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Server Consolidation Techniques  
in Virtualized Data Centers: A Survey 

  

Abstract— Data Centers and their applications are growing 

exponentially. Consequently, their energy consumption and 
environmental impacts have also become increasingly more 
important. Virtualization technologies are widely used in modern 
data centers to ease the management of the data center and also 
reduce its energy consumption. Data centers that employ 
virtualization technologies are typically called virtualized or cloud 
data centers. Virtualization technologies enable Virtual Machine 
(VM) Live Migration which allows the VMs to be freely moved 
among Physical Machines (PMs) with negligible downtime. Thus, 
several VMs can be packed on a single PM so as to let the PM run 
in its more energy efficient working condition. This technique is 
called Server Consolidation and is an effective and widely used 
approach to reduce total energy consumption in data centers. 
Server consolidation can be done in various ways and by 
considering various parameters and effects. This paper presents a 
survey and taxonomy for server consolidation techniques in cloud 
data centers. Special attention has been devoted to the parameters 
and algorithmic approaches used to consolidate VMs onto PMs. In 
this end, we also discuss open challenges and suggest areas for 
further research. 

Index Terms—Cloud computing, data center, energy efficiency, 
server consolidation, virtualization, resource allocation.  

I. INTRODUCTION 

Cloud computing and data centers have become an important 
part of our daily lives because of various internet-scale services, 
such as internet-wide search and email services, that we have 
got used to take advantage of on a regular basis [1]. Cloud 
datacenters can provide the illusion of unlimited resources to 
the users through the Internet, and big companies such as 
Amazon [2], Microsoft [3], Google [4] and IBM [5] are 
developing and providing cloud-based services for their 
customers. The United States Environmental Protection 
Agency (EPA) has reported that the energy used by federated 
servers and data centers was about 100 billion KWh in 2011 [6]. 
Also, world electricity demand for data centers is expected to 
increase by more than 66% over the period 2011-2035 [7]. This 
high energy consumption of data centers along with their high 
rate of growth and total energy and carbon footprint has made 
it inevitable to apply Green computing techniques and reduce 
data center energy consumptions for sustainable growth. 
Virtualization technology provides several features and benefits 
to cloud providers such as resource multiplexing, live 
migration, server consolidation and VM resizing [8]. Using 
these features, cloud providers can provide mostly unlimited 
and on-demand resources to their customers. 

Due to unpredictable and growing demand for resources, data 
centers need to offer high performance computation and large 
volume data storages [9]. These physical resources along with 
air conditioning and cooling equipment are the main power 
consumers in data centers. Moreover, the resource utilization is 
one of the most important factors that affects data center energy 
consumption [10].  Measurements have shown that in data 
centers, average server utilization is between 10% and 50% 
[11]. This can waste lots of energy because typically an idle 
server consumes as large as 50% of a fully utilized server [12]. 
Consequently, one way to reduce the data center energy waste 
is server consolidation technique where data center VMs are 
packed on fewer number of Physical Machines (PM). This 
technique is based on virtualization technology and by using it, 
one can increase the server utilization, and moreover, can put 
now free PMs into standby mode to more effectively reduce the 
energy consumption of data center [13]. 

Server consolidation techniques pack a number of VMs on 
fewer number of PMs to optimize the resource utilization and 
reduce the power consumption by letting the PMs run in 
optimally efficient energy and more energy proportional state. 
The important feature that makes the server consolidation 
technique even more attractive is VM Live Migration. Using 
VM live migration one can transfer a running VM from a PM 
to another PM without considerable service downtime. This 
consolidation can be done in different ways considering various 
parameters. 
We believe that it’s hardly possible to produce a completely 
accurate survey and classification of server consolidation 
techniques that is doing justice to every viewpoints. In this 
paper we present a survey on different consolidation 
techniques, the different parameters their considered, their 
objectives they pursued on the datacenter operations and costs 
(e.g. energy consumption, cooling efficiency), and the different 
optimization methods they used to solve the consolidation 
problem. Also we presented some open challenges and areas for 
further research. We discuss the server consolidation problem 
from several aspects that are mostly affect the problem and the 
way that the problem is solved and evaluated. In the first 
criteria, we discuss the time of decision making: static, dynamic 
and dynamic with load prediction. Static techniques is used 
where there is a stable set of VMs and predictable demand 
patterns as opposed to dynamic consolidation techniques which 
are used in data centers with time-varying and stochastic 
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workloads [14]. Also, another method is dynamic techniques 
with load prediction which can be quite successful in certain 
predictable applications. Another aspect is parameters which 
are considered in server consolidation problem. These 
parameters are affect the data center operational costs and user 
experience etc. As we know, there are several parameters that 
could be considered into the account: : hardware utilization, 
data center network traffic, data center cooling systems, 
performance of running applications, reliability of the data 
center devices and also migration overheads. Each of these 
parameters can highly affect the server consolidation process.  
Two other aspects we used for classification are the 
optimization method and the objective function employed in the 
optimization process. Above parameters are used to effectively 
achieve objectives such as minimization of energy, overheads 
(both network and computational) and costs, and maximization 
of application performance, hardware reliability and service 
reliability/availability. These various objective functions are 
presented in table 3 with other considered parameters in the 
optimization problem. Our fourth discussed aspect is 
optimization methods used in order to solve the server 
consolidation problem. Since the server consolidation problem 
can be mapped to a high-dimensional NP-Hard bin packing 
problem, it is often formulated and solved using various 
heuristics and meta-heuristics. Finally, another important 
aspect to classify the approaches is the way they are evaluated: 
in simulation environment or in real data centers. Approaches 
that have been implemented and evaluated in real data centers 
are more reliable in terms of their claimed achievements than 
simulated approaches. Under simulated environments, the 
reported evaluations need to carefully consider limitations, 
assumptions, and precision of the employed simulation 
environment. These evaluation methods are also given in table 

3 which presents an overall view and comparison of prior 
works. Fig. 1 gives an overview of the presented classification 
followed and detailed in the rest of this paper. 

