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ABSTRACT
Security is concerned with the protection of assets from in-
tentional harm. Secure systems provide capabilities that en-
able such protection to satisfy some security requirements.
In a world increasingly populated with mobile and ubiqui-
tous computing technology, the scope and boundary of se-
curity systems can be uncertain and can change. A single
functional component, or even multiple components indi-
vidually, are often insufficient to satisfy complex security
requirements on their own.

Adaptive security aims to enable systems to vary their
protection in the face of changes in their operational envi-
ronment. Collaborative security, which we propose in this
paper, aims to exploit the selection and deployment of mul-
tiple, potentially heterogeneous, software-intensive compo-
nents to collaborate in order to meet security requirements
in the face of changes in the environment, changes in assets
under protection and their values, and the discovery of new
threats and vulnerabilities.

However, the components that need to collaborate may
not have been designed and implemented to interact with
one another collaboratively. To address this, we propose
a novel framework for collaborative security that combines
adaptive security, collaborative adaptation and an explicit
representation of the capabilities of the software components
that may be needed in order to achieve collaborative secu-
rity. We elaborate on each of these framework elements,
focusing in particular on the challenges and opportunities
afforded by (1) the ability to capture, represent, and reason
about the capabilities of different software components and
their operational context, and (2) the ability of components
to be selected and mediated at runtime in order to satisfy
the security requirements. We illustrate our vision through
a collaborative robotic implementation, and suggest some
areas for future work.
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General Terms
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1. INTRODUCTION
As our reliance on digital, connected devices increases, so

does our need for security. Secure systems must provide
the necessary capabilities to protect assets from intentional
harm. These systems rely on an explicit definition of their
security requirements to describe precisely which actions in a
system are allowed and which ones are prohibited [21]. Once
security requirements are specified, it becomes possible to
concentrate on the security controls by which these security
requirements can be satisfied.

The high-degree of dynamism and the inherent hetero-
geneity of mobile and ubiquitous computing environments
make security requirements hard to satisfy. First, the com-
ponents and the assets of the system might be mobile (e.g.,
smartphones and personal trackers), making the boundary
of the system ill defined and uncertain. These components
are also often developed independently, and may only be ac-
cessed through particular interfaces and specific protocols.
For example, the protocol used by a lighting system is likely
to be different from that used by a surveillance camera for
video recoding. In addition, the physical environment must
also be taken into account. For example, a surveillance cam-
era may only be able to capture video when there is enough
light. Therefore, the light may need to be turned on when
the camera needs to be operated in the dark. It is diffi-
cult to design and develop the security controls necessary to
protect assets when the operational context is continually
changing, and no exact assumptions about the environment
can be made.

The complexity of security controls necessary to satisfy
security requirements in mobile and ubiquitous computing
environments means that they may be unlikely to be im-
plemented by a single component, or even by multiple com-
ponents in isolation. For example, a smart home may be
equipped with a whole range of electronic devices that can
help keep the homeowner and their property safe from in-
truders. If the light is switched on without the door being
opened, this can indicate an intrusion and should trigger the
alarm. The lighting system, the door lock, and the alarm



each provides a specific capability, which put together allows
the realisation of the security control necessary to protect
the house. In this paper we propose a novel framework for
collaborative security that leverages the capabilities of mul-
tiple components available in the environment in order to
deploy the necessary security controls and satisfy security
requirements. To realise collaborative security, we must be
able to answer several questions:

• How do we capture, represent, and reason about the
capabilities of components in ubiquitous computing
environments?

• Which components should collaborate to satisfy secu-
rity requirements?

• How do we make components collaborate?

• Can we ensure that the collaboration satisfies proper-
ties such as correctness, safety, and minimality?

In taking initial steps in answering these questions, we
build upon adaptive security [20] and collaborative adapta-
tion [23]. The former focuses on identifying the security
controls necessary to keep security requirements satisfied de-
spite changes in the environment. The latter concentrates on
the mechanisms necessary to make multiple components col-
laborate. However, this collaboration is often hampered by
differences in the implementations of independently-developed
components. To address these differences without changing
the components, intermediary software components, called
mediators [22], systematically compensate for the differences
in the implementations of these components.

We propose an initial realisation of collaborative secu-
rity whereby the security controls are identified using adap-
tive security techniques and their deployment is performed
by first selecting the appropriate components, according to
their capabilities, and then synthesising the mediators that
enable them to interact successfully. The selection and me-
diation of multiple components as a means to enact security
controls, rather than achieving integration or interoperabil-
ity only, raises a number of challenges for collaborative se-
curity research.

