Chemistry and application of 4-oxo-4H-1-benzopyran-3carboxaldehyde

Chandra Kanta Ghosh,** and Amarnath Chakraborty ${ }^{\text {b }}$
${ }^{a}$ Organic Chemistry Laboratory, Department of Biochemistry, Calcutta University, Kolkata 700019, India (since retired)
${ }^{b}$ Department of Organic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
Email: ghosh.chandrakanta@gmail.com; amarprem@gmail.com

DOI: http://dx.doi.org/10.3998/ark.5550190.p009.020

Abstract

The publications on the title compound appearing mainly since 2007 to February 2014 are reviewed.

Keywords: 1-Benzopyran-4-one, 4-oxo-4H-1-benzopyran-3-carboxaldehyde, nucleophilic addition, dipolar cycloaddition, cyclization

Table of Contents

1. Introduction
2. Decarbonylation
3. Oxidation, Reduction and Reductive Self Coupling
4. Radical Addition
5. Nucleophilic Addition
5.1. Addition of oxygen and sulphur nucleophiles: protection and deprotection of carboxaldehyde group
5.2. Addition of nitrogen nucleophiles
5.2.1. Addition of aliphatic amines
5.2.2. Addition of aromatic amines
5.2.3. Addition of aryl- and hetaryl-amine having a second nucleophilic group attached
to the ring
5.2.4. Addition of hydrazine
5.2.5. Addition of hydroxylamine
5.2.6. Reaction with guanidine
5.3. Addition of phosphorus nucleophiles

5.4. Addition of carbon nucleophiles

5.4.1. Addition of active methyl and acyclic methylene compounds
5.4.2. Addition of active cyclic methylene compounds
5.4.3. Addition of enol ethers
5.4.4. Reaction with enamines
5.4.5. Electrophilic substitution reaction of aromatic and heterocyclic compounds with 3-formylchromone
5.5. Baylis-Hillman reaction
6. Cycloaddition and Annulation
6.1. $[2+2]$ Cycloaddition
6.2. $[3+2]$ Cycloaddition
6.3. $[4+1]$ Cycloaddition
6.4. $[4+2]$ Cycloaddition and annulation
6.4.1. 4-Oxo-4H-1-benzopyran-3-carboxaldehyde as a 2π component
6.4.2. 3-Formylchromone as a 4π component
6.4.3. [4+2]Cycloaddition of 3-(2-substituted vinyl)chromone
6.4.4. [4+2]Cycloaddition of 3-iminomethylchromone
6.5. $[4+3]-$, $[5+3]$ - and [5+4]- Annulation
7. 3-Formylchromone as a Component in One-pot Multicomponent Synthesis
7.1. Three component condensation between 3-formylchromone, a nitrogen nucleophile and a third reactant
7.2. Three component reactions of 3-formylchromone with reagents other than a nitrogen nucleophile
7.3. 3-Formylchromone as a component in four component reactions
8. Conclusions
9. Acknowledgements

10. References

1. Introduction

The title aldehyde (trivial name: 3-formylchromone) 1, an intramolecular enol ether of the β ketoaldehyde 2, possesses an endocyclic olefinic bond, an α, β-unsaturated carbonyl functionality, three electrophilic centres (C-2, aldehydic and ketonic carbons) and it can assume a pyrylium betaine structure in the presence of an appropriate reagent. These unique features make the chromone 1 amenable to various reactions as defunctionalisation, oxidation and reduction, radical and nucleophilic addition, and many types of annulations and cycloaddition reactions. The chemistry of 3-formylchromone has indeed evolved extensively since 1972. One aspect or the other of the compound $\mathbf{1}$ has been reviewed from time to time. As for example, Gasparova and Lacova ${ }^{1}$ published in 2005 an overview (with 59 references) of the condensation of 1 with active methylene compounds and a few reactions of the resultant condensates.