The remainder of his paper is organized as follows: Section 
2 presents the system model for resource allocation in data 
centers. In section 3 we present the classification based on time 
of decision making of the server consolidation algorithm. In 
section 4, techniques are classified based on the parameters 
taken into account by the consolidation approach, and in section 
5, a classification based on the employed optimization method 
is presented, followed by conclusion and open challenges in 
section 6.  

II. SYSTEM MODEL 

   Typical architecture of a data center resource allocation 
system is presented in Fig. 2. Each PM runs a Virtual Machine 
Monitor (VMM) e.g. Xen [15], and one or more virtual 
machines. Each virtual machine runs an application or an 
application component. Each PM communicates with the data 
center manager system. Data center manager comprises several 
components: controller, monitoring engine, migration 
manager. Monitoring engine continuously gathers processor, 
network interface, memory usage and other data for each PM 
through the controller. It then processes the data and passes the 
data and statistics to the migration manager component. 
Migration manager then uses the information and the 
consolidation algorithm to determine the migrations that have 
to be done. It then applies the changes to the data center 
configuration using the controller. There is also another 
component that some of data center management systems use: 
the predictor which predicts the future workload to help the 

Fig. 1. An overview of our classification of consolidation techniques. 
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migration manager generate a better configuration for data 
center. 

 

Fig. 2. A typical system model for a data center resource allocation system 

III. CLASSIFICATION BASED ON TIME OF DECISION MAKING: 
STATIC VS. DYNAMIC 

Server consolidation maps the VMs to proper PMs 
considering several parameters and limitations. Several 
virtualization vendors provide management tools [16] with 
some third-party tools [17] for consolidation and data center 
management. Server consolidation can be done in two ways: 
Static and Dynamic which will be discussed in below. 

A. Static Consolidation Techniques 

In static server consolidation, VM to PM mappings are not 
changed for a long time, and no migration is done with 
workload changes during that time [18]. An advantage of this 
approach is in batch job processing and applications with 
consistent demands. A disadvantage of static consolidation is 
resource overprovisioning. In static consolidation, the resources 
are allocated in a way that satisfies the peak load demands, and 
consequently, most of the time they are wasted most of the time 
when the VM is not working at its peak load similar to the 
traditional data centers case. Kishaly Halder et al. in [19] 
introduce an algorithm using static consolidation which tries to 
generate the initial placement and the resources amount for 
VMs considering energy consumption. Speitkamp et al. in [20] 
used a multidimensional bin-packing formulation (MBP) to 
model the problem of static and dynamic server consolidation. 
Wolke et al. in [14] argued the static consolidation method 
against the dynamic resource allocation techniques which are 
compared in a real data center experiment. 

B. Dynamic Consolidation Techniques 

 In dynamic consolidation, the consolidation algorithm is run 
in response to workload variations or at specific time intervals 
and may decide to migrate VMs to other PMs [21]. Most of 
studies are done on the second method, dynamic consolidation. 
As we mentioned earlier, dynamic consolidation algorithm will 

run in specific time periods or specific events choice of which 
can affect the algorithm efficiency. The algorithm presented by 
Gergo Lovasz et al. in [22] runs every 10 minutes. Increasing 
or decreasing the time period could affect the resource 
utilization, energy consumption and/or data center 
performance. Running the algorithm in short periods makes the 
data center changes happen more rapidly, and hence the servers 
will turn on and off more than before and as a result, the servers’ 
life time will decrease. Also, more bandwidth has to be 
allocated to VM migrations and the real users’ network traffic 
will face lower available bandwidth. On the other hand, longer 
time intervals also have negative impacts on data center 
performance e.g., due to not reacting quickly enough to 
workload changes, servers might be overloaded and this can 
reduce the application performance and may violate the SLA. 
Also, too long consolidation periods may lose energy saving 
opportunity, because during the time period, several servers 
could be potentially ready to go to standby mode, but we find 
them too late and until then, they stay running and consume 
energy [23], [24], [25]. 

In addition to time periods, there is another way to determine 
when to run the algorithm i.e. at specific events. Wei Deng et 
al. in [26] define a trigger to run the algorithm. The definition 
is based on a load parameter which consists of some 
multidimensional resource (i.e. CPU, Memory, Disk and 
Network) utilizations. When load parameter reaches to a 
specific value, the consolidation algorithm runs and prevent 
possible server(s) from over- or under-loading. Also, John J. 
Prevost et al. in [23] presented a stochastic optimization model 
which determines the optimal update frequency for changing 
the VM to PM mapping. 

