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Abstract: The fifth generation (5G) wireless technology emerged with marvelous effort to state, design,
deployment and standardize the upcoming wireless network generation. Artificial intelligence (AI)
and machine learning (ML) techniques are well capable to support 5G latest technologies that are
expected to deliver high data rate to upcoming use cases and services such as massive machine
type communications (mMTC), enhanced mobile broadband (eMBB), and ultra-reliable low latency
communications (uRLLC). These services will surely help Gbps of data within the latency of few
milliseconds in Internet of Things paradigm. This survey presented 5G mobility management
in ultra-dense small cells networks using reinforcement learning techniques. First, we discussed
existing surveys then we are focused on handover (HO) management in ultra-dense small cells
(UDSC) scenario. Following, this study also discussed how machine learning algorithms can help in
different HO scenarios. Nevertheless, future directions and challenges for 5G UDSC networks were
concisely addressed.

Keywords: 5G; machine learning; mobility management; small cells; IoT

1. Introduction

Over the recent years, wireless technology is boosted with potential capabilities
through research and innovation. The exponential increment of various wireless devices,
more usage of data, improved quality of service, and the expansion of cellular network have
gained importance. Main drivers are exponential increment of various wireless devices,
data hunger applications, and providing improved quality of service/experience that re-
quired expansion of cellular network to support upcoming 5G use cases. This evolution of
wireless networks include high speed in gigabits per sec, low latency, high throughput, and
better efficiency of spectrum in contrast to 4G-LTE networks [1]. 5th generation of wireless
technology supports all these use cases and can be achieved through heterogeneous behav-
ior of networks [2,3]. Small cells are low-powered cellular radio access nodes and backbone
of 5G wireless network architecture. Handover (HO) is a crucial challenge in presence of
small cells paradigm such as number of barriers/hurdles may come between the user and
small cells [4]. Hence, the small cell support from 10 m to a few kilometers range with
mmWave and beamforming techniques that caused reliability and multiple HOs occurrence.
Particularly, in the case of high-speed movement that may disrupt connection abruptly.

HO measures can be classified into four categories such that human obstacles in which
pedestrians are the cause of HO. Moving obstacles, where passing vehicles are the cause of
HO. While in rotations, hand movement and rotations of user is the cause of HO. At last
category, fixed obstacles, the buildings, and constructions are mainly caused of HO [5]. Most
important scenario for mmWave is the hotspot deployment in urban and semi-urban areas
where Gigabit/s is the main concern of 5G wireless technology. In this regard following
three main deployment scenarios are: street side service, stadium/concerts service, campus
service. In street side scenario, the restaurants, shops, and pedestrians are the concerns
where mmWave access point will deliver the required services with the underline effects
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of interference and signals blockage by large obstacles [6]. In campus/concerts type, the
focus is the gathering places like seminar halls, concerts galleries, and hallways around
meeting/classrooms etc. while in the case of stadiums such as football, tennis, cricket,
rugby, and arena require high data rate for upcoming virtual, augmented, and mixed
reality services.

Multiple technologies for 5G communication include massive multiple input multiple
output (mMIMO), millimeter wave communication (mmWave), self-organized network
(SON) and ultra-dense network (UDN) supports all these mentioned scenarios [7,8]. In
5G technologies, service operators and vendors experience different challenges for HO
implementation. First challenge is imprecise signal measurement in which the bandwidth
and frequency of mmWave is high which is essential to increase the capacity of network
communication system. The signal path loss becomes high at high frequency bands
due to atmospheric conditions, low diffraction around the walls or obstacles and rain
absorption. These factors reduce the range of the signal. Moreover, signals operating
at high frequency band can become a victim of fading easily which in turn creates error,
lowering the overall switching rate of HO or unnecessary roaming. At all, it will reduce
the customer’s experience. The next challenge is immediate HO where the size of the
radius cell is smaller than the standard size in the UDN architecture. In every small cell,
the total time interval of the user equipment becomes relatively small and caused frequent
HOs. As a result, the overlapping time of two terminals also becomes relatively low. At
last, 5G does not contain same network layers and technologies in contrast to 4G and
3G network communication and both vertical and horizontal HO process embrace HO
issues in 5G [9,10]. Beside these challenges, there are number of other challenges exists due
to heterogeneous communication behavior of network, merging of 5G technologies, and
optimized automation of existing processes. Figure 1 shows the 5G NR communication
system under the consideration of heterogeneous environment and required use cases i.e.
eMBB, uRLLC, mMTC.
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1.1. Motivation

Recently, several achievements and accomplishments have been perceived in the
field of 5G mobile communication. This motivation encouraged many researchers and
scholars to explore the machine learning techniques and its applications in the domains
of upcoming wireless technology to help the communication system more intelligently.
Deep reinforcement learning (DRL), convolutional and deep neural networks received
more attention than basic algorithms. Their powerful optimization and convergence
properties to make powerful 5G mobile communication system particularly in the case of
UDSC networks.

1.2. Contribution

In this paper, a survey of HO management in 5G UDSC networks based on machine
learning algorithms is presented. Summary of the contribution of this paper follows as: (1)
a survey on HO management in 5G UDSC networks based on machine learning algorithms
is provided. (2) A comparative analysis of machine learning based mobility management
schemes is presented. (3) Comparative analysis identified and hits several open research
challenges and future directions that must be acute for further wireless networks.

1.3. Road Map of the Survey

This paper presents a comprehensive review and analysis of machine learning based
provisioning techniques for HO management in 5G UDSC networks environment. All
included published papers are more closely to near future, many acronyms and symbols
are used, tables and figures are also presented in the paper. The remainder of this paper
is organized as follows. In Section II, we provide the related surveys and summary of
related surveys articles. In Section III, we provide the preliminaries for 5G UDSC networks
and the architectures as well as the mobility management and HO signaling, procedure,
types, and requirements. Section IV provides a discussion about how machine learning
based algorithms helps HO management in 5G UDSC networks, we discussed reward base,
policy based, values base strategies. We also present comparative summary of machine
learning based HO management algorithms in this section. Then in section IV, we present
challenges and future direction in details and provide possible solutions. Finally, Section V
concludes the paper.

