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ABSTRACT 

 

Finite Element Analysis helps designers at the early stages of product design through 

simulation and behavioral prediction. This thesis is on transient finite element analysis, 

specifically, structural dynamics, where the behavior of a product due to time-dependent 

loads is desired. A critical computational challenge in structural dynamics is that it typically 

requires significant amounts of time and memory. 

In the present thesis, a fast time-stepping strategy for the Newmark-beta method is 

developed; the latter is used extensively in modeling structural dynamics. In particular, we 

speed up the repeated inversion of the linear system of equations in the Newmark-beta 

method by implementing and merging five distinct but complementary concepts: 

1- Voxelization 

2- Assembly-Free FEA 

3- Deflated Conjugate Gradient 

4- Parallelization 

5- Adaptive Sub-Domain Refinement  

The resulting Assembly-Free Deflated Conjugate Gradient (AF-DCG) version of the 

Newmark-beta is well-suited for large-scale problems, and can be easily ported to multi-core 

architectures. Numerical experiments demonstrate that the proposed method is much faster 

than the well-known commercial software ANSYS. 
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Assembly-Free Structural Dynamics 

 On CPU and GPU 

 

 

Chapter1: Literature Review 

 

1.1. Introduction: 

The main focus of the current study is on flexible-body dynamics simulation, which has 

become quite popular nowadays, especially where we are more interested in how the 

response changes over time, rather than the final configuration. The present work focuses on 

Structural dynamics, however opens door for future studies on many other applications. 

Contact, fatigue, and crack propagation are few of many examples of such cases.  

A dynamics simulation can address a wide range of questions, the answers to which might be 

of great importance to either prevent unexpected failure or improve the design. For a given 

geometry with known boundary conditions, based on the application one might ask the 

following question (and many more): 

• When does the maximum deflection or stress happen? 

• What is the value of maximum value of deflection and stress? 

• How much time must pass until we reach static stability? 

• At which frequency is the object oscillating? 

• What are the fatigue characteristics? 

• How does a crack propagate? 
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Structural dynamics often needs to be performed on geometrically complex products, such as 

the one in Figure 1 [27], requiring a large number of finite elements to capture all the 

features. Although, computers have become faster and parallel computing on both CPU and 

GPU have made it possible for us to perform analysis on more realistic models, there is a lot 

left to be desired. For instance, we can easily run out of memory while performing a FEA 

over a model with a million degrees of freedom, which is not a very large problem.  

 

 

Figure 1: Arduino MEGA 2560: an example of large-scale thin elastic structure   

 a) CAD model b) real model 

 

 

1.2. Equation of Motion: 

A standard approach to transient analysis of small-displacement elastic bodies(such as the 

one shown in Figure 1) is to first discretize the geometry via finite elements [2], and then 

construct a system of second order differential equations in time [1]: 

Mu Cu Ku f+ + =�� �           (1.1) 
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Where, 

:  Mass matrix       

:  Damping matrix 

 :  Stiffness matrix   

:  External force vector      

:  Displacement  field   

:  Velocity field    

:  Acceleration field

M

C

K

f

u

u

u

�

��

     (1.2) 

There are various methods that are used to compute Stiffness, Mass and Damping matrices, 

which are briefly discussed here, more details can be found in [1],[26]. 

1.3.  Stiffness Matrix: 

In Elasticity, Stiffness matrix represents both geometry and material of the object under 

study. In classical FEA, for a system with n nodal degrees of freedom, one needs to populate 

an n by n matrix by assembling the elemental stiffness values. These values are related to the 

material’s Young’s Modulus (E ), Poisson’s ratio (ν ), Shape functions (N ), and derivatives 

of shape functions w.r.t reference nodal coordinates (B ).  

  T

V

K B EBdV= ∫   (1.3) 

1.4.  Mass Matrix: 

Mass matrix of an object is a discrete model of the continuous mass distribution, which can 

be either Consistent or Lumped. Consistent mass matrix is usually more accurate, but 

expensive to store and use in some algorithms. Lumped mass matrix is diagonal and easier to 

store, however, the solution may not converge for some special cases. There are numerous 

types of mass lumping such as particle, HRZ, and optimal.[1] Lumped mass matrix is 
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preferable when using explicit time integration methods, since taking their inverse is trivial. 

In the present work, since we are focusing on Newmark-beta (which is an Implicit method), 

consistent mass matrix is exploited.  

 

T

V

M N NdVρ= ∫          (1.4) 

where ρ  is density. 

1.5. Damping Matrix: 

In order to make energy dissipate over time, we can add an artificial damping matrix to the 

equation of motion. There are two well-known types of damping matrix, 1) Proportional 

damping (a.k.a Rayleigh damping) and 2) Modal damping.[1] Without loss of generality, we 

shall assume proportional damping: 

d dC M Kα β= +
   (1.5) 

where dα  and dβ  are the damping coefficients. 

Note that the first term of equation (1.5), dMα damps lower or dominant modes, while the 

second term , dKβ , dissipates  the higher modes ( which sometimes are actual noise). 

Perhaps the most important advantage of proportional damping matrix is that there is no need 

to store a new matrix and we can simply modify (1.1) to include dα  and dβ   . 
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1.6. Direct Time Integration: 

Equation (1.1) must be solved through time integration. There are two general approaches 

here: 

1) Explicit  

2) Implicit 

In explicit methods, the solution at time t  is used explicitly to obtain the solution at t t+∆  . 