C. Dynamic Consolidation with Load Prediction Techniques 

 One of the main reasons that energy consumption of data 
centers are very high is because servers are online but are idle. 
To save power, the servers must be switched to lower power 
states when they are not in use. Also, switching a server from a 
power state to another causes delay and energy overheads. So, 
if a server will not be needed for a long time, it worth to keep 
the server off rather than turn it on and cause unnecessary 
energy and time overheads. These facts rise the need for 
prediction techniques which can be used to estimate the future 
data center workload. We can use these prediction techniques 
to properly decide when and for how long a server need to be 
turned off or be awake to process new VM requests. Several 
works have used these techniques to provide efficient and 
desirable server consolidation algorithms. Wei Xu et al. in [27] 
presented three different prediction algorithms: standard 
autoregressive (AR) model which account for temporal 
correlations between the current value of a parameter and its 
history, a combined ANOVA-AR model that combines AR 
method and analyzed long-term repeatable patterns in a time 
series, as well as a multi-pulse (MP) model. MP was first used 
in speech processing which analyze both long-term and short-
term pattern in an online manner. Zhenhuan Gong et al. in [28] 
proposed Predictive Elastic Resource Scaling (PRESS) 
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framework. PRESS tries to allocate just enough resources to 
VMs in a way that minimize SLA violations and resource 
wastages. It tracks the dynamic VM demands and predicts these 
resource requirements in the near future using light-weight 
signal processing and statistical learning techniques. However, 
predicting data center workloads can be very complex and 
challenging due to the diversity and stochastic arrivals of client 
requests, while each coming at a different time and requesting 
different amounts of resources (CPU, memory, bandwidth, 
etc.). 

IV. CLASSIFICATION BASED ON THE CONSIDERED 

PARAMETERS 

A. Considering Hardware Utilization 

One of the most used parameters in server consolidation 
algorithms and resource provisioning is hardware utilization. 
Various hardware resources (e.g., CPU, memory, disk, and 
network) could be considered in the optimization algorithm. 
Several studies [29], [13], [30] consider only CPU for the 
proposed algorithm, while in other studies the number of 
considered resources is increased which potentially leads to 
better mappings. Authors in [31], [32] considered CPU and 
Memory as optimization parameters. Also, Beloglazov et al. in 
[33] considered CPU, memory and network utilization as 
optimization parameters and in [26], authors consider CPU, 
memory, network and disk. In the mentioned studies, authors 
used the resource utilizations to model and solve the 
optimization problem. Fox et al. in [34], used 13 different 
metrics to model the VM and server performance and based on 
it, the resource provisioning is done. Also, the objective 
function could be different work by work, but maximizing these 
resource utilizations is one of the important objective functions 
in many works [35], [36]. But the goal is not simply 100% of 
utilization, and the server should have buffers due to tolerating 
the fluctuation of workloads. 

B. Considering Network Traffic 

Many studies on server consolidation use the resource (e.g., 
CPU, Memory, I/O) utilization to model the problem, but 
neglect an important factor, namely network traffic and the 
communication between VMs, that can change the best PM to 
host a VM. Traffic flows on the data center network and also 
the relations between VMs and communication among them 
could affect the data center performance and Quality of Service 
(QoS). Also in batch processing jobs, delay and long 
communications time between two nodes can affect the task 
completion time and hence increases the data center energy 
consumption. Also, this can lead to situations that VM pairs and 
heavy traffic between them are placed on PMs which are far 
from each other (e.g., different racks) and incur large network 
traffic cost between them [37]. Xiaoqiao Meng et al. in [37] 
proposed an algorithm that considers data center network 
topology and network traffic patterns to increase data center 
service performance. This algorithm takes traffic matrix among 
VMs and communication cost matrix among PMs, as inputs and 

produces VM to PM mapping such that the traffic passing 
through the switches is minimized as the output.  

Network traffic in production data centers is very bursty and 
fluctuating [37], [38]. So, it would not be easy to have a reliable 
and deterministic estimation for bandwidth demand. Meng 
Wang et al. in [39] used random variables to characterize the 
future bandwidth usage and modeled the problem using 
stochastic bin packing and considered bandwidth demand for 
each VM. Also, they considered network capacity of a PM as a 
limitation for the optimization problem. Min Cut Ratio-aware 
VM Placement (MCRVMP) is proposed in [40] which in 
addition to resource demands such as CPU and memory, the 
VM communication demands is also considered in the proposed 
optimization problem. Using all this, the proposed algorithm 
tries to minimize the maximum ratio of the demand and the 
capacity across all cuts in data center network. Also, it handles 
the unpredicted traffic bursts by allocating some spare capacity 
on each network cut.  

Data intensive jobs in data centers need lots of storages and 
computation resources and produce heavy data streams [41]. 
Kliazovich et al. in [42] proposed an algorithm with two main 
functions  showing a trade-off between them which should be 
optimized. These two functions are: 1) Server consolidation to 
minimize the online PMs. 2) Traffic patterns distribution to 
prevent hotspots in the data center network. Also, the network 
awareness is achieved via feedback channels of the main 
network switches.  