2. Related Surveys

Number of surveys on mobility management in 5G wireless communication had
already been published and cited in Table 1. In [11], the survey reviews key mobility
elements i.e., HO, cell selection, cell reselection and challenges of cellular communication
due to transmitted power discrepancy and coverage area of cells in heterogeneous network
(HetNet) deployment. Authors also introduces algorithms and strategies to mitigate these
challenges. In [12], authors review the applications of DRL in modern cellular networks
such as Internet of Things (IoT) and unmanned aerial vehicle (UAV) networks. Authors
describe how network entities (UE, Drone) learn optimal policies for i.e., HO and offloading
decision, cell and channel selection and reselection, reliable connectivity of multi-UAV net-
work, and mobility pattern with the help of DRL. In [13], authors discussed research issues
such as mobility management, resource allocation, data offloading and ultra-reliable low-
latency communication (uRLLC) in multi-agent reinforcement learning (RL) framework for
vehicle-to-everything (V2X) scenarios. Authors also discussed the prospective applications
of MARL framework for decentralization and scalability in optimal decision policy. In [14],
authors review the fundamentals of machine learning in 5G networks applications, i.e.,
small cells and heterogeneous networks, massive MIMO, massive MTC, energy harvesting,
smart grid, and so on. Authors also emphasize the usage of machine learning algorithms
for the future networks to explore the advance applications and services. In [15], authors
present comprehensive review on 5G enabling technologies with UD networks. Authors
also discuss the research challenges in intelligent management techniques and back haul
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solutions for 5G wireless networks such as unnecessary HO, unfairness in radio resource
sharing, energy consumption, severe interference, and degraded quality-of-service (QoS).
In [16], authors discuss in depth the mobility management in long term evolution (LTE) and
5G new radio (NR) with HetNets cellular networks. Authors also discuss HO performance
metrics, HO failure types, differences from LTE to NR, mobility enhancers, and potential
research challenges and techniques related to HO management. In [17], authors discuss
UAV-based communications and characteristics with the help of ML techniques and present
all relevant research works. Authors also consider physical layer issues such as channel
modeling, interference management, transmission parameters configuration, physical layer
security, resource management, and position related aspects.

In [18], authors discuss evolution of 5G wireless networks with architectural modifi-
cations combined with radio access network (RAN). Authors also discuss the mmWave
technology comprising massive MIMO technologies, channel model estimation, beamform-
ing algorithms, and directional antenna design. Authors focused on SON features, energy
awareness and cost efficiency, QoS, QoE combined with the 5G evolution. At the end,
authors discuss research issues with future directions, simulation experiments, relevant
field trials, and drive tests. In [19], authors reviews HO algorithms for 60 GHz networks
and with other bands. The comparison of HO algorithms is supposed for commendation of
algorithm for each network. First, authors discuss 60 GHz based wireless systems then re-
quirements, resource management, different schemes, and issues in 60 GHz based Wireless
Systems. The research paper [20]focused on applications of DRL in resource management
for 5G heterogeneous networks. Authors discussed the 5G architecture, heterogeneous
networks, resource management functions for 5G HetNets. Then they discussed the DRL
based resource management for 5G HetNets, comparative summary and analysis and open
issues and future directions. In [21], authors discussed 3GPP based HO procedure with
related KPIs, and challenges in UDSC mobile networks. Authors review the 5G mobil-
ity approaches, potential consequences of existing networks, technical challenges, and
considerable opportunities using artificial intelligence in emergent UDSC networks.

Table 1. Summary of Related Surveys.

Improving Increasing Quality of Efficient Mobility ReinforcementAuthors Bandwidth Uplink Power Service Spectrum Handover LearningEfficiency Consumption Provision Utilization

Yu 5

Luong et al. 5 5 5 5

Althamary et al. 5 5 5 5

Jiang et al. 5 5 5 5

Adedoyin and
Falowo 5 5 5 5

tayyab et al. 5 5 5

Bithas et al. 5 5 5 5 5

Agiwal et al. 5 5 5

Van Quang et
al. 5 5 5

Lee and Qin 5 5 5 5 5

Zaidi et al. 5 5 5 5 5

Ullah et al. 5 5 5 5 5

Mao et al. 5 5 5 5 5

Sharma et al. 5 5 5 5 3 5

Kibria et al. 5 5

Abdellah and
Koucheryavy 5 5 5 5

Peng and Shen 5 5 5

Our Survey
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In [22], authors discussed UAV communication, potential applications, and regulations.
Author also discuss the UAVs standardization, energy harvesting technique, interference
mitigation, optimal trajectory using DRL algorithms and propose number of regulations
for UAV to make sure upcoming business opportunities. In [23], authors discussed the
applications of DRL in communications and networking. Authors also discussed the advan-
tages of DRL approaches, markov decision processes, RL, SARSA, deep learning and deep
Q-learning, advanced deep Q-learning models, deep Q-learning for extensions of MDPs,
network access and rate control, caching and offloading, network security and connectivity,
preservation. In miscellaneous issues authors discussed the traffic engineering and routing,
resource sharing and scheduling, power control and data collection, direction-of-arrival
(DoA) estimation, signal detection, user association and load balancing, user localization,
and access device detection. While in future research direction, state determination in
density networks, knowledge of jammer’s channel information, multi-agent DRL in dy-
namic HetNets, training and performance evaluation of DRL framework. In [24], authors
discussed the 5G for UAV and beyond communications. Authors explain the 5G based
unmanned aerial vehicle types, single-tier drone’s deployment, multi-tier drone’s deploy-
ment, standardization of UAVs, 3GPP study item, 3GPP work item, UAVs standardization
outside the 3GPP, cognition in 5G oriented UAVs, power optimization, security aspects,
regulations, and open research issues.

In [25] , authors review next generation wireless (NGW) radio technology for high
data rates and new applications in adaptive learning and decision making environment
using artificial intelligence tools i.e., machine learning to fulfill various requirements of
underlying wireless network. Authors also discuss the 5G smart mobile terminals and
transmission power considering their energy efficiency learning and autonomously access
most meritorious spectral bands. At the end, authors discuss applications of 5G networks
such as UDSC networks, massive MIMOs, device-to-device communications, and cognitive
radios in the view of machine learning paradigm. In [26] , authors discussed the 5G
telecommunication networks and complexity of the processes of functioning by an order
of magnitude compared to existing networks. Beside these issues, authors discuss the
artificial intelligence support for these new applications of 5G wireless technology. In [27] ,
authors discuss the learning and decisions making in vehicular networks using multi-agent
system (MAS). The learning reliability of MARL is highly dynamic. Author also discuss the
potential applications of MARL and research issues such as high mobility, uRLLC, resource
allocation etc., in V2X scenarios.

3. Overview of HO Management in 5G UDSC Network

5G has almost same working condition as other cellular network has is composed of
cell and sectors. Data can be transfer with the help of radio waves. These cells are connected
either through wire or wireless with network at the back hand side. The encoding technique
used by 5G technology is orthogonal frequency division multiplexing (OFDM) [28,29].
Mobile connectivity and mobile subscribers are continuously expanding to address service
requirements, high data rates, changes in customer behavior and diverse use cases ranging
from wireless nodes to robotics, chatbots and self directed transportation. Wireless industry
and mobile operators need evolvement and unceasing growth to cope these challenges.
Henceforth, by having a creative network design techniques and presence of advance
modules, wireless industry can fulfill the exponential growth of data traffic which will
reach to 77.5 exabytes per month by 2022 [30].

Likewise, GSM association estimated that total number of IoT devices will be around
25.1 billion by 2025 [31]. The statistics prove that existing mobile networks and operators
are insufficient to complete the coverage and capacity demands of connected things. Mobile
operating companies therefore must alter existing models, designs and operators to combat
future challenges. Different research papers proposed the concept of MIMO to instigate
the spectrum efficiency of 5G networks [32]. Similarly, mmWave communication was then
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introduced to improve the transmission bandwidth of 5G signals. But throughput and
energy consumption were major challenges at that time.