The paper is structured as follows. Section 2 presents our
framework for collaborative security that combines adaptive
security, collaborative adaptation and an explicit represen-
tation of the capabilities of the software components. Sec-
tion 3 describes the key techniques used in adaptive security
to select, analyse, and deploy security controls. Section 4 ex-
amines the principal techniques used in collaborative adap-
tation to select and mediate components in order to sat-
isfy some functional requirements. Section 5 introduces an
implementation of collaborative security by combining and
unifying techniques from adaptive security and collabora-
tive adaptation. It also illustrates its application through
a robotics example. Section 6 discusses the open research
questions.

2. A FRAMEWORK FOR COLLABORATIVE
SECURITY

Collaborative security aims to exploit the collaboration of
multiple, heterogeneous, software-intensive components in
order to meet security requirements in the face of changes
in the environment, changes in assets under protection and

their values, and the discovery of new threats and vulner-
abilities. A framework for collaborative security bridges
the gap between the security requirements and the compo-
nents available in the environment. Our framework revolves
around three concepts: security controls, capabilities, and
mediators.

Security controls specify the mechanisms that need to be
deployed in order to enforce security requirements. Accord-
ing to the value of the assets to protect, the potential threats,
and knowledge of the system over time—the sort of attacks
that have worked, their consequences, and how they were
stopped— we must determine the appropriate security con-
trols. The deployment of these security controls is achieved
through the collaboration of multiple components with dif-
ferent capabilities.

Central in this framework is the notion of capabilities. The
capability of a component models what a component can do,
how it can do it, and under which conditions. In order to
enable the analysis and reasoning necessary for meeting se-
curity requirements, we must be able to capture, represent,
and reason about the capabilities of the components. Cap-
turing capabilities allows us to express what are the com-
ponents available in the environment. Representing capa-
bilities allows us to describe the features of the components
explicitly. Reasoning about capabilities allows us to select
the components that need to collaborate in order to realise
the appropriate security controls. As the selected compo-
nents can be developed independently, mediators are used
to enable them to interoperate.

Mediators enable heterogeneous components to interoper-
ate by reconciling the differences in their implementations.
As the components that need to interact are not known a
priori, we must dynamically synthesise and deploy the ap-
propriate mediators to enable the selected components to
collaborate in order to realise the security controls.

Collaborative Security Framework
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Figure 1: Collaborative Security Framework

Figure 1 depicts the main elements of the collaborative
security framework and the functions associated with each
of them. In subsequent sections, we elaborate on the oppor-
tunities and challenges provided by adaptive security and
collaborative adaptation to support each of these elements.
Specifically, adaptive security is concerned with the analy-
sis of security requirements and the operational context in



order to determine the security controls that must be de-
ployed to keep a system secure. Collaborative adaptation
is concerned with the selection of multiple components, ac-
cording to their capabilities, and their mediation, in order
to realise adaptations that cannot be handled using a single
component, or multiple components in isolation.

3. ADAPTIVE SECURITY
Adaptive security aims to enable systems to vary their

protection in the face of changes in their operational envi-
ronment. An adaptive security solution specifies how to:
(i) monitor the environment and evaluate the properties of
the operational context, (ii) determine the adequate secu-
rity controls enabling the satisfaction of security require-
ments according to the properties of the environment, and
(iii) deploy these security controls. Figure 2 illustrates the
principal elements of an adaptive security solution, which
are described in the following.
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Adaptive Security
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Figure 2: Adaptive Security

Monitoring the environment. The system must be aware
of the properties of its operational environment in order to
adapt its protection accordingly. Monitoring provides the
mechanisms that collect, aggregate, filter and report details
collected from the environment [7]. In a security context, the
focus of monitoring is on the assets and their values as well as
on potential threats and vulnerabilities. Besides techniques
that detect violations of the security requirements [15], it is
also possible to detect threats by calculating the likelihood
of a potential violation of security requirements based on the
correlation between past events [17].

Determination of security controls. Deciding what secu-
rity controls are adequate is difficult because security threats
are diverse and often unpredictable, and because the secu-
rity controls selected often impact usability, performance,
and other quality attributes of a system. Hence, the deter-
mination of security controls is a multi-objective and cost-
sensitive decision-making problem [24].

A requirement-driven approach for adaptive security en-
ables analysing and reasoning about the costs and benefits
of the security controls. For example, Salehie et al. [20] pro-
pose an approach in which a runtime model that combines
goals, threats, and assets models is used to evaluate the cost

and benefit of applying each security control and choosing
the most appropriate one.