Network aware server consolidation has been studied also in 
distributed clouds [43], [44]. From users’ point of view, 
distributed clouds are similar to current cloud providers and 
provide normal cloud functions and services (i.e. on demand 
service providing and pay-per-use payment basis). However, in 
terms of backend implementation, distributed clouds are 
geographically distributed over a large number of data centers 
which are connected using a wide area network (WAN) 
connection [45]. Because of the geographical distribution of the 
data centers in this case, a user request may have its resource 
demands from multiple data centers [44]. In data-intensive 
applications in data centers, a VM which runs an application 
may run on a PM which is far away from the data center that 
holds the corresponding data storages. As a result, overall 
application performance may decrease because of the costly 
data transfer between the two data centers that hold the VM and 
data storages [43]. Piao et al. in [43] proposed an algorithm 
which optimizes the VM placement on a PM such that the data 
transfer time is minimized. Also, VM Migrations are triggered 
when data transfer time reaches a threshold determined by SLA. 
In such case, the VM moves to another PM which will cause 
the application performance to increase. 

When a user requests a service such as mail or social network 
access, one or more VMs connected together will be assigned 
to the user. These VMs might be on different PMs and even in 
different data centers. Obviously, longer distance between VMs 
leads to a decrease in available bandwidth and an increase in 
the latency for application tasks to complete, and as a result, the 
performance will be degraded [44]. Alicherry et al. in [44] 
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proposed a VM to PM mapping method  that minimizes the 
inter-datacenter and intra-datacenter traffic and as a result, the 
path for transferring packets will be minimized and this leads 
the application performance to be increased. 

C. Considering Cooling Systems 

Cooling systems are among energy hungry components of 
modern data centers which may consume up to 50% of total 
data center electricity [46]. Hence, reducing the power usage 
for cooling equipment can significantly reduce the total amount 
of power usage in a data center. Several studies have been done 
on cooling aware server consolidation. An important issue in 
data centers is thermal management which has high effects on 
cooling energy consumption due to heat recirculation and 
hotspots [47]. As computation resources processing the 
received tasks produce heat and their temperature rises, the 
cooling systems must supply cold air to the server air inlet to 
cool them down according to server temperature threshold 
which is the maximum operational temperature that the device 
can sustain determined by the manufacturer company. The cool 
air gets into the server from their air inlets and then servers send 
out the hot air from their outlets. Because of air recirculation, 
the hot air can turn back into the cold aisle and increases the 
inlet temperature which can create hotspots [47]. Tang et al. in 
[48] proposed XInt, a job scheduling algorithm that minimizes 
the temperature of inlet air. As a result, the hotspots and heat 
recirculation impact will be minimized which decreases the 
cooling equipment energy consumption. Pakbaznia et al. in [49] 
presented a power and thermal management framework, in 
addition to optimizing servers energy consumption, where the 
proposed algorithm also minimizes the air conditioning system 
power consumption by using Dynamic Voltage and Frequency 
Scaling (DVFS) technique to reduce servers power 
consumption and also by choosing an optimum temperature for 
the supplied cold air. Ahmad et al. in [50] proposed two 
algorithms in their work: PowerTrade algorithm to tradeoff 
servers utilization and cooling systems energy consumption 
which distributes the load over the data center and reduces the 
power input for cooling systems; Their other proposed 
algorithm is SugerGuard which overprovisions the resources 
more than required needs to absorb the possible future load 
fluctuations and request bursts.  

D. Considering Performance Impact 

The virtualization technology and server consolidation 
technique introduce a degree of performance interference 
between VMs which causes an impact on system throughput 
and overall data center performance [51]. This performance 
interference can be divided into two major groups which are 
discussed in the following parts of the paper: 

1) Inter-VM Performance Degradation 

The first factor that decreases the overall application 
performance is inter-VM performance degradation. Using the 
consolidation technique, several VMs are packed into PMs. 
Current virtualization techniques do not guarantee to effectively 
isolate performance interference between the VMs, and hence, 

lead to performance interference between them. This will 
decrease the QoS and may violate the SLA [52]. Also, the 
resources such as I/O devices, memory capacity, shared cache, 
shared memory bandwidth, etc., could be affected by this 
performance interference [53]. However, contention and 
interference in resources such as memory bandwidth and shared 
caches can significantly decrease the performance which is 
measured for several workloads [51], [54], [55]. Also, several 
studies have been done to isolate the resources such as disk 
bandwidth [56] and network bandwidth [57]. Thus, 
performance interference and QoS degradation due to server 
consolidation are important facts that should be considered 
when devising server consolidation and resource allocation 
algorithms.  

The proposed algorithms in [54], [58], use the performance 
profiling method [51], [55], [59] to compute the performance 
degradation for any possible VM combinations on a PM. Based 
on that, the VMs that make less performance interference  are 
identified for mapping on a single PM and as a result, in 
addition to packing the VMs on the lowest possible PMs, the 
performance degradation will also be minimized. In [60], the 
authors introduced two approaches named Performance-Mode 
and Eco-Mode. For performance prioritized applications, they 
used Performance-Mode which considers a performance bound 
to ensure every PM meets this minimum bound while 
minimizing the resource cost and the number of online PMs. 
Also, they used Eco-Mode for jobs that need resource efficiency 
(e.g. batch processing) which tries to maximize the utilization 
while minimizing the worst case performance degradation. An 
important challenge in all these methods, however, is 
developing performance degradation profiling and prediction 
methods. Several studies have been done to determine 
collocated VMs performance impacts [55], [58], [61], [62], 
[63], [64]; their detailed discussion is beyond the scope of this 
paper. 