3.1. 5G Technologies and Features

In 5G network, cells are divided into large and small cells to provide more network
efficiency. Worldwide wireless web concept is used by 5G which is user-centric in con-
trast to service-centric used in 4G. By using user-centric concepts, 5G enable to support
several applications and different services to connect the world. 5G mobile communica-
tion embed number of different technologies such as device-to-device (D2D), machine-to-
machine(M2M), multiple-input multiple-output (MIMO), edge computing (EC), small cell
(SC), beamforming (BF), convergence of WiFi and cellular, nonorthogonal multiple access
(NOMA), subscribe software-defined networking (SDN), network functions virtualization
(NFV) and channel coding (CC) [33]. 5G also introduce some features i.e., 5G architecture
will include cloud computing, device centric and distributed system, provides higher data
rates almost in gigabits, support large number of devices, utilization of battery is low, and
it has low infrastructure cost [34]. To provide the ubiquitous communication in mobile
systems, 5G include machine-to-machine communication technology which almost connect
100 billion devices. To provide higher throughput and gives higher spectrum efficiency, 5G
uses MIMO technology [35]. 5G also take advantages of other technologies like OFDM, IoT,
UDSC network, and mm Wave [36]. To gain the higher data rate and direct connectivity
between devices, 5G use device to device communication technology. Succeeding four
behaviors make sure D2D communication in 5G beyond scenarios i.e., device relaying
with operator-controlled link establishment (DR-OC), direct D2D communication with
operator-controlled link establishment (DC-OC), device relaying with device-controlled
link establishment (DR-DC), and direct D2D communication with device-controlled link
establishment (DCDC) [37,38].

Small cell technology is a promising yet economically driven approach to overcome
the hurdles of mobile network operators, 5G coverage, capacity and IoT devices. Although
small cells practice short range BSs, they have the potential to handle high data rates of
mobile subscribers, monitor connected things and roll out both 5G and 6G. Small cells, for
instance, picocells, femtocells and microcells, are deployed over the macrocell networks
positioned within the same geographical region to form HetNets [39]. These HetNets have
the capacity to deliver uninterrupted communications having high data rates and quality
services, ensuring users to exploit reliable mobile networks services while moving from one
cell to another. However, the deployment of large number of small cells to design HetNets
creates issues, such as high inter-cellular interaction and expansion of cell boundaries,
resulting in HO failures and radio link failure. All in all, the greater the number of small
cells in HetNets, the greater will be the mobility management issues [40].

3.2. 5G Small Cells Architecture

3GPP (3rd Generation Partnership Project) has demonstrated the 5G structure to
improve the cellular communication. Different service based communication models were
deployed between control plane functions as proposed by 3GPP. Primary approaches are
included but not limited to overcome dependencies among core network (CN) & access
network (AN), boosting the access service, and obtaining a well defined separation between
control plane (CP) & user plane (UP) to amplify the flexibility in deployment and scaling
phases. 5G structure is also supporting concurrent access, which is highly paramount for
low latency use cases [41]. The architecture of UDSC networks was proposed in [42] and
compared with traditional network architecture. In traditional cellular network architecture,
a tree network infrastructure is used in which BS managers are used to handle all macrocell
BS in the core network, whereas all the back haul traffic is moved towards the core network
from the gateway. A hybrid architecture is required to support the deployment of microcell
in traditional cellular network. In hybrid architecture, microcell BS managers are used to
handle microcell BS and the back haul traffic is moved to core network through fiber routes.
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In contrast to macrocell BS, microcell BS can deliver high speed wireless broadcast at home
and hotspots use cases. Nonetheless, both have the potential to independently spread user
data and management data to corresponding users [43]. In Figure 2, we show the 5G NR
small cells architecture and its working model.

5G Users

Macrocell Sector

Macrocell

Small Cell

Small Cells Cluster

Macrocell

Macrocell

Macrocell

Figure 2. 5G NR Small Cells Deployment.

Mobile users can also HO in macrocell or microcell depending upon the requirements.
Microcell network architecture therefore is used as a helping component for high speed
wireless transmissions and communication purposes. Likewise, a similar approach is used
to deploy small cells in 5G cellular networks, but it is quite challenging to forward back haul
traffic from every small BS through fiber links or by using broadband internet, specifically
in urban environments where cost and geographic installments are a major concern. Small
cells BS cannot transmit back haul traffic to given gateway due to limitation of wireless
transmission distance. To combat this challenge, a distributed UD 5G cellular network is
proposed in which the functions of microcell BS and macrocell BS are distributed [44]. This
means that the configuration of microcell BS is performed to handle management data and
to monitor HO issues in small cells. While on the other side, transmission of user data is
controlled by small cell BS. Furthermore, two different distribution architectures of UD
cellular networks as follow:

1. Using single gateway in UDSC network;
A single gateway is deployed, configured, and installed at the macrocell BS having
the capacity to embed large number of MIMO mmWave antennas. The purpose of
integrating these antennas is to accept wireless back haul traffic coming from small
cells located in macrocell. After collecting all the back haul traffic, it is moved to the
macrocell BS through multi-hope mmWave links, which is then further forwarded to
core network by using fiber links.
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2. Using multiple gateways in UDSC network;
In this scenario, multiple gateways are used and deployed at massive microcell BSs by
examining the conditions of back haul traffic and geographic scenarios. The reason to
use multiple gateways instead of single gateway is that they are more flexible to handle
back haul traffic and forward it to the core network. In this case, all the back haul
traffic from small cells is dispersed over the multiple gateways in the macrocell, and
then combined at gateway to move towards the core network by fibre-to-the-cabinet
(FTTC) links [45].

Both the traffic capacity and network efficiency of 5G is 100x times than 4G-LTE,
allowing it to deliver 20Gbps peak data rates and 100+ Mbps average data rates. Small
cell technology enables 5G networks to provide these benefits. With cell densification,
connection distances are small, ensuring high network resources per UE. Large distri-
bution of small cells BSs in UD networks make connection distance small compared to
macrocell network, leading to offer better signal quality at every user equipment. UEs
thus can support high mobile services, online gaming and streamline videos [46]. Besides,
cells in UD networks have limited number of UEs, enabling them to experience more
network resources.

States of RRC

On the air interface, 5G new radio technology is using a network layer protocol named
radio resource control (RRC) protocol. This protocol is used between UE and base station
that specified by 3GPP in TS 38.331. PDCP-Protocol is used for RRC message transportation.
In general, the main functions of the RRC protocol follows as:

1. Broadcasting system information;
2. Paging notification and release;
3. Connection establish and releasing;
4. Reconfiguration and release;
5. Outer loop power control;
6. RRC connection mobility procedures.

According to the network status, RRC protocol configures user and control planes
using signalling functions and grant radio resource management strategies for implementa-
tion. The operation of the RRC protocol is controlled by a state machine which characterize
specific states of a UE and different amounts of radio resources correspondent with different
state. Idle, connected, and inactive are the three states of RRC protocol. Among these
three, idle and connected are introduced by 4G LTE, whereas inactive state is initiated in
5G cellular network.