This, as it turns out, entails the inversion of the mass matrix M [1]. SinceM can be made 

diagonal via lumping, its inversion is trivial, leading to rapid time-stepping. Explicit methods 

are easy to implement, however, they are unstable for large time steps t∆  . Popular explicit 

methods are central difference method and fourth-order Runge-Kutta method, that exhibits 

fourth-order accuracy.[5] 

On the other hand, implicit methods such as the Newmark-beta method are harder to 

implement, yet are unconditionally stable. They require the ‘inversion’ of an effective 

stiffness matrix[1], which is a computationally demanding task. Next, the Newmark-beta 

method is explained in more details, since it is of our interest in this study. 

1.7. Newmark-beta Method 

In 1959, Newmark formulated this second-order accuracy method [4] by writing Taylor 

expansion of displacement and velocity and then adding implicitness to the resulting equation 

by introducing two numerical parameters γ  and β  as shown in (1.6) and (1.7). 

( ) ( )
2

1 2 2
2t t tt t t t

t
u u tu u uβ β+∆ +∆

 
  

∆
= +∆ + − +� �� ��    (1.6) 
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( )1
t tt t t t

u u t u uγ γ+∆ +∆
 
  

= +∆ − +� � �� ��
   (1.7) 

A convenient choice for the unknown is displacement, therefore we substitute (1.6) with (1.8)

, in order to find acceleration as function of displacement. 

   

( )
( )2

1 1 1 2

2t t t t t t t
u u u u u

tt

β

β ββ
+∆ +∆

−
= − − −

∆∆
�� � ��            

(1.8)
 

By substituting (1.7) and (1.8) into (1.1), we obtain a simple linear system: 

eff eff

t t t t
K u f+∆ +∆=    (1.9) 

where effK  and efff   are effective stiffness matrix and effective force vector, respectively, 

where: [5] 

( )2
1effK K C M

t t

γ

β β
= + +

∆ ∆
   (1.10) 

( )

( )2

2

2

1 1 1 2

2

eff ext C M

t t t

C

t t t

M

t t t

f f f f

t
f C u u u

t

f M u u u
tt

γ βγ γ β

β β β

β

β ββ

+∆
= + +
 ∆ −  − = + +   ∆  
  − = + +   ∆  ∆  

� ��

� ��

      (1.11) 

The effective stiffness matrix of equation (1.10) is symmetric positive-definite, since both K  

and M  are symmetric positive definite and all of the coefficient are positive too. In linear 

elasticity, the stiffness and mass matrices remain constant throughout the analysis, and the 

effective stiffness matrix needs to be computed only once. However, the effective force 
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vector must be updated at each time step, since it depends on the displacement, velocity, and 

acceleration fields. In large-deformation models and in Elasto-Plasticity, the effective 

stiffness matrix can change over time. In this thesis, we assume that the stiffness and mass 

matrices remain unchanged during simulation. 
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Chapter 2: Voxelization 

 

2.1. Introduction 

The proposed method of solving Equation (1.9) through assembly-free deflated conjugate-

gradient; this method is applicable to any finite-element discretization. However, we consider 

a simple discretization, where the geometry is approximated via uniform hexahedral elements 

or ‘voxels’. The voxel-approach has gained significant popularity recently due to its 

robustness and low memory foot-print[15]. One simple choice for representing the boundary 

is by triangulating the surface of the object [17]. 

 

Figure 2: Arduino MEGA 2560: Triangulated surface and bounding box 

  

2.2. Voxelization 

For simplicity, let us discuss the 2D case; extension to 3D is then straight forward.  

Consider the simple 2D sketch of Figure 3 and its approximate bounding box. 
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Figure 3: a) Geometry b) Bounding box 

The first step after finding the bounding box is to create a background grid, knowing the 

element dimensions hx and hy.  

                                    

Figure 4: Voxelization: background grid 

Next, we walk in x direction, cast rays in y direction and find the intersection points with the 

boundary.  

       

Figure 5: Voxelization: find intersection points with boundary 
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After gathering all intersection points for each ray, we sort the nodes w.r.t their y 

coordinates. Observe that for a valid sketch, there are always an even number of intersection 

points. Then we create line segments starting from the first intersection point and the second 

one. We continue this for all intersection points, keeping in mind that each point must belong 

to only one line segment.  

 

Figure 6: Voxelization: create Segments 

 

 

Figure 7: Voxelization: Discard elements with a node outside 
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We can improve the accuracy by reducing the voxel size and increasing the number of finite 

elements.  

 

Figure 8:  Voxelization: Improve accuracy by using smaller voxels 

 

The only differences in 3D are 1) boundary consists of triangles and 2) we move in x-y plane 

and cast rays in z direction.  

The voxelization of the geometry in Figure 2 is illustrated in Figure 9. It has about 300,000 

voxels. Fortunately, even such a large-size problem is easily handled via the proposed 

method.  

 

Figure 9: Arduino MEGA 2560: Voxelized 
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The most significant benefits of voxelization are: (1) it is robust in that it rarely fails (unlike 

traditional meshing), (2) the mesh storage is compact, (3) computational cost of voxelization 

is usually negligible and is relatively insensitive to geometric complexity, and (4) it promotes 

assembly-free analysis. 