2) Performance Degradation Caused by Software Aging 

In virtualized datacenters, the second factor that decreases 
the service performance is software aging. Software aging 
refers to the fact that the system performance faces degradation 
over the passage of time. The symptoms and effects of this 
degradation in period of time is data corruption and exhaustion 
of system resources which leads to performance degradation, 
software crashes or hanging [65] which can be discovered and 
fixed in development and test phases of software developing 
[66]. In long running applications, doing software rejuvenation 
periodically, decreases the chance of occurring application 
performance degradation and failures [67].  Since the VM and 
VMM are both software, they also need various resources such 
as memory and files. Thus, the software aging in a cloud data 
center might also occur in either VM or VMM [68]. If the 
software aging causes a crash or failure in the VMM, all the 
VMs which are hosted by the VMM will be affected [69]. One 
of the inexpensive and proactive techniques to absorb this 
problem is software rejuvenation.  This can be done in three 
ways:  
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a)  Cold-VM Rejuvenation: Using this technique, first the 
administrator resets all the VMs which are on a PM, and 
then restarts the VMM and the PM and at last starts all the 
VMs again [69]. This obviously incurs a high service 
downtime (i.e. the services which are hosted by the VMs), 
so we need a more efficient way to do the rejuvenation. 

b) Warm-VM Rejuvenation: Another technique 
to do the rejuvenation is warm-VM rejuvenation 
introduced in [69], [70]. In this method, the VMM saves 
the memory image of all the VMs that it hosts into the hard 
disk before rebooting and after rebooting it reuses the 
saved memory images to resume the VMs as they were 
before. To do this, VMM uses the memory suspend/resume 
mechanism to suspend the VMs before rebooting, and 
resumes them after getting online again so as to  reduce the 
service downtime. 

c)  Migrate-VM Rejuvenation: In [71], authors proposed 
a technique named Migrate-VM Rejuvenation. In this 
technique, before the VMM rejuvenation takes place, all 
the VMs are migrated to another available PM, and then it 
resets the VMM for rejuvenation.  

Authors in [71] compared these three methods. From the 
steady-state availability prospective, the warm-VM 
rejuvenation is not always better than cold-VM rejuvenation. 
Also, they show that migrate-VM rejuvenation is the best 
technique among these three techniques only if the live 
migration is fast enough and also data center has enough 
available resources to host the migrated VMs.  

E. Considering Reliability 

Reliability in consolidation algorithm could be discussed 
from two general aspects: Hardware reliability and service 
reliability. Server consolidation could affect and reduce the 
reliability and lifetime of the data center devices (e.g. servers). 
In server consolidation, we try to pack the VMs into fewer 
number of PMs and turn off the idle PMs. Rapid on-off cycles 
will reduce the servers’ life time. Also, server consolidation 
increases the servers utilization and as a result the temperature 
of servers will increase and this can also decrease the servers 
life time [26]. In addition, hardware failures can lead to service 
unavailability, SLA violation and performance degradation for 
the end users [72]. Several studies have been done on reliability 
aware resource provisioning algorithms. Deng et al. in [26] 
presented a dynamic server consolidation algorithm which 
considers hardware reliability and lifetime. It uses three 
parameters ���� ،�� and  �� to determine the best VM to PM 
mapping. ���� is used to ensure that there are enough resources 
to support the SLA. �� holds the value of the impacts of turning 
servers on and off and temperature changes on reliability and 
lifetime, and finally �� shows the amount of power usage 
reduction for the selected VM to PM mapping. At last, the 
mapping which has the maximum value of sum of these three 
parameters is chosen as the optimal mapping. Guenter et al. in 
[73] present Marlowe, a service provisioning framework which 
trades off these three key factors: Cost, performance and 
reliability. Marlowe predicts the future workload and turns 
servers on before they are needed. Also, it maximizes energy 

saving while minimizing the unmet demand and balances the 
energy savings vs. reliability costs for on-off cycles as well. 

Also, service reliability/availability is also an important 
parameter in data centers which could highly affect the service 
quality and user experience. In [74], authors considered the 
service reliability in their algorithm. The proposed algorithm 
considers power, performance and service reliability aspects 
altogether. It focuses on two main parts: 1) Guaranteeing 
average response time for the end users. 2) Using active/active 
sparing model for servers in which the datacenter uses one of 
the active servers in a round-robin fashion so as to make the 
services more stable and reliable. 

F. Considering Migration Overheads 

A major technology which makes server consolidation even 
more attractive is VM Live Migration. For live migration, 
resources (e.g., CPU, memory and network bandwidth) are 
needed in both source and destination PMs [75]. Network 
bandwidth usage by VM Live Migration could have negative 
effects on network efficiency for end users [76] because it uses 
significant bandwidth for a period of time i.e. 500 Mb/s for 10 
seconds for a petty web server as shown in [77]. Depending on 
the application, the CPU overhead can easily get 30% above the 
application default CPU demand [78]. Also, if a PM has too 
many Live Migrations at a moment, this can lead to collision of 
multiple live migrations [79]. Thus, considering migration 
needs and overheads in the VM placement algorithm could 
increase the overall datacenter performance and efficiency. 
Several studies have been done to address this challenge. 
Takahashi et al. in [79] proposed an algorithm that the number 
of concurrent live migrations to/from a PM is considered as a 
limitation in the optimization algorithm. They showed that this 
will increase the PM throughput and performance. As 
mentioned before, VM live migration needs some resources in 
the source and destination PM. Setzer et al. in [24] introduced 
an algorithm in which the resource demands are also 
considered. They showed that this could prevent the 
performance degradation and unplanned overloads. 