1. Idle State;
In the RRC idle mode, the content of user equipment access stratum is not available
in UE and network. It means that its main function is to save power and energy,
for instance, when there is no need to transfer or receive data, the UE changes its
mode to RRC idle by turning off both Tx and Rx. Similarly, when UE is following
RRC idle mode, it regularly checks the call channel, handles incoming cases, and
chooses the cell for camping by following mobility measurements [47]. Camping of
user equipment performs the following purposes:

• Getting system information for the camping in the cell;
• Establishing RRC connection setup over the camped cell;
• Getting call messages to shut the mobile calls within the camped cell;
• Getting public warning system alerts.

2. Connected State;
In the RRC connected mode, the context of UE AS is present in both network and
user equipment. When UE is present in RRC connected mode, it not only transmits or
receives user plane data but also control plane signaling. It means that in this case,
UE requires to monitor link quality of the former and target cell to get the radio link
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information. Subsequently, the consumption of battery is higher than idle mode [48].
However, DRX (discontinuous reception) is deployed in RRC connected mode to
save power.

3. Inactive State;
Although when UE is present in RRC connected mode, networks do not suffer com-
munication delays, yet high power consumption is a major challenge to address. And
regular transition of UE from idle to connected or connected to idle creates undesir-
able signaling load, which amplifies latency. RRC inactive state or mode therefore
is introduced by 5G NR to reduce power consumption, network signaling load and
latency. In RRC inactive mode, the content of user equipment access stratum is stored
in both core network and UE, whereas the connection between radio access network
and core network is remained active to avoid power consumption along with the
control plane delay. In this mode, the quantity of CN signals needed to paging a UE
is estimated to be reduced, which is notable to improve latency performance. In the
prior study, it is estimated that RC inactive states saves over 200% latency reduction
in contrast to RRC idle states and 40% UE power consumption comparing to RRC
connected mode [49].

4. Registration and Paging of UE.
Once the user equipment develops the potential to take benefit from the services
and capabilities of network, its registration over the network must be initiated. The
basic of registration process relies on the broadcasting of control messages amid
UE, gNB and AMF, where gNB stands for NG NodeB and AMF is used for access &
mobility management function. The registration of UE ensures that it can be controlled,
handled and monitored over the network and reachable. Registration conditions
including initial, periodic, mobility and emergency registration are essential to initiate
the registration procedure. When the device is switched on, UE starts the initial
registration to connect with the network. In periodic registration, network regularly
monitors the UE to begin a new registration process. It enables the UE located in the
registration area to determine whether its registration is eradicated without alerting
the network or not [50].

UE performs the mobility registration whenever subscriber changes its position, and
its linking tracking area cell is not available in the radio access list. Lastly, UE utilizes
emergency registration while using emergency services and so. When the UE is switched
on, it requires to select target cell and needs to launch the RRC connection with the gNB.
Multiple input access operations are present to perform target cell synchronization along
with the requirement to uncover public land mobile network (PLMN). Throughout the
registration procedure, there exists a continuous exchange of NAS signal among UE and
AMF, which is then captured and forwarded to gNB by RRC protocol [51]. By similar
approach, the signal is moved towards the AMF through next generation application
protocol (NGAP) in gNB. All these transmission and transactions enable the UE to receive
the registration of 5G services.

3.3. 5G Small Cells Working Model

The reference model of 5G is depicted in Figure 1 in which the AMF or Access &
Mobility Management Function acts as a brain of the model. It performs different manage-
ment roles such as connection, mobility, and registration management. Like AMF, SMF or
Session Management Function is also important part of model, and it is responsible for
controlling, monitoring session context, editing PDU, and linking to decouple data plane.
Connection between DN and architecture is provided by the user plane function (UPF).
UPF is also responsible for PDU session anchor point, managing quality of service as well
as the routing and forwarding packets [52]. The other counterparts are represented in the
figure below.
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3.4. Mobility Management in 5G UDSC Network

The purpose of mobility management in cellular networks is to find, identify and
track users according to their locations to deliver them cellular services. It is primary
function of the GSM and UMTS network to offer high quality of cellular service to their
users irrespective of their locations. It means if the users are using their devices close to
mobile terminal or present in hilly areas, all of them must be covered by GSM cellular
networks. Henceforth, communication constancy, reliability, steadfast performance are
all the ultimate goals of mobility management in the cellular networks [53,54]. Location
management and HO are the two types of mobility management. In location management,
UE informs the mobile station network that it is now associated to its specific location. After
receiving the notification, location updating, and paging process starts. Network operates
signaling process and paging progress through these location signals [55]. In B5G air based
network, UAV path needs to change nearby to the terrestrial to reduce the communication
delay as higher altitude of UAVs introduces loss of path in connectivity accordingly, so
drone altitude depends upon use cases of applications and higher RSRP value and higher
interference from neighbor base stations resultant in higher HO ratio [56]. Both air-to-
ground and ground cellular network channel face high cochannel interference also on high
frequencies UAV’s creates Doppler shift that causes inter carrier interference (ICI). Another
issue is limited rechargeable battery power that limit the duration of UAV flight operation
time. By contrast, UAV-BSs connecting with the macro base stations (MBSs) or the core
network need high capacity wireless back haul links. Practically, the limited back hauls
will become the bottleneck and affect the QoS of mobile users [57,58]. Back haul network is
categorized by heterogeneous links for BS-wired links and UAV-wireless links and core
network require high capacity wireless backhaul associations so the inadequate back hauls
create the blockage and disturb the QoS. Satellite move on velocities differs for many
services whether the task is fast data acquisition or real time information exchange [59,60].

Mobility in 5G beyond networks is mainstream for researcher due to the advance
technologies range and directions are limited. In HO, the channel connection needs to be
switch to other channel using information regarding reference signal strength and other
network parameters. To optimize this process, it is very difficult to handle these parameters
as they have equally influence on network. Some of them are interference management,
energy consumption, load balancing, coverage, and capacity. These parameters also have
the effect on ping-pong rate, call dropping/blocking probability, and early or late HOs [61].
Research have been proposed for the efficient HO mechanism using many theories and
techniques/tools especially artificial learning to optimize the HO process [62]. 3GPP model
explain the five basic UAV case studies based on velocities, mobility pattern, altitude, and
movement. They also mentioned the maximum speed of 160 km/h and altitude 300 m,
respectively. Depends upon application requirement UAV can exchange altitude, mobility,
flight mode, and HO information with operator but under constraint of reliability, latency,
and throughput [63]. The other problem with UAV is line of sight that create different
interference conditions as terrestrial user would not face this problem. For management
and operations of UAV system, identification, robust and efficient connectivity of UAV
is a key interest. HO management and how we can acquire 5G HO through RL will be
discussed in the remaining portion of this paper [64,65].