Condensation of 1 with only some binucleophiles ${ }^{2}$ covering the literature up to April 2011 and that with a number of carbon and nitrogen nucleophiles ${ }^{3}$ covering the literature up to 2012 have been reviewed and these two reviews contain 132 and 173 references, respectively. Only three reviews, one authored by Sabitha ${ }^{4}$ and the other two by the principal author ${ }^{5,6}$ of the present article, dealing extensively with the general chemistry and application of 3-formylchromone have appeared, the last one covering the literature available through Sci-finder up to December 2006. The present article, primarily designed to complement the earlier one, ${ }^{6}$ is a comprehensive survey of the chemistry of 3-formylchromone and utilization of the compounds easily available therefrom for the preparation of different chemical systems, and covers the literature published during January 2007 to February 2014. A few earlier works which either remained unmentioned in the earlier review ${ }^{6}$ or are helpful for a better understanding of the present write-up are also briefly referred to. Patented works and the reactions of 2 -substituted 4 -oxo- 4 H -1-benzopyran-3carbaldehyde not directly derived from the 2 -unsubstituted analogue $\mathbf{1}$ are not included, and the biological properties of the reported compounds are least emphasized. The 4-oxo-4H-1-benzopyran-3-yl moiety is abbreviated as 'Chr' so that the title aldehyde $\mathbf{1}$ can be represented by ChrCHO. Alkyl, alkoxy and halogeno substituents in benzene ring of $\mathbf{1}$ remain unaffected in most of the reactions described here for the unsubstituted 3-formylchromone. The reactions of 1 are described in the following few sections and subsections based on the type of reactions and the nature of the reagents. One separate section is earmarked for annulation as well as cycloaddition reactions of $\mathbf{1}$ and its simple condensates, and another for one-pot multicomponent reactions involving 1 and two or more other reagents.

2. Decarbonylation

Microwave irradiation of ChrCHO in EtOAc containing $\mathrm{Pd}(\mathrm{OAc})_{2}(\sim 10 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}$ (1.5 eq .) and molecular sieves ($4 \AA$) brings about its decarbonylation. ${ }^{7}$ Decarbonylation of ChrCHO by using $\mathrm{Pd}(\mathrm{OAc})_{2}$ does not need any exogenous ligand for palladium and any co-scavenger. ${ }^{8}$

3. Oxidation, Reduction and Reductive Self Coupling

Treatment of a suspension of ChrCHO in CCl_{4} with N -bromosuccinimide under UV-irradiation affords after quenching with ammonia at $0^{\circ} \mathrm{C}$ the chromone-carboxamide $\mathbf{3}$; a similar quenching at $40^{\circ} \mathrm{C}$ yields the chroman-2,4-dione 4 . Treatment of $\mathbf{3}$ as well as $\mathbf{4}$ with NaOH followed by acidification produces 3-formyl-4-hydroxycoumarin 5 . ${ }^{9}$

$\mathrm{ChrCH}_{2} \mathrm{OH}$, obtained by reduction of ChrCHO with $9-\mathrm{BBN}$ has been converted to $\mathrm{ChrCH}_{2} \mathrm{Br}$, the phosphorus ylide of which has been reacted with several α, β-unsaturated and $\alpha, \beta, \gamma, \delta$-unsaturated aldehydes to get chromone based retenoids. ${ }^{10} 3$-Formylchromone on being treated with $\mathrm{Zn}-\mathrm{Hg}$ in AcOH under reflux ${ }^{11}$ gives two 1,2-diol products 6 and 7; the major product identical with that obtained along with 3-hydroxymethylchromone and bis(chromon-3yl)methane $\mathbf{8}$ by treating $\mathbf{1}$ with $\mathrm{Zn}-\mathrm{AcOH}^{12}$ is proved to the meso-1,2-diol 6 .

ChrCHO when heated with HMPA in benzene undergoes disproportionation to the alcohol 9 and acid 10. The same reaction in refluxing toluene produces cis-1,2-di(chromon-3-yl)ethylene 11. Pentacarbonyl iron in refluxing toluene brings about reductive dimerization of ChrCHO to the diol 7. $\mathrm{Fe}(\mathrm{CO})_{5}-\mathrm{HMPA}$, converts $\mathbf{1}$ into 3-methylchromone $\mathbf{1 2}$ and the dihydrobischromone $\mathbf{1 3}$ at different ratios dependent on the solvent. The reaction in refluxing benzene gives $\mathbf{1 3}$ as the major product whereas $\mathbf{1 2}$ prevails in refluxing toluene; these two products may sometimes be admixed with trace amounts of $\mathbf{8}$ and bis(chroman-3-yl)methane $\mathbf{1 4} .^{13}$ The formation of these products is schematically shown in Scheme 1.