Deployment of security controls. As most modern soft-
ware systems are distributed and increasingly connected, the
deployment of a security control may necessitate interven-
tion at different parts of the system. DISCOA [8] defines a
model-driven approach to support the deployment of secu-
rity controls using point cuts over the architectural model
of a specific system. Design-time security patterns are in-
creasingly used to provide flexible and effective solutions for
incorporating security mechanisms into software systems [9].
However, security controls need not be enacted using a single
component but rather through the collaboration of multiple
components available in the environment. In the following
section, we therefore describe techniques to make compo-
nents collaborate, albeit to satisfy functional requirements.

4. COLLABORATIVE ADAPTATION
Collaborative adaptation aims to address complex adap-

tations that cannot be handled by a single component, or
by multiple components in isolation. A collaborative adap-
tation solution specifies how to: (i) represent capabilities
in order to provide an explicit description of the compo-
nents and enable reasoning about their collaboration, (ii)
capture the capabilities of the components available in the
environment, and (iii) synthesise and deploy the appropriate
mediators that enable the selected components to interop-
erate even though they have heterogenous implementations.
Figure 3 illustrates the principal elements of a collaborative
adaptation solution.

Component 1 Component 2

Component 3
Component 4

Collaborative Operational Environment

Component 5

Requirements

Capabilities

Collaborative Adaptation

Mediators

DeployCapture

Reason Synthesise

Represent

Figure 3: Collaborative Adaptation

Representing and reasoning about capabilities. Since a
capability models a component, its representation depends
on the kind of analysis and reasoning that need to be per-
formed on the associated component.

Tropos [4] defines a capability as “the ability of an actor
of defining, choosing and executing a plan for the fulfilment
of a goal, given certain world conditions and in presence of
a specific event”. In this definition, capabilities are used
in the context of an agent-oriented software development
methodology rather than in a runtime environment. We
regard the capability of a component as independent of the
plan it has to execute, and which may change at runtime.



In the Semantic Web Services domain [18], a capability
describes what the service does, i.e. the functionality it pro-
vides to its clients. It is described using the inputs, outputs,
pre-, and post-conditions of the service, all of which are asso-
ciated with concepts in some domain ontology. In addition,
a process model specifies how the service achieves its ca-
pability and a service grounding describes the information
necessary to invoke the service.

An ontology-based description of services has many ad-
vantages: (i) it promotes the semantic matching between
clients requests and available services, (ii) it eases the con-
struction of composition of services by making explicit the
input, output, pre- and post-conditions of the services as
well as their behaviours, and (iii) it facilitates interoperabil-
ity by formalising both the meaning of the input/output and
the behaviour of services.

Nevertheless, solutions based on process algebra and au-
tomata have proven more suitable for modelling and analysing
the behaviour of components. Hence, they are often used to
specify, formally, the behaviour of components (and connec-
tors) in a software architecture.

Capturing capabilities. In ubiquitous computing environ-
ments, components often advertise their presence using stan-
dard discovery protocols (e.g., UPnP-SSDP, Bonjour, and
Jini) [21]. However, these discovery protocols often only
provide the syntactic interfaces rather then a rich capability
representation. Consequently, learning techniques are often
used to infer additional information about the components
and complete their capabilities. The additional information
can include the semantics of the interface of a component [3],
its behaviour [16], or its non-functional properties [10].

Synthesis of mediators. Mediators enable heterogeneous
components to interoperate in a non-intrusive way, i.e. with-
out changing the internal implementation of these compo-
nents. Mediation research has thus far focused primarily on
design time activities [13]. There is however a shift towards
runtime synthesis of mediators. Furthermore, the complex-
ity of software systems is such that it is difficult to develop
‘correct’ mediators manually; i.e. mediators that guaran-
tee that the components interact without errors (e.g., dead-
locks) and terminate successfully. Inverardi and Tivoli [12]
propose an approach to compute a mediator that composes a
set of pre-defined patterns in order to guarantee that the in-
teraction of components is deadlock-free. Cavallaro et al. [6]
combine assembly methods with pairwise mediators to en-
able the satisfaction of functional requirements. The for-
mer consider the structural constraints and specify a coarse-
grained composition of components based on the functional-
ity provided or required by each component, while the latter
enforce this composition despite the behavioural differences
that may exist between each pair of components given the
correspondence between the interfaces of the components.