Typically, the downside of voxelization is that the stresses tend to be less accurate. We 

mitigate this through two strategies described below. 

2.3. Shape Functions 

Given a voxelization, one can choose a variety of hexahedral finite element shape functions. 

The simplest is the set of tri-linear shape functions described in [26], where each node-based 

shape function is of the form: 

0.125(1 )(1 )(1 ); 1,2,..., 8
i i i i

N iξ ξ η η ζ ζ= + + + =
                                                  

(2.1) 

However, the resulting 8-noded elements are ‘stiff’, and convergence is slow. One could use 

20-node or 27-node elements, but this increases the memory requirements significantly.  

Instead, we use the Wilson element endowed with three additional bubble-functions of the 

form of [23],[22]: 

2

1

2

2

2

3

( , , ) (1 )

( , , ) (1 )

( , , ) (1 )

M

M

M

ξ η ζ ξ

ξ η ζ η

ξ η ζ ζ

= −

= −

= −   

(2.2) 

The resulting element stiffness matrix are of the form:  
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11 12

21 22
e

K K
K

K K

 
 =  
     

(2.3) 

where 

11

12

21

22

T

T

T

T

K N D Nd

K N D Md

K M D Nd

K M D Md

= ∇ ∇ Ω

= ∇ ∇ Ω

= ∇ ∇ Ω

= ∇ ∇ Ω

∫
∫
∫
∫   

(2.4) 

One can condense out the bubble degrees of freedom, resulting again in a reduced 24 degrees 

of freedom element stiffness matrix [22]: 

11 12 22 21
( \ )

e
K K K K K= −    (2.5) 

This significantly improves the stress predictions without penalizing the computation since 

equation (2.5) needs to be carried out once. Similar condensation can be carried out for the 

mass element matrix. Moreover, an adaptive subdomain refinement is developed as a second 

strategy which will be discussed in chapter 6.  
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Chapter 3: Assembly-Free FEA 

 

3.1. Introduction 

In classic finite element analysis, the element matrices are typically assembled into global 

matrices K  and M , whose size and structure will depend on distribution of the voxels. 

In the present work, the explicit construction of these matrices is avoided through an 

Assembly-free (a.k.a. matrix-free) approach [2][12], where neither K  nor M  are 

assembled/stored. The basic idea behind Assembly-Free FEA, as shown by Equation (3.1), is 

to perform Sparse-Matrix Vector Multiplication (SpMV) element by element and assemble 

the resulting vector, instead of assembling the matrix and then multiply by the vector. 

( ) ( )
e e e

assemble assemble

Ku K u K u= ≡∏ ∏        (3.1) 

Here, we explain two techniques to perform Assembly-Free method, introduced by Yadav 

and Suresh [24]: 

1) Element Connectivity Based 

2) Node Connectivity Based 

3.2. Element Connectivity Based  

This approach is more intuitive, in that we walk through each node and find the elements it 

belongs to. Then for each element, local number of the node within the element is found (can 

be from 1 to 8 for a voxel), so that the corresponding row in the stiffness matrix can be 

extracted. Once these values are known, we can perform the multiplication with the nodal 

DOFs of all nodes of the element.  
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Algorithm:     Element Connectivity-Based Assembly-Free 

1. Compute element stiffness and mass matrices 

2. For 1,2,...,NumNodesN =  Do: 

3. Find elements connected to node      

4. For 1,2,...,elem numNeighbors=  Do 

5. Find place of node in element numbering  

6. Find the corresponding set of values in element Stiffness (or Mass) matrix 

7. Find the nodal values of the element 

8. Perform the dot product 

9. End-Do neighboring elements 

10. End-Do nodes 

 

3.3. Node Connectivity Based  

Node connectivity based is slightly more complicated. The idea is to find and store the 

following information for each node at the pre-processing stage: 

1. Relative position (signature) w.r.t neighbors 

2. Neighbors 

For any given node, each of its 8 neighboring elements can either exist or not, therefore there 

are only 82  256=  distinct relative configurations for a node to be placed w.r.t its neighbors, 

but since we assume that each node belongs to at least one element, we subtract the condition 

where none of the elements exist. Hence, there are 255 of such configurations for which we 

can find the set of rows that make contribution to the target node. For each node, we find 

which configuration it is at, and assign the relevant set of nodal rows to it. Next, we find 



16 

 

 

what the actual neighbors are and store them for each node. Each node can have up to 27 

neighboring nodes. 

Algorithm:     Node Connectivity-Based Assembly-Free; 

1. Compute element stiffness and mass matrices 

2. Find and store all relative configurations 

3. Assign a configuration to each node  

4. Find and store the neighboring nodes 

5. For 1,2,...,NumNodesN =  Do: 

6. Find its signature 

7. Find the neighboring nodes 

8. Find the nodal values of vector    

9. Perform dot product 

10. End-Do nodes 

 

3.4. Assembly-Free Newmark-beta Formulation 

Since our final goal is to solve Equation (1.9), we need to carry out the Effective Stiffness 

matrix ( effK ) , and since our approach is assembly-free, we need to find effK  per element 

( eff

e
K ). This is a fairly straight forward procedure, as shown.  