Scheme 1

4. Radical Addition

Diastereoselective tandem radical addition of an alkyl iodide to 3-formylchromone $\mathbf{1}$ (Scheme 2) has been reported by Zimmerman et al. ${ }^{14}$ The product distribution is dependent on the reaction time and equivalent of the radical initiator. Using 1.0-2.0 equivalent of triethylborane and short reaction time ($<5 \mathrm{~min}$) excellent yield of 15 is obtained. With excess triethylborane and long reaction time the tandem adduct $\mathbf{1 6}$ is produced as a single diasteroisomer in excellent yield. Zinc triflate (0.5 eq) is the preferable Lewis acid catalyst for the reaction. The boron enolate $\mathbf{1 6}$ is remarkably stable and convertible to the alcohol $\mathbf{1 7}$ by treatment with alkaline hydrogen peroxide.

For 15-17: $\begin{aligned} \mathrm{R}=t-\mathrm{Bu}, i-\mathrm{Pr}, \\ \text { c-pentyl, }, \text {-hexyl }\end{aligned}$

17

Scheme 2

5. Nucleophilic Addition

3-Formylchromone $\mathbf{1}$ is a good Michael acceptor towards most, if not all, nucleophiles. Thus, a nucleophile XH_{2} such as an amine, hydrazine, monosubstituted hydrazine, hydroxylamine or an active methyl or methylene compound in conjugation with an appropriate base undergoes Michael addition to $\mathbf{1}$ with concomitant opening of the pyran ring and subsequent recyclization (i.e. domino Michael-retro-Michael-Intramolecular 1,2-addition) giving the hemiacetal \mathbf{A} that
leads to \mathbf{B} by water elimination (Scheme 3-A). The same reaction sequence of a nucleophile YH or ZH representing ROH , RSH etc. with $\mathbf{1}$ gives the intermediate \mathbf{C}. Michael addition of the second nucleophile ZH to the α, β-unsaturated carbonyl functionality of \mathbf{C} with subsequent 1,4 elimination of water gives the final product \mathbf{D} (Scheme 3-B); YH and ZH may be the same or different nucleophiles or two nucleophilic centres in a single reactant.

Scheme 3

5.1. Addition of oxygen and sulfur nucleophiles: protection and deprotection of carboxaldehyde group

Formation of acylal of ChrCHO with acetic anhydride involves reaction steps similar to those as written in Scheme 3-B. ChrCHO reacts readily with $\mathrm{Ac}_{2} \mathrm{O}$ to give $\mathrm{ChrCH}(\mathrm{OAc})_{2}$ in the absence of any Brönsted or Lewis acid catalyst in $[\mathrm{bmim}] \mathrm{BF}_{4}$ ionic liquid. ${ }^{15}$ The said acylal formation is also catalyzed by 1,3 -dibromo- 5,5 -dimethylhydantoin under neutral condition. ${ }^{16}$ Titanium tetrafluoride, ${ }^{17}$ boric acid ${ }^{18}$ and alum ${ }^{19}$ catalyze the above reaction under solvent-free condition at room temperature. Titanium tetrafluoride ${ }^{17}$ also catalyzes deprotection of the gem-diacetate of ChrCHO in water. An efficient and solvent free synthesis of $\mathrm{ChrCH}(\mathrm{OAc})_{2}$ and its deprotection to ChrCHO catalyzed by reusable Envirocat EPZ10R under microwave irradiation has been claimed by Shindalkar et al. ${ }^{20}$ Conversion of ChrCHO into $\mathrm{ChrCH}\left(\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)_{2}$ with mercaptoethanol is catalyzed by silica supported sodium sulphate under solvent free condition. ${ }^{21}$ Indium trifluoride catalyzed protection of the aldehyde group of ChrCHO with MeOH , $\mathrm{PhCH}_{2} \mathrm{OH}$, 2,2-dimethylpropane-1,3-diol, $\mathrm{PhSH}, \mathrm{HSCH}_{2} \mathrm{CH}_{2} \mathrm{SH}, \quad \mathrm{HSCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SH}$ in refluxing toluene is known. ${ }^{22}$ Acetal as well as thioacetal of ChrCHO when refluxed in MeCN $\mathrm{H}_{2} \mathrm{O}(4: 1)$ in the presence of InF_{3} is converted to 3-formylchromone. ${ }^{22}$