However, in environments where there is little or no knowl-
edge about the components that are going to meet and in-
teract, the complete generation of suitable mediators must
happen at runtime while existing approaches assume to be
given the correspondence between the interfaces of compo-
nents or that some mediation patterns are known a priori
and composed at runtime. In addition, the synthesised me-
diators solve the differences between components only at
the application-level while in a world increasingly populated

with mobile and ubiquitous computing technology, the dif-
ferences between components span both the application and
middleware layers.

Deployment of mediators. As a conceptual paradigm that
facilitates the communication and coordination of distributed
components despite the differences in hardware and oper-
ating systems, middleware has often been used as an en-
abler for collaborative adaptation. For example, M2 [23]
introduces a message-based collaboration protocol to imple-
ment collaborative adaptation and defines an interface to
plug legacy components. Nevertheless, when collaboration
takes place at runtime, it is necessary to execute mediators
that are automatically synthesised for that purpose. Star-
link [5] is a runtime framework that executes mediators spec-
ified using a domain-specific language that describes the be-
haviour of this mediator and the data translations that it
must perform. Starlink also hides the heterogeneity of mid-
dleware protocols by generating, at runtime, the appropriate
parsers and composers that translate network messages into
and from the actions of the domain-specific language.

However, collaborative adaptation targets integration and
interoperability and is agnostic to security concerns. In
other words, collaborative adaptation solutions cannot read-
ily be used to satisfy security requirements as they do not
explicitly reason about assets and their values as well as
potential threats and vulnerabilities of the system.

5. TOWARDS COLLABORATIVE SECURITY
We propose an initial solution for collaborative security,

called collaborative adaptive security, based on our work on
requirement-driven adaptive security, which is supported by
the SecuriTAS tool [19], and dynamic synthesis of media-
tors in ubiquitous environments, which is supported by the
MICS tool [1]. Collaborative adaptive security enables the
selection and mediation of components to deploy the ade-
quate security controls in order to keep the system secure
in a changing operational context. Figure 4 illustrates this
solution.
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Security Requirements

Security ControlsDetermine

Component 1 Component 2
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Figure 4: Collaborative Adaptive Security

To determine the adequate security controls, SecuriTAS
maintains a runtime model that combines goal, asset, and
threat models, and uses it to compute the utility of each
security control. The security goals are associated with pre-



defined security controls. Assets are linked to the security
goals and associated threats. Once the security controls are
identified, we consider the capabilities of the available com-
ponents and make them collaborate to realise these security
controls.

The capabilities of components are represented using a
combination of ontologies and transition systems. Ontolo-
gies are used to describe the high-level functionality the com-
ponent requires from or provides to its environment, and to
define the semantics of the actions of its interface. Transition
systems are used to specify the behaviour of the component
formally.

To determine which components need to collaborate to
enact the selected security control, we must match the goal
model against the high-level functionalities of the available
components. For the moment, let us consider that the leaves
of the goal model correspond to the high-level functionali-
ties of the available components. However, the collabora-
tion between independently-developed components is often
hampered by differences in their interfaces and behaviours.
Therefore, mediators are synthesised which systematically
compensate for these differences by mapping the interfaces
of the components and coordinating their behaviours.

The automated synthesis of mediators, implemented by
MICS, is performed in several steps. The first step is in-
terface matching, which identifies the semantic correspon-
dence between the actions required by one component and
those provided by the others. We incorporate the use of
ontology reasoning within constraint solvers, by defining an
encoding of the ontology relations using arithmetic opera-
tors supported by widespread solvers, and use it to perform
interface matching efficiently. For each identified correspon-
dence, we generate an associated matching process that per-
forms the necessary translations between the actions of the
components’ interfaces. The second step is the synthesis
of correct-by-construction mediators. To do so, we analyse
the behaviours of components so as to generate the medi-
ator that combines the matching processes in a way that
guarantees that the components progress and reach their fi-
nal states without errors. The synthesised mediator is the
most general component that ensures freedom of both com-
munication mismatches and deadlock in the composition of
the components [2]. The last step consists in making the
synthesised mediator concrete by incorporating all the de-
tails about the interaction of components. To do so, we
compute the translation functions necessary to reconcile the
differences in the syntax of the input/output data used by
the components and coordinate the different interaction pat-
terns that can be used by middleware solutions. Hence, me-
diation is tackled from the application to the middleware
layer in an integrated way. The mediators we synthesise
act as: (i) translators by ensuring the meaningful exchange
of information between components, (ii) controllers by co-
ordinating the behaviours of the components to ensure the
absence of errors in their interaction, and (iii) middleware
by enabling the interaction of components across the net-
work so that each component receives the data it expects at
the right moment and in the right format.