V. CLASSIFICATION BASED ON THE OPTIMIZATION METHOD 

USED 

Apart from the time of applying consolidation and the 
parameters considered during the decision-making process, the 
algorithm and method used for smart assignment of VMs to 
PMs can also be an important factor in final quality of the 
approach in terms of effectiveness as well as time and resources 
required to run the algorithm. In this subsection, we review 
major algorithms and approaches used to solve server 
consolidation problem.  

Generally, there are two types of optimization methods: exact 
and approximate approaches. Also, approximate methods could 
be divided in two subgroups: Heuristics and Metaheuristics. 
Exact optimization methods guarantee finding an optimal 
solution for the problem, but the time that need to solve the 
problem will exponentially increase with growth of problem 
size. So, normally exact methods are used for the problems that 
belong to class P, or the NP-hard problems with very small 
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problem size [80]. To overcome these problems, heuristic and 
metaheuristic optimization methods are used which will be 
discussed in below subsections. 

A. Exact Solutions 

In order to determine the optimum VM to PM mapping, first 
the problem has to be modelled using a mathematical approach, 
and then effective algorithms must be devised to solve it. Using 
these exact methods, the optimal solution for a problem could 
be found. The goal is usually to find a near-optimal solution, 
not the absolute optimal mapping, since the problem is NP-hard 
in general [116] and exact methods are so time consuming 
methods for NP-Hard problems. There are several approaches 
such as Linear Programming (LP), Dynamic Programming, and 
Stochastic Programming, which could be used to model the 
consolidation problem. The VM consolidation problem is 
mapped into the vector bin-packing classic optimization 
problem in [81] where the hosts can be considered as bins and 
VMs are the objects that are going to be packed into the PMs 
considering limitations some of which we discussed in previous 
section. There are several widely used ways to solve an NP-
Hard problem. Among the most common solutions, heuristic 
and meta-heuristic methods are general techniques that try to 
approach the optimal solution by various kinds of intuitions, 
simple solutions, or inspirations from nature and natural 
processes of evolution; a number of these techniques are 
discussed in next subsections. Several exact methods have been 
used in the literature to formulate the server consolidation 
problem as seen in Table 1. A large collection of such 
approaches is described in [82] and [83] for interested readers.  

 

TABLE I. EXACT SOLUTIONS USED IN SERVER CONSOLIDATION ALGORITHMS 
Exact Solutions  Used By 

Stochastic 
Programming 

Chaisiri et al. [84], Ting et al. [85] 

Linear Programming 
T. C. Ferreto et al. [18], B. Guenter et al. [73], 
E. Pakbaznia et al. [49], [86], A. Pahlavan et 
al. [87],  J. Anselmi et al. [88] 

Non-Linear 
Programming 

A. Sansottera [74], J. Anselmi et al. [88] 

Dynamic Programming H. Goudarzi [89], [90], J.J. Wu et al. [91] 

Constraint 
Programming 

F. Hermenier [92], K. Dhyani et al. [93] 

Quadratic 
Programming 

O. Biran [94] 

Game Theory F. Teng et al. [95], S. U. Khan et al. [96] 

B. Heuristics  

Server consolidation is a multidimensional bin packing 
problem which is an NP-Hard optimization problem in core 
[81]. Heuristics are problem-dependent methods that although 
do not guarantee finding the optimal solution, but they try to 
find a near-optimal solution in a reasonably and practically 
short time. Heuristic optimization methods showed a good 
performance for solving the NP-Hard problems. So, because of 
high complexity of the server consolidation problem, and also 
data center real-time operation, heuristics are good methods to 
use and solve the server consolidation optimization problem. 
There are several heuristics to help find a solution for the server 
consolidation problem. One of the most popular ones that is 

basically a locally optimal algorithm, is a greedy algorithm 
named First Fit Decreasing (FFD) [97], [94]. This algorithm 
sorts the VMs in decreasing order of resource demands and then 
maps the VMs from the top of the list onto the first PM which 
has enough capacity in terms of resources. A major limitation 
of this heuristic is that the problem must be one-dimensional 
and also the PMs must have the same resource capacity [81]. 
The advantage of this method is simplicity and speed, but it 
cannot guarantee to find the most appropriate VM to PM 
mapping. Another common heuristic is Best Fit Decreasing 
(BFD) [9]. BFD first sorts the VMs based on their resource 
demands in decreasing order, and then allocates the VMs to the 
PM with resources closest to the VM requirements. There are 
many comprehensive books and papers such as [81], [98], [99] 
that describe the theory and several heuristics on server 
consolidation and bin-packing problems  for further reading on 
this topic. These famous heuristics that are used in solving 
combinatorial problems (e.g. bin packing) are listed and 
available in table 2. However, because of increasing complexity 
of the consolidation problem, authors mostly prefer to propose 
their own heuristic algorithms to solve the problem. 