Observe that in Equation (1.9), effK  is a linear combination of K  and M , therefore the 

element effective stiffness matrix eff

e
K   can be computed as follows: 

eff

e e e
K K Mη ς= +         (3.2) 

where: 
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1
d

h

γβ
η

β
= +          (3.3) 

2

1 d

tt

γα
ς

ββ
= +

∆∆
        (3.4) 

The advantages of a matrix-free analysis are: (1) memory requirements are obviously 

reduced, and therefore fine resolution transient analysis can be carried out, (2) memory 

reduction indirectly translates into decreased computational speed [16], and (3) matrix-free 

multiplication is well suited for parallelization on multi-core architectures [24]. 

Considering Equations (1.5) and  (1.11), one can see that efff  can be expressed in terms of 

, , , ,Ku Ku Ku Mu Mu� �� �  and Mu��  as follows: 

2

2

1 1

1
1

2

d
eff ext

t t t t

d d
d d

t t

d d
d

t t

d
d

t

f f Ku
t

t
Ku t Ku

Mu Mu
t tt

t
t Mu

γβ

β

γβ γβ
β β

β β

γα γα
α

β β ββ

γα
α

β

+∆ = + +
∆

   ∆   − + − ∆ +        
      + + + − +     ∆ ∆∆   
 ∆ +  − ∆ −   

� ��

�

��

     (3.5) 

Thus, to compute the effective force at each time-step, one must carry out several SpMVs; 

these can be carried out in an assembly-free manner. 

For large-scale problems, Node-based approach is faster than Element-based connectivity. 

The reason is that in the former, we spend more time in pre-processing stage, hence the 

stiffness values are known beforehand; while in the latter, the corresponding stiffness rows 
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must be found  every time. Clearly, nodal based is advantageous when multiple 

multiplications are needed, e.g. transient analysis. (See Figure 18 and Table 2.)   
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Chapter 4: Deflated Conjugate Gradient 

 

4.1. Introduction 

 

Computationally, the most intensive task in the Newmark-beta method is solving the linear 

system in equation (2.4). Generally, there are two types of solvers used to solve such system 

of equations: 

1)  Direct  solvers 

2) Iterative solvers 

4.2. Direct and Iterative Solvers: Tradeoff 

 

For sufficiently small finite element problems, i.e. if the stiffness matrix has less than, say, 

500,000 degrees of freedom, sparse direct solvers are superior. Direct solvers are robust, and 

rely on factoring the matrix, for example, into a Cholesky decomposition: 

eff TK LL=    (4.1) 

where L  is a triangular matrix. 

Equation (1.9)  turns into (4.2), 

1( )T eff

t t t t
u L L f− −

+∆ +∆=  
  

(4.2) 

Since L   is triangular, taking the inversion is trivial. In transient analysis, direct methods are 

particularly favorable since the factorization needs to be carried just once. 

On the other hand, due to the explicit factorization, direct solvers are memory intensive. For 

instance, to quote from the ANSYS manual [31], “[sparse direct solver] is the most robust 
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solver in ANSYS, but it is also compute- and I/O-intensive”. Specifically, for a matrix with 

one million degrees of freedom [4]: 

• Approximately 1 GB of memory is needed for assembly. 

• However, 10 to 20 GB additional memory is needed for factorization. 

Since memory-access is often the bottle-neck in modern computer architecture [10], this 

leads to increased clock time. In other words, reducing memory usage is critical for large-

scale problems.  

As mentioned before, the alternative is using an Iterative solver. Iterative solvers are slower 

than direct solvers. They do not factorize the stiffness matrix, but compute the solution 

iteratively.  

When the stiffness matrix is symmetric and positive-definite, the most common iterative 

solver is conjugate gradient [21].  

Consider the following quadratic to be of order N: 

1
( )

2
T Tf x x Qx x b c= + +    (4.3) 

where Q   is a symmetric positive-definite matrix. If we find a set of mutually Q -conjugate 

vectors, { }
1,2,...,Ni i

s
=

 , then by starting from any initial point 0x  and performing line-search 

along direction i

i
d s=   , the exact minimum of the function will be found.  

There are numerous ways to find conjugate directions. Powell, Steepest Descent Direction, 

Conjugate Gradient, Newton-Raphson, and Quasi-Newton (BFGS) are just some of many. It 
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is also worth mentioning that Powell’s method is a zeroth-order method, meaning that only 

the function itself needs to be evaluated at each point. Steepest Descent Direction, Conjugate 

Gradient, and Quasi-Newton are considered first-order methods, since we also need to 

compute their gradientG f≡ ∇ .  Finally, Newton-Raphson is a second-order method, where 

the HessianH G≡ ∇ needs to be carried out, as well. 

4.3. Conjugate Gradient Method 

The Conjugate Gradient method is probably the most popular first-order method today. The 

idea is to start from an initial guess and perform the first search along the steepest descent 

direction. Every future direction from now on is updated such that it would be conjugate to 

all previous search-directions.  The algorithm is as follows: 

Algorithm:     Conjugate Gradient (CG); solve Kd f=  

1. Find initial search direction at 0x  ; 0 0( )d f x= ∇ , 0i =   

2.  Do While ( ( )if x Tol∇ <  )  

3. 1i i= +   

4. Update 1 1i i ix x d− −= +   

5. Enforce conjugacy; 
( )
( )

1

1 1

( )
T

i i

T
i i

d K f x

d Kd

β

−

− −

∇
= −   

6. Update search-direction; 1( ) di i id f x β −= ∇ +   

7. End-Do 
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The iterative solver must be accelerated either through an efficient pre-conditioner and/or 

through multi-grid/deflation techniques. Herein, we consider a particular deflation 

technique proposed in [9]. 