3.5. HO Management in 5G UDSC Network

To manage radio resources, HO play an important role in 5G. Transmission in mobile
systems in 5G require greater bandwidth and greater communication service rate for distinct
nodes or terminals. So, HO assure to provide good quality of service and continuous
communications to maintain overall network performance in 5G [66]. Integrated UAVs
communications into intelligent mobility and HO management/prediction with 5G and
beyond using AI techniques will help to tackle frequent HOs with reliability and coverage.
Different technologies embed in 5G; number of problems occur in HO process [67]. In
HO, one need to implement well informed terminal to handle the higher data rates, base
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stations, and increased number of mobile devices. UAVs and user equipment’s are same by
characteristics, but the HO characteristics are different and radio environment of both cases
as their mobility models are different [68].

Performance depends upon the HO rates such as failed/successful HO. RACH, timer’s
expiration, after a certain maximum number of re transmissions results in radio link failures.
As the protocols for operations are different for UE and UAV so it is necessarily to decide
first by elevation angle of the reference signal, velocity of user device, vertical location, and
user device path loss/delay spread measurement. In the case of UAVs, they are not always
connected to nearest BS as they are hunting for strongest RSRP so signal may come far
from the drone also antenna beam concentrates to cover the ground coverage and drone
usually fly on side lobes of antenna. UAVs fly in angular regions of 120°, 240°, and 270°and
may connect to other BSs located in the region because they gain the inadequate signal
strength. In this respect the UAV location and flight information help to make efficient
HO i.e., enrich the existing signal report mechanisms, BS to help for HO using improved
control of the RSRP measurement load [69]. The altitude of UAV matters a lot in terms
of HOs as drone making height from 10–150 m then HO/minute also increase from 1-5
m. Integration of UAVs with beyond 5G wireless networks create the space for enhance
cell selection process in 3D mobility patterns[70]. Following the guidelines in [71], Table 2
illustrate the classification of HO decision schemes, e.g, RSS based, QoS based, function
based, intelligence based, and context based.

Table 2. Classification of HO Decision Schemes.

RSS Based QoS Based Function Based Intelligence Context Based
Decision Schemes Decision Schemes Decision Scheme Based Decision Decision SchemesScheme

Dwell Timer Available bandwidth Utility function Artificial neural Mobile agent
based Schemes based Schemes based Schemes based Schemes based Schemes

RSS threshold SINR Cost function Fuzzy logic AHP
based Schemes based Schemes based Schemes based Schemes based Schemes

Channel scanning User profile Network score Intelligent protocol Mobility prediction
based Schemes based Schemes function based Schemes based Schemes

based Schemes

Prediction Cooperation
based Schemes based Schemes

MIH
based Schemes

Advantages of small cell can be enlisting such as spectrum efficiency, high data rate,
energy/money saving, less congestion, easy HO while there are also some disadvantages
i.e., implementation cost and operational reliability, frequent authentication, and active
or passive (on/off) state update. HO means that one can change its base terminal to
its nearby terminal when moving from one point to another without interrupting the
communication [72]. Innate challenges for HO in beyond 5G are following no services,
improved routing, minimum latency, and security and these challenges become more
harder in the scenario of multi-RATs, zero latency, network densification and high mobility.
Beside these issues the load balancing for BS at the time of HO is also a main issue specially
in the case of terrestrial network where the UEs move from houses to offices at morning
and evening time respective of areas. HO is in different types according to connectivity
such as intra macrocell, inter macrocell, and multi-Rat’s handoff. In dense HetNets HO
mechanism is still an open issue, trade off between handoffs rates and interference level in
the network and establish different types of interference to other UEs. Basically, there is
network switching process occur in HO [73].
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There are 3 basic steps in HO which are as follows: (1) discovery: in this step, network
has to find such network which provide good quality of service to user. (2) decision: in
this step HO process is initiated. If the initiation occurs in inaccurate time, then there is
increase in call drop and thus reducing the QoS. (3) execution: to improve the QoS, decision
should be executed at the right time to bypass the irrelevant HO. When both the second and
third stage of HO is operated by mobile station or any other controller, then HO process
is classified according to controller basis such as network controlled HO (NCHO), mobile
controlled HO (MCHO) and mobile assisted HO (MAHO) [74]. Following the guidelines
in [75], Table 3 illustrate the HO information gathering (network and mobile terminal
related) and decision making (criteria based and strategy based) categories.

Table 3. HO Information Gathering and Decision Making .

Handover Information Gathering Handover Decision Making

Network Related Mobile Terminal Related Criteria Based Strategy Based

Cost Based Velocity Based RSS Based ANN Based
Coverage Based Stations Based Velocity Based Function Based

Link Quality Based User Preference Based Security Based Traditional Based
Quality of Service Based QoS Parameters Fuzzy Logic Based

Bandwidth Based User Centric Based
Battery Usage Based Context Aware Based

Available RATs Based Multiple Attribute Based
User Preferences Based

Operator Performance Based

There are three parameters considers for the HO procedure i.e., system parameters,
control parameters, performance parameters. First, Reference Signal Received Power and
signal to noise and interference ratio comes under the system parameters. Second RSS HO
Margin (Hysteresis), Time-to-Trigger (TTT) comes under the control parameters category.
Third, HO failure ratio (HPIHOF), ping-pong HO ratio (HPIHPP), and call dropping ratio
(HPIDC) comes under performance metrics [76].

3.6. Classification of HO Types

There are HOs types according to the network and according to the frequency and
according to the techniques.The details of classification as followed:

1. Horizontal HO; This type of HO is executed when the networks are same e.g., HO
occur between 3G to 3G is called horizontal HO. This type of HO is also called
intra-technology HO.

2. Vertical HO; When HO executed between base stations of different network is called
vertical HO. For example, HO is occurring between 3G to 4G. To proceed this type of
HO, layer 2 and 3 of OSI model play an important role.

3. Intra-frequency HO; When two distinct base stations work on the same operating
frequency bands, then it supports intra-frequency HO.

4. Inter-frequency HO; When two distinct base stations work on the different operating
frequency bands, then it provides inter-frequency HO.

5. Soft HO; It follows the make-before-make strategy where first new connections are
built between UEs and wireless links before breaking the previous ones.

6. Hard HO; It follows the break-before-make strategy where all the wireless links are
first removed from UEs to build new wireless communication connections.

7. Controller based HO; This type of HO is executed by mobile station. There are further
three type of classifications: network controlled HO (NCHO), Mobile controlled HO
(MCHO), and mobile assisted HO. In NCHO, the decision step is detained by a
controller while mobile station takes initiation step, In MCHO, mobile station takes
both steps initiation step as well as the decision step, while in a MAHO, network
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takes the decision and mobile only collect and send basic information i.e., received
signal strength indication, and signal to interference-plus-noise ratio [77].

There are also some advantages and disadvantages of HO schemes based on spectrum,
overhead, reliability, QoS, latency, and designated channels. Following the guidelines
in [78], Table 4 illustrate advantages and disadvantages of HO schemes.

Table 4. Advantages and Disadvantages of HO Schemes.