 

TABLE II. FAMOUS HEURISTICS USED TO SOLVE THE BIN PACKING PROBLEM 

AND SERVER CONSOLIDATION PROBLEMS 
Heuristics Used By 

First Fit Decreasing 
(FFD) 

N. Bobroff et al. [97],  A. Verma et al.[30] 

Best Fit Decreasing 
(BFD) 

J. Xue et al. [100], T. C. Ferreto et al. [18] 

Next Fit K. Mills et al. [101], M. Wang et al. [39] 

Random Fit K. Mills et al. [101] 

Least Full First Y. Ajiro et al. [98] 

Most Full First Lee et al. [81] 

Dot Product M. Mishra et al. [102] 

Minimizing Angle M. Mishra et al. [102] 

C. Meta-Heuristics 

Another approximate optimization method which is widely 
used to solve the optimization problems is meta-heuristics. 
Meta-heuristics as opposed to heuristics are problem-
independent techniques. Metaheuristics are strategies that 
effectively guides the space search process in order to find 
(near-) optimal solutions and usually takes more time than 
quick heuristics to find the solution [103]. There are various 
metaheuritics that have been used to solve the server 
consolidation problem. Table 4 provides a list of some of the 
mostly used metaheuristics along with the papers that used them 
to solve the optimization problem. Obviously these algorithms 
show different benefits and performances based on the problem 
and the test bed. Metaheuristic algorithms [104] and their usage 
in resource management and scheduling problems are 
comprehensively explained in [105] for interested readers. 
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TABLE III. COMPARISON OF SERVER CONSOLIDATION APPROACHES 

Paper Objective(s) 
Time of 
Decision 
Making 

Hardware 
Considered 

Performance 
Reliability Considered 

Cooling 
System 

Considered 
Migration 
Overhead 

Considered 
Network 
Traffic 

Evaluation 
Service 

Reliability 
Hardware 
Reliability 

[28] 
Minimize resource waste 
Minimize SLA violations 

Dynamic with 
Load Prediction 

CPU No No No No No No Practical 

[37] Maximize the network scalability Dynamic CPU, Memory No No No No No Yes Simulation 

[106] 

Minimize the total amount of 
resources cost 

Meet end-to-end performance 
requirements 

Dynamic CPU, Memory Yes No No No No No Simulation 

[42] 
Minimize number of active hosts 
Avoid hotspots in the data center 

network 
Dynamic CPU No No No No No Yes Simulation 

[44] 
Minimize the maximum distance (or 

latency) in distributed clouds 
Dynamic CPU No No No No No Yes Simulation 

[48] 
Minimize the inlet temperatures 

(leads to lower energy consumption) 
Dynamic CPU No No No Yes No No Simulation 

[49] 
Minimize the total data center power 

cost (Cooling and server) 
Dynamic CPU, Memory No No No Yes No No Simulation 

[50] 
Trades-off idle power and cooling 

power for each other, thereby 
reducing the total power 

Dynamic CPU Yes No No Yes No No Simulation 

[94] 
Maximize server utilization 

Minimize migration overhead 
Dynamic 

CPU, Memory, 
Bandwidth 

Yes No No No Yes No Simulation 

[60] 
Minimize resource cost (e.g. energy) 

Minimize worst case performance 
degradation 

Dynamic with 
Load Prediction 

CPU, Memory, 
Disk 

Yes No No No No No Simulation 

[26] 
Maximize hardware lifetime 

Minimize energy consumption 
Dynamic with 

Load Prediction 
CPU, Memory, 
Disk, Network 

Yes No Yes No Yes No Simulation 

[73] 

Maximize energy savings 
Minimizing unmet demand 

Minimize reliability costs of server 
components 

Dynamic with 
Load Prediction 

CPU Yes No Yes No No No Simulation 

[107] 
Minimize total energy cost while 

meeting the performance objective 
Dynamic CPU, Memory Yes No No No No No Simulation 

[74] 
Maximize cost savings 

Minimize SLA violations 
Maximize service reliability 

Dynamic CPU Yes Yes No No No No Practical 

[79] 
Minimize power consumption 

Minimize SLA violations 
Dynamic CPU Yes No No No Yes No Simulation 

[24] Minimize number of active hosts Static CPU Yes No No No Yes No Simulation 

[36] 
Maximize resource utilization 

Minimize SLA violations 
Dynamic with 

Load Prediction 
CPU, Memory, 

Bandwidth 
Yes No No No No No Simulation 

[35] Maximize resource utilization Dynamic 
CPU, Memory, 

Disk 
No No No No No No Simulation 
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TABLE IV. METAHEURISTICS USED TO SOLVE THE SERVER CONSOLIDATION 

PROBLEMS 
Metaheuristic 

Methods  
Used By 

Genetic Algorithm 
(GA) [108] 

J.J. Prevost et al. [23], H. Hlavacs et al.[109], 
Ligang He et al. [110], A. C. Adamuthe [111], 
Mehdi et al. [112] 

Grouping Genetic 
Algorithm (GGA) [113] 

W. Deng et al.[26], S. Agrawal et al. [114], D. 
Wilcox et al. [115] 

Ant Colony (ACO) 
[116] 

