support the DM in the decision 
making problem. 
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