We have been experimenting with collaborative adaptive
security an early prototype demonstrator using two robots:
a programmable autonomous vacuum cleaner (iRobot Cre-

ate1) and a humanoid robot (NAO2). The two robots need
to collaborate in order to secure a particular area in our
laboratory. The iRobot Create has a simple capability that
consists of executing the moving commands it receives. NAO
has the object-recognition capability and can indicate to
iRobot Create the area in which it can move. Both iRobot
Create and NAO rely on discovery protocols to advertise
their presence in the environment, the former uses Blue-
tooth discovery while the latter uses Bonjour. Nevertheless,
putting iRobot Create and NAO in the same environment
is not enough to satisfy the security requirements, as they
cannot interact with one another spontaneously. What is
needed is a mediator that makes them collaborate in order
to realise the security requirement. Therefore, a mediator
is synthesised which exchanges messages with both robots
through their specific interfaces, using the iRobot Create
Open Interface to communicate with iRobot Create, and
NAOqi to communicate with NAO; and coordinates the be-
haviours of the components by first receiving the messages
from NAO then sending the commands to iRobot Create.

Analysis. To present collaborative security more precisely,
we describe it using Jackson and Zave’s framework for re-
quirements engineering [14].

Let E denote environment properties,

Rs denote security requirements, and

S denote the specification of a software system that
satisfies the security requirement Rs, i.e. S,E ` Rs.

When the environment properties evolve into E′, the spec-
ification of the software system S, and the software system
itself, may no longer satisfy the security requirement Rs, i.e.
S,E′ 6` Rs. As a result, the system must be adapted so as
to keep the security requirements satisfied.

To ensure that the security requirement Rs remains satis-
fied in the environment E′, adaptive security transforms the
specification of the software system S into a specification
S′ such that S′, E′ ` Rs. S′ is obtained from S through
the deployment of the adequate security controls. Neverthe-
less, the specification S′ need not be achieved using a single
software component; rather, we may take advantage of the
capabilities of the different components available in the en-
vironment and make them collaborate so as to realise S′.

Let C = {C1, . . . , Cn} denote the set of the capabilities of
the components available in the environment E′. Note that
C may include the component(s) of S as well. None of the
components available in the environment is able to satisfy
the security requirement Rs, i.e. ∀Ci ∈ C : Ci, E

′ 6` Rs.
It might be the case that even the conjunction of multiple
components cannot satisfy the security requirement Rs, i.e.
∀Ci ⊆ C : Ci, E′ 6` Rs. Collaborative security seeks a subset
of components Cj , together with the specification M of the
associated mediator(s) such that Cj ,M,E′ ` R.

6. A RESEARCH AGENDA
The increasing ubiquity of connected devices both chal-

lenges and supports security. The challenges arise from the
frequent and unpredictable changes in the environment, in
assets under protection and their values, and the discovery
of new threats and vulnerabilities. The support comes from
the plethora of devices that can be composed in a multitude

1http://www.irobot.com/us/learn/Educators/Create.aspx
2http://www.aldebaran-robotics.com/en/



of ways in order to protect valuable assets. Collaborative
security aims to address new or changing threats by en-
abling the runtime deployment of adequate security controls
through the collaboration of the components available in the
operational environment. In this paper, we suggested that
collaborative security may be realised by combining tech-
niques from adaptive security and collaborative adaptation.
Nevertheless, many challenges remain.

The choice of security controls need not be specified but
may be elicited according to the capabilities available in the
environment. We envision inferring, at runtime, new secu-
rity controls that a developer or a user did not consider at
design time. We are also considering the use of security argu-
ments to drive the satisfaction of security requirements [11].
We are thus investigating if argumentation can be used to
determine the necessary security controls. Attempting to
construct a security satisfaction argument exposes trust as-
sumptions and oversights within the system that can affect
security. At runtime, we can evaluate these assumptions to
decide if they might be relaxed or invalidated. In addition,
as ubiquitous computing and cyber-physical systems can in-
fluence their environment, they might change it in order to
validate the necessary assumptions that would satisfy the se-
curity requirements. In addition, the trustworthiness of the
individual components may help determine the components
that need to collaborate in order to achieve security.

Finally, while collaboration can help maintain security re-
quirements, how can we prevent it from introducing vulner-
abilities? In other words, how do we synthesise mediators
that constrain the collaborative behaviour so as to disable
anti-goals and prevent attacks from succeeding?

We believe that collaborative security is a fertile research
area, with both potential and challenges, and we invite other
researchers to collaborate with us in addressing some of these
challenges.
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