X. F. Liu et al., Y Gao et al. [117], A. Ashraf et 
al. [118], M. H. Ferdaus et al. [119], Sarma et 
al. [120], G. Xu et al. [121] 

Simulated Annealing 
(SA) [122] 

Y. Wu et al.[123], P. Zhang et al. [124]  

Particle Swarm 
Optimization (PSO) 

[125] 

A. C. Adamuthe [111], C. C. T. Mark et al. 
[126] 

Tabu Search [127] T. Ferreto et al. [128] 
Hybrid Optimization 

[129] 
C. C. T. Mark et al. [126], J. Dong et al. [130], 
B. B. J. Suseela et al. [131] 

VI. CONCLUSION AND OPEN CHALLENGES 

This survey discussed server consolidation techniques for 
reducing datacenter energy consumption as an important 
challenge for sustainable development of internet-scale IT 
systems and services in both industry and academia. Our brief 
review of cloud data centers and optimization opportunities 
provided by virtualization technology constructed the 
background required to understand the rest of the paper contents 
and their significance. We then presented a system model and 
reviewed various approaches to server consolidation presented 
in the literature and classified them from five points of view: 
time of applying the technique, constraints and requirements 
considered during optimization process, and algorithmic 
method used to find near-optimal solution of the optimization 
problem, their objective functions and evaluation methods. . 

Generally, there are two phases in developing server 
consolidation approaches. Phase 1: Problem definition (i.e. 
objective function(s) and constraints). Phase 2: Solving the 
optimization problem using different techniques. There are 
many challenges and future works to explore in both phases. 
We provide our view of open challenges in the following two 
subsections. 

A. Problem Definition Phase 

While early-bird techniques that focus mainly on a few 
constraints, such as merely CPU utilization, seem saturated in 
the literature, there is ample space for holistic approaches that 
simultaneously consider all or multiple resources including 
CPU, memory, disk, and network bandwidth. Developing 
consolidation approaches considering multiple system 
resources for optimization could lead to more efficient and 
applicable approaches. 

Data storage and networking equipment are two important 
parts that have received less attention in previous works. Some 
data centers use centralized (e.g. Storage Area Network storage 
systems) [ref] and some others benefit from distributed storage 
in form of local disks on servers [ref]. These two approaches 
reflect different behaviors in terms of energy consumption 
when it comes to VM consolidation and VM live migration; this 

happens since the amount of data, including OS image as well 
as applications data, to be transferred over the data center 
network differ. This is another area that has been overlooked up 
to now although storage-only or network-only awareness has 
been covered before. 

A downside of VM consolidation largely overlooked up to 
now is that once a PM fails, all VMs running on it will fail. 
Thus, the interaction between dependability of the service, the 
failure recovery techniques it uses, and total energy 
consumption of the scheme is another interesting tradeoff to 
explore. One can add thermal and heating effects of servers, and 
even more importantly of routers, to this to make it an even 
more challenging problem to attack. 

Performance behavior of applications, especially their 
interference on one another when consolidated as VMs on a PM 
is deeper than current works have explored. While prior works 
basically consider the interferences to be static and known a 
priori, run-time behavior of applications especially in modern 
data centers where several users' VMs with different 
applications (e.g. scientific, social networking, enterprise 
applications) could be allocated on a single PM, are inherently 
more complex and changing over time. Automatic 
determination of compatible applications and efficient 
allocation and parameter tuning of them on a single node is an 
important challenge to explore.  

Although all consolidation objectives are important, but some 
of them are in contrast to each other. For example, increasing 
resource utilization is in contrast to minimizing heat and 
cooling efficiency. Therefore, as shown in table 3, different 
consolidation strategies need to be combined to satisfy multiple 
objectives at the same time which increases challenge and 
complexity: performance, power, total cost of service 
provisioning, availability of the service, reliability and life time 
of components, dynamic nature of usage of various resources 
such as CPU, memory, and network, and their potentially 
periodic repetition on a daily basis due to the nature of internet-
scale services, are only a few samples of important objectives 
and/or constraints that need to be considered.  

Applying various predictions is another avenue to explore. 
Predictive methods to forecast future needs of the VM so as to 
resize or migrate them in time, or to prevent repetitive on-off 
cycles of the PM still have potential for further work. Prediction 
methods are also required to estimate performance impact of 
collocating a number of given VMs. 

B. Problem Solving Phase 

Due to the ever increasing expansion of internet-scale online 
services such as social networks, data centers are becoming 
larger in size and quantity which puts more pressure on 
consolidation techniques for response time and scalability. 
Therefore, there is an increasing need for approaches that are 
decentralized, hierarchical, and fast. Here, the research 
challenges are:  How to effectively combine different 
optimization techniques? Can hierarchal approaches and hybrid 
metaheuristics help on this? What is the optimal time period for 
running the algorithm? How parallel algorithm approaches can 
help to speed up the algorithm run time? 
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In terms of computing system design we found very few 
works to cite in this paper whereas one can think of many 
improvement opportunities in this scope. Memory architecture 
of servers to support faster hibernation and rejuvenation of 
VMs, less inter-VM performance conflict when mapped to the 
same PM, and cross-layer hardware-software collaborative 
techniques for more efficient and near-optimal resource sharing 
among VMs and considering its effect on consolidation choices 
are among them only to name a few. 
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