Equally important is an efficient implementation of SpMV, which has drawn considerable 

attention from several researchers. For example, see [13] for an implementation of SpMV 

on graphics-programmable units (GPUs). In this paper, we consider an assembly-free 

implementation of SpMV. 

In summary, one can conclude that, for large-scale transient analysis: 

• Iterative solvers scale better than direct methods. 

• Pre-conditioning and/or multi-grid/deflation is important in iterative techniques. 

• Efficient SpMV and reducing memory foot-print will reduce the computational cost per 

iteration. 

• Exploiting multi-core architecture shows promise, but hinges on building parallelization-

friendly algorithms. 

 

4.4. Deflated Conjugate Gradient method 

Deflation is a popular method for accelerating iterative methods such as conjugate gradient. 

The concept behind deflation [20] is to construct a matrix W , referred to as the deflation 

space, whose columns ‘approximately’ span the low eigen-vectors of the (effective) stiffness 

matrix.  

Since computing the eigen-vectors is obviously expensive, Adams and others [9], [11] 

suggested a simple agglomeration technique, where finite element nodes are collected into 
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small number of groups. For example, Figure 10 illustrates agglomeration of the finite 

element nodes into 100 groups. 

  

Figure 10: Arduino MEGA 2560: Agglomeration of mesh nodes into about 100 groups 

 

As a step towards constructing the W  matrix, nodes within each group are collectively 

treated as a rigid body. The motivation is that these agglomerated rigid body modes mimic 

the low-order eigen-modes. Then displacement of each node within a group is expressed as: 

1 0 0 0

0 1 0 0

0 0 1 0
g

u z y

v z x

w y x

λ

     −       = −          −     

 

  

(4.4) 

where  

{ }0 0 0
, , , , ,

T

g x y z
u v wλ θ θ θ=    (4.5) 

are the six unknown rigid body motions associated with the group, and ( , , )x y z  are the 

relative coordinates of the node with respect to the geometric center of the group. Observe 

that Equation (4.4) is essentially a restriction operation similar to that of multi-grid [14],[7]. 
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Once the mapping in equation (4.4) is constructed for all the nodes, they can be ‘assembled’ 

to result in a deflation matrix W  : 

d Wλ=    (4.6) 

where d   is the 3N ( :N Node  ) degrees of freedom, λ  is the 6G ( :G Group ) degrees of 

freedom associated with the groups. One can now exploit the W  matrix to create the 

Deflated Conjugate Gradient (DCG) algorithm described below:[24] 

Algorithm:     Deflated CG (DCG); solve Kd f=  

1. Construct the deflation space W  

2. Choose 
0
d  where 

0
0TW r =  & 

0 0
r f Kd= −  

3. Solve 
0 0

T TW KW W Krµ = ; 
0 0 0
p r Wµ= −  

4. For 1,2,..., ,j m= d0: 

5.      1 1

1

1 1

T

j j

j T

j j

r r

p Kp
α

− −
−

− −

=  

6.      
1 1 1j j j j

d d pα
− − −

= +  

7.      
1 1 1j j j j

r r Kpα
− − −

= −  

8.      
1

1 1

T

j j

j T

j j

r r

r r
β −

− −

=  

9.      Solve T T

j j
W KW W Krµ =  for µ  

10.      
1 1j j j j j

p p r Wβ µ
− −

= + −  

11. End-Do 

 

When N >> G, i.e., when the number of mesh nodes far exceeds the number of groups: 

• The primary computation is the SpMV, e.g. Kx  in steps 5 and 9.  
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• Additional computations include the restriction operation TW x   in step 9, the prolongation 

Wµ   in step 10, and the solution of the linear system ( )TW KW yµ =   in step 9.  

construction in step 3 can be viewed as a series of  TW KW time coarse matrix-The one

is  W SpMV, followed by a series of restriction operations. Observe that the deflation matrix

also sparse. 
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 Chapter 5: Parallelization 

 

5.1. Parallelization On CPU 

Parallel computing is solving set of relatively small problems concurrently, as opposed to 

solving them sequentially. This evolutionary idea allows us to analyze larger and more 

complicated problems faster, and since our goal is solving large-scale problems more 

efficiently, parallelization plays a pivotal role in our method.  

Parallelization can be reached on both Central Processing Unit (CPU) and Graphical 

Processing Unit (GPU). Programming on GPU takes more time and experience, but it is 

worthwhile due to its high efficiency. The reason is that CPU is designed to perform many 

different tasks, while GPU has one particular purpose which is designed optimally for. 

5.2. Parallelization On CPU 

Parallelization on CPU is implemented using an API called Open Multi-Processing 

(OpenMP), which consists of compilers, libraries, and environmental variables. The basic 

idea is to run a master thread, which then launches number of slave threads to perform tasks 

simultaneously. Figure 11 Shows how the thread launching works in OpenMP [29],  

   

Figure 11: OpenMP threads  
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As mentioned before, we can exploit OpenMP to easily enhance the overall performance by 

parallelizing vector operations, e.g. SpMV.  

5.3. Parallelization On GPU 

Parallel computing on GPU is extremely efficient for large-sale problems that can be divided 

into many simple smaller ones. Due to its high number of cores, a great number of these 

simpler tasks can be solved concurrently.  