Schemes Advantages Disadvantages

Hard HO Efficient user of spectrum Short interruption of service
No data overhead Sensitive to link transfer time

(may result in dropped call)

Seamless HO Reliable (no service interruption) Inefficient use of
spectrum Data overhead

Soft HO Highly reliable Data overhead
No loss of QoS in HO Inefficient use of spectrum

Predictive Rerouting Minimized HO latency Signaling over-head
Possible data overhead

Static GC Reserved channels for HO Possible under-utilization
of spectrum

Dynamic GC Reserved channels for HO Signaling and
computational overhead

More efficient use of spectrum

Queuing Schemes Easy to Implement (FIFO) Degradation of channel
Queue reorder according to disregarded (FIFO Queue)

degradation of channel Signaling and
computational overhead

4. Reinforcement Learning Algorithms for HO

In 5G small cells paradigm, HO management is a critical challenge particularly in
the case of mmWave frequencies. This, by its turn, with increasing number of HOs and
signaling overhead are more likely with decreased the QoS and QoE of the user. Machine
learning based HO solution are highly promising and optimized while the state-of-the-art
algorithms only focused on event trigger parameters i.e., RSS, RSRP, RSRQ, Cell individual
Offset, Time-to-Trigger, and Hysteresis.

4.1. Reinforcement Learning

RL means to inflate the rewards by taking number of actions in environment. This
learning involves performing those actions which maximize these rewards. This type of
learning behaves same as natural learning where agent must learn by himself through
hit and trial mechanism for maximum reward [79]. Supervised, unsupervised, and semi-
supervised are the classifications of ML. RL (semi-supervised) is different from supervised
and unsupervised learning. In supervised learning, there are set of instruction for each
action and the objective is to map the input correspondent output and learn the rules from
labelled data. Regressive and classification model are used in this category depends upon
whether the value is continuous or discrete. While in case of unsupervised learning, agent
must discover the hidden structure for unlabeled data [80]. Unsupervised learning is vice
versa to supervised learning and can be applied typically when data are insufficient and
is not labelled. But in case of RL, the agent has initial and end points and to reach its
destination, agent must find best possible actions by manipulating the environment. After
reaching the final solution, agent receive the rewards but if he fails to reach, he does not get
any reward, so agent must learn environment to receive maximum rewards [81]. In RL, the
problem formulation is done using markov decision process (MDP) and the solution can be
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policy or model base and can be model free i.e., Q-learning, SARSA. In this technique, the
agent interacts with environment and generate policy based on rewards and at the end,
systems is trained and delivers improved performance [82,83].

Qt+1(s, a)← (1− α)Qt(s, a) + α[Rt+1 + λ
max
α
′
εA

Qt(s′, a′)] (1)

In Equation (1), sum of old Q-value and learned Q-value provides an updated Q-value.
Where Qt(s, a) is a old Q-value, Qt+1 (s′, a′) is an updated Q-value, and Rt+1+λ max

α′εA Qt
(s′, a′) is a learned value. Moreover α is a learning rate that can be set between 0 to 1, where
0 means never updated and 1 means quickly learning. While λ is a discount factor that also
can be set between 0 to 1, where 0 means considering current rewards and 1 means striving
for a long-term high reward.

The intermediary scheme in which labeled and unlabeled data are exploited for the
training is known as semi-supervised learning [84]. In deep learning (DL), the rules are
established using neurons operation that approximate at the complex function. In mo-
bile communication, DL has significant importance to tackle with complex nonconvex
challenges and high computational problem [85]. As neural network is used for feature
extraction and learning phase so this algorithm can be used in number of scenarios i.e., non-
linear model enhancement, continuously varying mobile environment evaluation, degree
of overfitting and complexity reduction, and reconstruction error of the data minimiza-
tion [86]. DRL is the revolutionary and emerging tool in many fields of sciences particularly
in mobile communications for efficiently deliver the solution of various challenges [87].
Deep convolution neural network (DNN) intends to learn the characteristics of the channel
and forecast the appropriate modulation coding scheme (MCS). For intelligent decision
without human mediation the multiple layers employed to build an artificial neural net-
work. For improving parameters of the network, the artificial intelligence, machine/deep
learning techniques are the best approach as we supposed fewer physical intervention and
advanced computational constraints [88].

Nowadays advances networks such as HetNets, IoT, and unmanned aerial vehicle
(UAV) networks reshaped to autonomous, adhoc, and decentralized form in which mobile
users, UAVs and IoT devices take decisions by theirself i.e., cell association, power control,
data rat etc. In these scenarios, the problems sculpted by MDP has worth to make decisions
accordingly and number of algorithms and learning techniques helped to solve MDP [89].
Computational complexity of advanced and large networks turns out to be very difficult.
In this regard, DRL delivers some required benefits such as decision making independently,
improves the learning speed with large state and action spaces, learn and develop net-
work understanding about the communication and environment, sophisticated network
optimizations, data offloading, interference management and cyber physical attacks mod-
eled. DRL-based joint resource management functions for 5G HetNets, multi-objective
DRL based resource management, flexible resource management design, DRL-based load
balancing for 5g HetNets need to be investigated under the 5G context [90]. Figure 3 shows
categories of HO optimization techniques using machine learning tools.

For the prediction analysis the artificial intelligence needs more matureness in chan-
nel modeling. The main issues are i.e., high dimensional search due to huge antenna,
transmitted and received signal relationship, learning faster combination of transmitting
and receiving beam, convergence in training the AI model. The advance techniques of
AI/ML/DL energize the 5G and beyond 5G wireless networks to support emerging use
cases introduces in the real world. However, despite of advancement the open research
issues and future directions still need to be address. In practical implementation the effi-
ciency of the training procedure needs matureness such as getting faster convergence with
the best possible parameters of the learning algorithms. To acquire data from extensive
measurement operations there is a still gap for real experiments results from dense urban
propagation areas, high speed moving nodes on terrestrial areas and dynamically changing
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environments to justify the precision of the learning algorithms [91]. In hierarchical net-
works, architecture design, control of the communication parameters of network entities,
computation proficiency, centralized or distributed control performance, and accuracy re-
quirements still need to be explored using AI/ML/DL aspect [92]. Advance algorithms and
techniques for cyber attack during the operation is also an open challenge in this field such
as reliable communication of unmanned ariel systems, session hijacking, man-in-the middle
attack etc. RL has two main features (i) trial and error search (ii) delayed rewards [93].
Following the guidelines in [94], Figure 4 shows both RL, and deep Q-learning schema.

Handover 

Optimization 

Techniques

Non-Linear 
Programming (NP)
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for RL algorithms

Figure 3. HO Optimization Techniques.
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Figure 4. Diagram of (a) Reinforcement Learning, and (b) Deep Q-learning.

