
Amedeo Roberto EspositoInstitute of Science and Technology Austria (ISTA) | IST · Physical Science Section
Amedeo Roberto Esposito
Doctor of Philosophy
About
21
Publications
681
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
151
Citations
Introduction
Publications
Publications (21)
This paper focuses on parameter estimation and introduces a new method for lower bounding the Bayesian risk. The method allows for the use of virtually \emph{any} information measure, including R\'enyi's $\alpha$, $\varphi$-Divergences, and Sibson's $\alpha$-Mutual Information. The approach considers divergences as functionals of measures and explo...
We adopt an information-theoretic framework to analyze the generalization behavior of the class of iterative, noisy learning algorithms. This class is particularly suitable for study under information-theoretic metrics as the algorithms are inherently randomized, and it includes commonly used algorithms such as Stochastic Gradient Langevin Dynamics...
In this work, we connect the problem of bounding the expected generalisation error with transportation-cost inequalities. Exposing the underlying pattern behind both approaches we are able to generalise them and go beyond Kullback-Leibler Divergences/Mutual Information and sub-Gaussian measures. In particular, we are able to provide a result showin...
We explore a family of information measures that stems from R\'enyi's $\alpha$-Divergences with $\alpha<0$. In particular, we extend the definition of Sibson's $\alpha$-Mutual Information to negative values of $\alpha$ and show several properties of these objects. Moreover, we highlight how this family of information measures is related to function...
We consider the problem of parameter estimation in a Bayesian setting and propose a general lower-bound that includes part of the family of $f$-Divergences. The results are then applied to specific settings of interest and compared to other notable results in the literature. In particular, we show that the known bounds using Mutual Information can...
In this work, the probability of an event under some joint distribution is bounded by measuring it with the product of the marginals instead (which is typically easier to analyze) together with a measure of the dependence between the two random variables. These results find applications in adaptive data analysis, where multiple dependencies are int...
In this work, we analyse how to define a conditional version of Sibson's $\alpha$-Mutual Information. Several such definitions can be advanced and they all lead to different information measures with different (but similar) operational meanings. We will analyse in detail one such definition, compute a closed-form expression for it and endorse it wi...
The aim of this work is to provide bounds connecting two probability measures of the same event using R\'enyi $\alpha$-Divergences and Sibson's $\alpha$-Mutual Information, a generalization of respectively the Kullback-Leibler Divergence and Shannon's Mutual Information. A particular case of interest can be found when the two probability measures c...
In this work, the probability of an event under some joint distribution is bounded by measuring it with the product of the marginals instead (which is typically easier to analyze) together with a measure of the dependence between the two random variables. These results find applications in adaptive data analysis, where multiple dependencies are int...
The following problem is considered: given a joint distribution $P_{XY}$ and an event $E$, bound $P_{XY}(E)$ in terms of $P_XP_Y(E)$ (where $P_XP_Y$ is the product of the marginals of $P_{XY}$) and a measure of dependence of $X$ and $Y$. Such bounds have direct applications in the analysis of the generalization error of learning algorithms, where $...
There is an increasing concern that most current published research findings are false. The main cause seems to lie in the fundamental disconnection between theory and practice in data analysis. While the former typically relies on statistical independence, the latter is an inherently adaptive process: new hypotheses are formulated based on the out...