CUDA is a very popular platform for GPU computing introduced by NVidia. CUDA is 

considered a high-level language, which can be based on C, C++, FORTRAN, etc. [33] 

The main idea is to launch a lot of cores, usually referred to as threads, to complete a set of 

simple tasks. A group of threads with the same shared memory create a Block, which can be 

arranged as a three dimensional array of threads (blockDim.x, blockDim.y, and blockDim.z).  

Grid is basically a group of blocks, which can be organized as an array of blocks in two 

dimensions (gridDim.x and gridDim.y). All blocks of a grid must be of the same dimensions 

and they can have 512 (or 1024 on newer GPUs) threads inside them. Threads of a grid 

execute the same Kernel function to complete an assignment. A kernel function must have a 

specified dimension at the launching time, which cannot be changed after execution. Also, it 

is worth mentioning that each block consists of units called Warps, which are groups of 

threads launched simultaneously. Each warp has 32 threads and can also be known as unit of 

thread scheduling in SMs.[27] 

Some of the common challenges in GPU programming are latency and race condition. 

Latency is the time spent on accessing data from either the main memory or GPU cache. 
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Race condition happens when multiple threads try to access the same location of memory at 

the same time [27]. 

Assembly-Free FEA is implemented on GPU as follows. To begin with, we have to decide 

whether we want to assign threads to nodes or elements. Observe that both algorithms for 

Element-Based and Node-Based Connectivity are performing loops over nodes. The reason is 

to avoid race condition. As elements share nodes, if we assign a thread to an element two 

threads might want access to the shared node at the same time. While by assigning treads to 

nodes, each thread is writing data to its own nodal DOF, hence no race condition occurs.    

Most of the parallelization here is done for SpMVs, e.g. Ku f= . 
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Chapter 6: Adaptive Sub-Domain Refinement  

 

6.1. Introduction 

In this section, we introduce an Adaptive Sub-Domain Refinement algorithm to improve the 

accuracy of stress prediction. The main reason is that one can question the validity of the 

solution, since the mesh is non-conforming.  

Consider domain Ω  to be discretized by coarse mesh and we are interested in improving the 

results of the region 
l

Ω   where stress concentration has occurred. Therefore, by generating a 

local fine mesh over 
l

Ω  and carefully imposing the right boundary conditions, we can obtain 

a better prediction for stress over the refined domain. Further, one can improve the solution 

over Ω  by adding more steps as discussed in [7]. 

 

Figure 12: Coarse and Fine Mesh over Ω  and 
l

Ω ⊂ Ω   
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6.2. Sub-Domain Refinement Algorithm 

Sub-modeling [1] (or local mesh refinement) is a classic idea in finite element analysis where 

after a global problem is solved, one creates a higher-resolution mesh is created around 

regions of stress concentrations. 

Assume that we have already solved equation (1.9)  over Ω  (coarse mesh) and we want to 

improve the results over some known region 
l

Ω ⊂ Ω . The method consists of the following 

steps:[6],[18] 

1) Interpolate the boundary values of 
l

Ω  from solution of Ω . (Dirichlet B.C.) 

2) Solve equation (1.9) over 
l

Ω   

3) Compute Stress values over 
l

Ω   

4) Smooth the results 

Here we can either report the obtained results, or push the improved solution back to the 

coarse mesh. 

Figure 13 illustrates the algorithm more clearly, 

 

Figure 13: Sub-Domain Refinement Algorithm: a) Solve coarse mesh and create fine mesh.  

b) Interpolate boundary values of fine mesh. c) Solve fine mesh 

 



31 

 

 

6.3. Adaptivity 

In most commercial packages, the user needs to know the location(s) of stress concentration 

beforehand to apply refinement.  In order to have a robust method for transient analysis, the 

algorithm must be able to update the refinement regions as time passes and loading 

conditions change. To this end, at each time step (or once in a number of time steps) we find 

the critical locations, create the local fine mesh, and solve fine problems.  

Ideally, one should generate a conforming mesh in the refined regions (which is a work of 

near future), but in this thesis we voxelize sub-domains too.  Figure 14 shows how the stress 

concentration domain changes through time for a plate with hole.  

 

 

Figure 14: Plate with hole a) t = 1e-7 (s) b) t = 1e-6 c) t = 1e-5 
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Chapter 7: Numerical Experiments 

7.1. Introduction 

In this Section, we present results from numerical experiments based on the proposed 

algorithm. All experiments were conducted on a Windows 7 64-bit machine with the 

following hardware: Intel Core i7 CPU running at 3.4GHz with 8 GB of memory, and a 

graphics card of GeForce GTX-760; parallelization on CPU and GPU were implemented 

through OpenMP and CUDA, respectively.  

For all experiments, the Newmark coefficients were: 

0.5

0.25

γ

β

=

=
  (6.1) 

The material properties were those of steel: 

2

3

2.1 11 /

0.28

7700 /

E e N m

kg m

ν

ρ

=
=

=

        (6.2) 

7.2. Speed 

In the first experiment, we compare the proposed assembly-free deflated conjugate gradient 

(AF-DCG) against the popular commercial finite element software, ANSYS[31]. The 

geometry is a steel cantilever beam of dimension 0.5 0.02 0.05× ×   (meters). A tip-force of 

one Newton is applied at 0t =  as illustrated in Figure 15, and maintained thereafter. In 

ANSYS, the ‘Brick 8 node 185’ element was used, while the AF-DCG relies on the Wilson 

element described earlier.  
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Figure 15: Cantilever Beam: Displacement field 

 

 

The damping coefficients are 0dα =  and 5 4d Eβ = −  . The analysis time is 0.2 seconds, 

with 0.0005t∆ = s.  