Model is used to anticipate the nature of an environment. The ML designs which is
using both planning and models are model based mechanism. If the model of environment
is absent, then learning can be done through trial and error methods. Generally, there are
three approaches to implement RL algorithm; Value based: In the value based RL algorithm,
users try to achieve maximum value function, meaning that an agent is expecting a long
period return of the existing states. Policy based: In this approach, users design a policy
in which multiple actions are performed in every state to acquire a maximum reward in
the future. Policy describe the method in which agent must act in certain environmental
conditions [95]. Basically, policy always map the function of states and actions. Number
of formats can be implemented as policy such as it can be a table, any searching process
or can be a function. The idea of RL is way to maximize this policy. The signal rewards
depicts the actions taken by agent is good or bad. The intention of this reward signal is
to inflate the overall reward. Policy is dependent on signal reward in way that if agent
receive bad reward, he must revise his policy and then again perform actions. Rewards
can be categorizing as immediate reward or delayed rewards. In case of delayed rewards,
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the agent must find out which actions are cause of this reward. value function calculate
the overall forthcoming reward. The core idea behind the value function is to figure out
the states and perform actions accordingly. The basic diagram of RL is given above which
shows the state and its relative actions [96]. Policy based methods are further divided
into types:

1. Deterministic; Same actions are performed for all the states and processed by the
policy pie.

2. Stochastic; Every action corresponds to a certain policy model based. In this method,
a virtual model is designed for all types of surrounding atmosphere or environ-
ment. After creating a virtual model, learning process of agent begin to perform in
that environment.

4.2. Related Contributions

Machine learning algorithms always relies on intelligence and environment awareness.
It grows fast and extensively utilized in various research domains and applied fields.
Related contributions in Table 5 shows a comparison of efficient and in optimized machine
learning algorithms for HO decision management.

Table 5. Related Contributions for RL-Based HO.

Reference Algorithm Model Description

Minh-Thang
Nguyen, et al.

[97]

Reinforcement
Learning Model Free Suggest an algorithm for seamless mobility management using optimized

HO parameters in arbitrarily deployed small-cell networks.

S. S. Mwanje, et
al. [98]

Reinforcement
Learning Model Free

Suggest a framework, enables an advance behavior of SON that learn the
best possible configurations autonomously using reinforcement learning
for mobility optimization and mobility load balancing.

K. T. Dinh, et al.
[99]

Fuzzy and
Reinforcement

Learning
Model Free

Suggest a combined solution of Fuzzy Q-Learning Control and a heuris-
tic Diff_load algorithm to optimize the HO and load balancing issue
by adapting hysteresis and the time to trigger parameters for SON en-
abled networks.

Y. Koda, et al.
[100]

Reinforcement
Learning Model Free

Suggest a reinforcement learning optimal HO decision-making policy
in millimeter-wave (mmWave) communication networks to maximize
throughput considering the velocities and locations of a pedestrians.

C. Lee, et al.
[101] Deep Learning DNN Model Suggest a policy for conditional HO by forecast the target cells get pre-

pared for a forthcoming HO.

L. Yan, et al.
[102]

Supervised
Machine
Learning

Model Free
Proposed to assist HO using existing chronological data such as channel
state information (CSI) and K-nearest neighbor algorithm in mmWave
vehicular networks for efficient HO decision.

C. Wang, et al.
[103] Deep Learning Model Based

Suggest a multi-user multi-step trajectory prediction to predict user’s
future location using the Long Short Term Memory (LSTM) for HO man-
agement.

Mollel, Michael
S., et al. [104]

Deep
Reinforcement

Learning
Model free

Suggest an offline reinforcement learning algorithm that optimize the HO
decisions considering existing user connectivity and throughput within
both time and frequency domains.

Bahra, Nasrin,
et al. [105]

Deep
Reinforcement

Learning
Model free Suggest a hybrid approach to obtain the existing user mobility patterns

and predict the future trajectory of a user.

Wang, C, et al.
[106] Deep Learning Model free Suggest a multi-user trajectory prediction using LSTM cells that learns

the user’s historical mobility patterns.

Xu, J., et al.
[107] Deep Learning Model Free Suggest a model to understand the mobility patterns for trajectories

destination prediction.
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Table 5. Cont.

Reference Algorithm Model Description

Bahra, N., et al.
[108] Deep Learning Model free Suggest a mobility model to simplify the user’s trajectory using recurrent

neural network variations and eliminating the irrelevant data.

Sadri, A., et al.
[109] Deep Learning Model Free Suggest a mobility model of existing relations from all existing trajectories

for future path prediction using a similarity metric.

Ozturk, M., et al.
[110] Deep Learning Model Free Proposed an analytical model to determine the holistic cost of HO i.e.,

latency, signaling overhead, and call dropping.

M. Alrabeiah, et.
Al. [111] Deep Learning Model Free Suggest a technique to predict obstruction and mmWave beam for mobil-

ity management considering sub-6 GHz channels.

C. Lee, et al.
[112] Deep Learning Model Free Suggest a policy to predict the upcoming cell for proactive conditional

HO using deep neural network in mmWave networks.

Z. Wang, et al.
[113] Deep Learning Model Free

For low latency mobile networks, hidden Markov process implemented
for learning the optimal HO controllers and to prediction the next con-
nected access point.

Chih-Lin I, et al.
[114] Deep Learning Model Free

Proposed a proactive HO method based on novel data-driven intelligent
radio access network. The technique decreases the number of service
interruptions and the impact of ping-pong effect.

4.3. Types of Reinforcement Learning

Positive and negative are the two types of RL, which are defined as follows:

1. Positive;
Positive RL is referred to event that happens because of the specific behavior. It ampli-
fies the intensity and oscillation of behavior and impacts on the activities performed
by the agent. It maximizes the performance of an event and maintain changes for a
longer period while an excessive implementation of RL may create over optimization
state that impacts the outcomes of actions.

2. Negative;
In this type of RL, actions are taken to improve the strength of behavior that hap-
pens because of the undesirable conditions. These undesirable conditions should be
stopped or reduced to achieve the minimum standpoint of performance. Nevertheless,
a lot of effort is needed to achieve the conditions of that standpoint [115].

5. Challenges and Future Research Directions

Many studies already have been conducted to address one of the biggest challenges of
future wireless networks such as HO management in 5G small cell. Emerging technologies
i.e., D2D, M2M, MIMO, EC, SC, BF, convergence of WiFi and cellular, SDN, NFV and CC
and upcoming use cases and services such as mMTC, eMBB, and uRLLC introduces new
challenges. Also high speed mobility, high data rate applications and limited resources in
5G UDSC networks faces numerous challenges. Still there are some significant challenges
needs to be addressed in optimized way using advance machine learning algorithms. In
this section, we will briefly discuss the upcoming challenges for HO management in small
cell networks and future research direction.

1. QoS/QoE for multimedia traffic; The requirements for quality of service and serving
capability of multimedia traffic are different from the data and voice traffic. HO
techniques deliver different QoS/QoE in different use cases to perform various types
of multimedia traffic [116]. Providing the best machine learning solution while
considering the QoS/QoE in HO management, is an active research area for beyond
5G wireless small cell networks where huge data will be drive with low latency and
best connectivity.
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2. Controlling Communication Overhead; Existing HO solutions required complicated
and frequent collaboration between all nodes available for communication i.e., Macro-
cell, small cells and the UEs. This phenomenon required large number of network
resources to exchange the necessary information [117]. Providing the best machine
learning solution for controlling communication overhead while considering is an
active research area for beyond 5G wireless small cell networks.