In both implementations, with 8000 elements, the maximum deflection was reached at 

around 0.01 seconds, where: 

max

max

5.88 6 (m)       (ANSYS)

5.92 6 (m)       (AF-DCG)

E

E

δ

δ

= −
= −

   (6.3) 

 

Figure 16: Cantilever Beam: Normalized displacement response 

 a) AF-DCG b) ANSYS 
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The slight difference can be attributed to the difference in the two shape functions used. 

Figure 16 illustrates the normalized tip displacement in AF-DCG and ANSYS classic.  Both 

methods converged to the static deflection as expected. 

To compare the computational costs, the geometry was discretized using two different mesh 

sizes: 8000 elements and 25000 elements. With each mesh size, three different solvers were 

considered (1) ANSYS-direct, (2) ANSYS-pre-conditioned conjugate gradient (PCG), and 

(3) proposed AF-DCG. Figure 17 compares the computational times. As one can observe, 

AF-DCG is about seven times faster than ANSYS for the smaller mesh size, and about 

fifteen times faster for the larger mesh size.  

 

Figure 17: Cantilever Beam: Run-time comparison of ANSYS vs. AF-DCG 

 ANSYS 

Direct 

ANSYS         

PCG 

AF-DCG     

(CPU) 

AF-DCG    

(GPU) 

8000 voxels run-time(s) 350 400 22 24 

25000 voxels run-time(s) 1500 2100 66 53 

Table 1: Cantilever Beam: Run-time comparison, 8000 and 25000 voxels                       

ANSYS vs. AF-DCG 
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The next important comparison can be made between Node-Based and Element-Based 

connectivity methods discussed in chapter 3. Figure 18 and Table 2summarize the results for 

the cantilever beam. 

 

Figure 18: Cantilever Beam: Run-time comparison of Element-Based vs. Node-Based  

 

 Element-Based 

(CPU) 

Node-Based 

(CPU) 

Element-Based 

(GPU) 

Node-Based 

(GPU) 

run-time(s) 124.15 66.3 80.39 53.3 

Table 2: Cantilever Beam: Run-time comparison of Element-Based vs. Node-Based  
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7.3. Accuracy 

The geometry is illustrated in Figure 19; material properties are those of steel. A force of 

5000N was applied at time 0t =  , and maintained thereafter. The total analysis time is 

0.008  seconds with 0.00002t∆ =  s; the damping coefficients are 0; 2 5d d Eα β= = −  . 

 

Figure 19: L-Bracket: geometry (dimensions in mm) and loading 

 

 

The geometry was discretized using 4,000 elements. Despite the fact that we rely on a non-

conforming voxel-mesh (as opposed to a high-quality conforming mesh in ANSYS), the 

stress predictions are fairly close. In fact the stress prediction with a 16 and 64 level 

refinements are similar to results obtained from ANSYS with 20,000 and 25,000 conforming 

elements. 
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Figure 20: L-Bracket: Local Mesh Refinement 

 

Table 3 shows the convergence of local mesh refinement. 

Refinement level 0 8 12 16 64 

Max. Stress (MPa) 387.3 399.5 407.9 431.5 437.5 

Table 3: L-bracket: Convergence of local mesh refinement 

 

Figure 21 shows the normalized maximum stress through time in AF-DCG and ANSYS. 

 

Figure 21: L-Bracket: The normalized maximum vonMises stress a)AF-DCG b) ANSYS 
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7.4. Importance of Deflation 

The purpose of this experiment is to highlight the importance of deflation. The ‘plain’ CG 

can be exceedingly slow for large finite element models, especially for thin structures whose 

stiffness matrices are typically ill-conditioned.  

For this experiment, the geometry and loading are illustrated in Figure 22.a, while Figure 

22.b illustrates the static deformation. The geometry is discretized into 40000 hexahedral 

elements, and the analysis time 0.0125  seconds while 0.0001t∆ =  s. The damping 

coefficients are 0; 2 5d d Eα β= = −  .  

 

 

Figure 22: Rocker: a) Load condition b) Displacement field 

 

 

 

 



39 

 

 

Figure 23 and Table 4 compare the run time of AF-CG (i.e., without deflation) and AF-DCG 

(i.e., with deflation); the importance of deflation is self-evident.  

 

Figure 23: Rocker: Run-time comparison of AF-CG vs. AF-DCG 

 

 AF-CG 

(CPU) 

AF-CG    

(GPU) 

AF-DCG  

(CPU) 

AF-DCG 

(GPU) 

Run-time (s) 3385 1905 336 277 

Table 4: Rocker: Run-time comparison of AF-CG vs. AF-DCG 
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Next, we test the sensitivity of the run-time to number of agglomeration groups. 

 

 

Figure 24: Rocker: Sensitivity of run-time to number of Groups 

 

From Figure 24 we can conclude that as we increase the number of groups the run-time does 

not necessarily decrease and there is an optimum number of agglomeration groups (here 

about 400), which balances the extra time due to computation of groups (preprocess time) 

and   reduced time in solving the linear system (process time). 
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7.5. Large-Scale Problems 

In the present section, we present two large-scale examples to illustrate the advantages of the 

proposed method further. These problems are more realistic and are closer to the industrial 

model.  