3. Network Performance in Outdoor Use Cases; Primarily, huge data traffic broadcast
in indoor scenarios where wired and wireless connections are the best available
option [118]. while providing the best machine learning solution for outdoor scenar-
ios should be consider carefully is an active research area for beyond 5G wireless
networks.

4. Battery Life in Smartphone; Advance antenna, applications and optimized use case
scenarios required huge processing and this killing behavior consuming the battery
life of smart phones and wireless connected drones [119]. So, providing the best
machine learning solution for limited energy supply is another critical challenge is an
active research area for beyond 5G wireless networks.

5. Wireless Back haul Spectrum Efficiency; In beyond 5G wireless networks, cell BSs
requires wireless back haul network with massive capability to handle the large
number of wireless connections and flexible deployment [120]. Hence, providing
the best machine learning solution for spectrum resource management, networking
complexity, and infrastructure cost to handle the large number of cells in beyond 5G
wireless networks is an active research area.

6. Advanced Techniques Integration; In 5G small cell networks, mmWave, massive
MIMO, and mMTC are the key enablers to improve the network capacity up to 100
times. And massive signaling overhead of these advance technologies produce dense
communication and processing [121]. Therefore, providing the resource efficiency,
cost efficiency, and interference mitigation using machine learning in beyond 5G
wireless networks is also an active research area.

7. Security and Privacy Concerns; The most critical and crucial challenges in HO man-
agement for UD 5G small cell networks are security and privacy concerns since the
high densification of the cells and UEs. Number of new functions and applications
dealing with communication data pose new challenges for security compromise and
privacy concern [122]. Hence, efficient counterstep using machine learning in beyond
5G small cell wireless networks also an active research direction.

8. HO in Drone Mobility; According to 3GPP, unmanned ariel vehicles possibly experi-
ence weak signal-to-interference-plus-noise ratio (SINR) than terrestrial UEs. Because
of obstacles occurring between the wireless signals and possibility of HOs increases so
it is inevitable to improve these issues. As mentioned previously, small cell technology
and cell densification also bring challenges for mobility and HO management. In
UD networks, the coverage range of cells is limited and overlaid. As a result, UEs,
covering mobility functions, need to move from one cell to another or face frequent
HOs. Mobility management is a key feature of 5G infrastructure as it improves user
experience and use cases that will be coming in future. Therefore, HO functions
and operations must be completed without interference and interruption instances
to perform the requirements of 5G mobility management. In this paper, we discuss
challenges of mobility and HO management in 5G UD cellular network and scrutinize
multiple ways to overcome these challenges. In drone communication, telepresence,
dominance in line of sight (LoS), coordinated multi-point transmission, air-borne-base
station required more efficient solutions to conduct different services [123,124]. There-
fore, cost effective machine learning based solution in UD networks also an active
research direction.
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9. Load Imbalance; Despite all the advantages of HetNets and cell densifications, small
cell technology comes with hurdles that must be solved first. Load imbalance, for
instance, occurs due to variation in transmitted power and coverage area from unlike
tiers of cells. Henceforth, small cells will not serve substantial purpose by using
traditional user association rules which revolve around only received power. Cell
range expansion (CRE) or biasing is a persuasive technique to fight against this
challenge [125].

10. Inter-cell Interference; Inter-cell interference is yet another issue present in cell densi-
fication that can be solved through eICIC, an abbreviation used for cell interference
Coordination. This mitigation technique exploits Almost blank subframes (ABS) to
eradicate noises or interference from Macrocell BSs. ABSs are integrated in HetNets
to optimize interference of high power nodes. However, low power nodes know the
interference pattern, allowing the CRE to be embedded over the low power nodes
and can serve large number of UEs without getting interference from high power
nodes [126].

11. Radio Resource Control (RRC). The mobile management and HO operation challenges
can be controlled by RRC. Being a layer three network protocol, it is located between
UE and BS nodes, used in UMTS, LTE and 5G and considered as a part of air interface
control plane. Consequently, RRC has a potential to enhance the latency, power,
and energy consumption in UD 5G cellular networks. Some other functions include
transferring system information, initiating or emancipating RRC connections, paging,
transferring nonaccess stratum (NAS) messages essential to handle communication
between user equipment and core nets [127].

6. Conclusions

In this paper, we have presented an overview of the mobility management using 5G
enabling technologies. We have presented the 5G wireless network structure supporting
ultra-dense small cell networks. We discussed HO information and decision management
in 5G UDSC network scenario. We also mentioned radio resource control, HO metrics,
information gathering and classification of HO decision schemes. Finally, we have discussed
how machine learning techniques can help to optimize the HO process in 5g network and
related contribution of researchers accordingly. At the end, we discussed the mentioned
challenges to be addressed with respect to 5G supported use cases using machine learning
supported tools.

Author Contributions: Conceptualization, J.T. and A.K.; methodology, J.T. and A.H.; validation, J.T.
and A.H.; formal analysis, J.T., R.A. and A.H.; investigation, J.T. and A.H.; resources, A.K. and A.H.;
data curation, J.T. and R.A.; writing—original draft preparation, J.T.; writing—review and editing,
J.T., A.H. and A.K.; visualization, J.T. and R.A.; supervision, A.H. and A.K.; project administration,
A.H. and A.K.; funding acquisition, A.K. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported by National Research Foundation of Korea (NRF) grant funded
by Korean government (MSIT) (IITP-2021-0-01816) and Strengthening R&D Capability Program of
Sejong University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.



Appl. Sci. 2022, 12, 426 20 of 25

Abbreviations

The following abbreviations are used in this manuscript:
5G Fifth Generation
3GPP Third Generation Partnership Project
AI Artificial Intelligence
B5G Beyond 5G
BS Base Station
CP Control Plane
DL Deep Learning
DRL Deep Reinforcement Learning
DNN Deep Neural Network
D2D Device to Device
DP Data Plane
eMBB Enhanced Mobile Broadband
gNB gNodeB
HO Hand Over
HetNet Heterogeneous Network
IoT Internet of Things
LTE Long Term Evolution
MAB Multi-arm Bandit
MDP Markov Decision Process
ML Machine Learning
mMIMO Massive Multiple input Multiple Output
mMTC Massive Machine type communication
mmWave Millimeter wave
M2M Machine to Machine
NFV Network FunctionVirtual
NGWN Next Generation Wireless Network
NOMA Non-Orthogonal Multiple Access
NR New Raadio
OFDM Orthogonal Frequency Division Multiplexing
QoE Quality of Experience
QoS Quality of Service
RAT Radio Access Technology
RAN Radio Access Network
RL Reinforcement Learning
RSRP Reference Signal Received Power
RSRQ Reference Signal Received Quality
RSSI Reference Signal Strength Indicator
SC Small Cell
SDN Software Defined Networks
SON Self Organized Network
UAV Unmanned Ariel Vehicle
UAV-BS UAV- Base Station
UAV-UE UAV-User Equipment
UDN Ultra-Dense Network
uRLLC Ultra-Reliable low-latency communications
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