7.5.1. Battery Holder 

This experiment illustrates the advantages of voxelization (as opposed to a conforming 

mesh). Consider the battery holder geometry in Figure 25, the small features present in the 

geometry can result in meshing-failure for a conforming mesh algorithm. A non-conforming 

voxel-mesh is insensitive to such details since it only approximates the geometry up to the 

resolution of the mesh. The geometry was discretized using 80,000 voxels. This resulted in a 

system with 317,000 nodal DOFs. A step-force of 1 N was applied on all the battery 

locations. 

 

Figure 25: Battery holder: Thin structure with small features 
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The analysis is run for 0.04  seconds with a time step of 0.0001s. The damping coefficients 

are 0; 0.0001d dα β= =  . The study is done both on CPU and GPU using 1000 

agglomeration groups, and the run-times are presented in Figure 26. 

 

Figure 26: Battery holder: Run-time on CPU and GPU 

 

Figure 27 shows Battery holder’s displacement and stress field at 0.04t =  s.  

 

Figure 27: Battery holder: a) Displacement field b) Stress field 
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Figure 28 illustrates normalized maximum stress throughout the analysis. 

 

Figure 28: Battery holder: Normalized maximum stress over time 
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7.5.2. PCB (Arduino MEGA 2560) 

Electric boards are perfect case studies for a large-scale transient FEA studies. They are 

usually very detailed filled with thin features; therefore require a very fine mesh. Further, 

they are constantly undergoing various dynamic loads, from manufacturing and shipping to 

operation, which makes them popular case studies for time-dependent analysis, especially 

fatigue analysis. Here, we study Arduino MEGA 2560 (Figure 1), a microcontroller widely 

used for R/C applications.  

Since the model is highly detailed, the mesh has over 1 million DOFs or about 300,000 

voxels (Figure 9). The sinusoidal force of Figure 29 is acting on the board as shown in Figure 

30. 

 

Figure 29: Arduino MEGA 2560: Loading and Boundary conditions 
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Figure 30: Arduino MEGA 2560:  Sinusoidal force of 3000(1 sin(20 ))F tπ= +   

 

The study is run on both CPU and GPU. As shown in Figure 31, the run-time on GPU is 

considerably shorter, which demonstrates the importance of parallelization in the proposed 

method. 

 

Figure 31: Arduino MEGA 2560:  Run-time comparison between CPU and GPU 
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Figure 33 shows displacement field and stress fields caused by above loading condition. 

 

Figure 32: Arduino MEGA 2560: a) Normalized maximum displacement over time 

 b) Normalized maximum stress over time  

 

Finally, Figure 33 shows the displacement and stress fields at t=0.02 s.  

 

Figure 33: Arduino MEGA 2560: a) Displacement field b) Stress field  
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Chapter 8: Conclusion 

 

8.1. Conclusion 

A fast time-stepping approach for structural dynamics was developed based on Newmark-

beta. The method merges different concepts to improve both speed and accuracy for large-

scale problems. Comparisons were made with commercial software packages, which 

revealed the dominance of the proposed method with no loss in accuracy (provided the 

geometry can be accurately voxelized).   

8.2. Future Work 

The proposed AF-DCG can become the foundation for future work on Drop test, Fatigue 

modeling, and Crack propagation. Further, one of the most important applications of the 

proposed method is bone modelling and simulating the dynamics of bone structures for the 

following reasons and more: 

1- CT scans represent bones in units of voxels, thus pre-processing time can reduce 

significantly.  

2- Bones are often times large-scale models. 

3- Researchers are usually interested in dynamic response of bones, which can take up to 

days to complete one run using current commercial software packages.  

 

Moreover, there are still some weaknesses remained to solve in near future. Perhaps the most 

important one is stress prediction, which requires an accurate and robust algorithm to provide 

correct results, regardless of geometric complexities. 
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8.3. Overall Algorithm 

The algorithm is quite similar to classic Newmark-beta method for transient elasticity 

problems, and proceeds as follows: 

Algorithm: AF-DCG Newmark-beta; solve Mu Cu Ku f+ + =�� �  

1. Model the  geometry, voxelize, and set initial conditions 

2. Set material properties 

3. Compute 
e

K  and 
e

M  

4. Set Newmark coefficients ( ) & β γ       

  Set damping coefficients ( ) & d dα β  

  Set duration and step size ( ) & tT ∆   

5. eff

e e e
K K Mη ς= +  where  

  
1

d

h

γβ
η

β
= + , 

2

1 d

tt

γα
ς

ββ
= +

∆∆
 

6. While 
n
t T≤ , do: 

  Update eff ext C M

t t t
f f f f+∆ = + +  

  Solve eff eff

t t t t
K u f+∆ +∆= using DCG (section 3.3) 

  
( )

( )
2

1 1 1 2

2t t t t t t t
u u u u u

tt

β

β ββ
+∆ +∆

−
= − − −

∆∆
�� � ��  

  
( )1

t t t t t t
u u t u uγ γ+∆ +∆

 = +∆ − +  
� � �� ��  

  Compute strains and stresses 

  Sort stresses and create local problems 

  Solve local problems 

  Compute fine Strains and stresses 

7. End-While 
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