The formation of the 1,2,4-dithiazole 24 by heating $\mathbf{1}$ with 2-phenyl-4-dimethylamino-1-thia3 -azabutadiene 18 in a sealed tube has been rationalized in the following way (Scheme 4). ${ }^{23}$ The first step involves thionation of $\mathbf{1}$ to $\mathbf{2 0}$ either through $\mathbf{1 9}$, the [4+2] cycloadduct of $\mathbf{1}$ and thiazadiene 18, or through the reaction of $\mathbf{1}$ with thiobenzamide $\mathbf{2 1}$; the latter may be generated by the hydrolysis of $\mathbf{1 8}$ with a small amount of moisture and further hydrolysis can occur due to in situ generation of water. The second step most likely involves the reaction of 3thioformylchromone 20 with another molecule of 21 followed by oxidative cyclisation. The dithiazole $\mathbf{2 4}$ is indeed formed when ChrCHO is heated with 1 or 2 equivalent of thiobenzamide under identical conditions. Later on several 6 -substituted and 6,7-disubstituted 3formylchromones have been reacted with 2.0 equivalent thiobenzamide in refluxing toluene and the resultant dithiazoles evaluated for their cytotoxic activity against a number of human cancer cell lines. ${ }^{24,25}$

Scheme 4

5.2. Addition of nitrogen nucleophiles

5.2.1. Addition of aliphatic amines. The Schiff base as well as its precursor having respectively general structures \mathbf{B} and $\mathbf{A}(X=\mathrm{NR})$, obtainable from ChrCHO and an aliphatic or aromatic amine RNH_{2} (Scheme 3-A) can function as a ligand for complexation with different metals. Many of these ligands as well as their metal complexes possess some biological activities. $\mathrm{Cu}(\mathrm{II}), \mathrm{Ni}(\mathrm{II})$ and $\mathrm{Co}(\mathrm{II})$ complexes with the chromone-based Schiff bases 26 (prepared from $\mathbf{1}$ and 25) and 27 (Scheme 5) have been subjected to various spectral studies. ${ }^{26}$

Scheme 5

Treatment of the Schiff base 28 with $\mathrm{Me}_{2} \mathrm{SnCl}_{2}, \mathrm{Ph}_{2} \mathrm{SnCl}_{2}$ and $\mathrm{Ph}_{3} \mathrm{SnCl}$ gives respectively the organotin complexes $\mathbf{2 9 a}, \mathbf{b}, \mathbf{c}$ which exhibit electrostatic mode of binding preferably via oxygen of sugar phosphate backbone of DNA helix. ${ }^{27}$

28
29a: $R=M e, X=C I$
b: $\mathrm{R}=\mathrm{Ph}, \mathrm{X}=\mathrm{Cl}$
c: $R=X=P h$

The formation of the pyrrole 30, pyridine 31 and pyranopyridine $\mathbf{3 2}$ by treating ChrCHO with methyl glycinate hydrochloride in refluxing toluene containing $\mathrm{K}_{2} \mathrm{CO}_{3}$ has been rationalized. ${ }^{28}$ The pyrrole $\mathbf{3 0}$ is, however, the sole product when the above reaction is carried out in TMSCl-DMF at $100^{\circ} \mathrm{C} .{ }^{29}$

TMSCl mediated reaction between $\mathbf{1}$ and hetarylmethylamine $\mathbf{3 3}$ strongly depends on their molar ratio. A 1:2 molar ratio of the aldehyde $\mathbf{1}$ and the amine $\mathbf{3 3}$ gives the pyrrole $\mathbf{3 5}$ in 68-91\%
yields whereas a 2:1 molar ratio forms exclusively chromenopyrrole 37 in moderate yields. The reaction of $\mathbf{1}$ with a secondary hetarylmethylamine $\mathbf{3 4}$ leads to $\mathbf{3 6}$ independent of the molar ratio of the reactants. ${ }^{29}$

Het NHR

33: $\mathrm{R}=\mathrm{H}$
34: $\mathrm{R}=$ Alkyl

35: $\mathrm{R}=\mathrm{H}$
36: R = Alkyl

37

For 33-37 : Het = 2-, 4-pyridyl, 2-oxo-4-pyridyl, 2-(pyrid-1-yl)pyrid-4-yl, benzimidazol-2-yl, benzthiazol-2-yl, benzoxazol-2-yl

A hot methanolic solution of furo[3,2-g]chromone-3-carbaldehyde 38 and benzimidazol-2ylmethylamine 39 ($\mathrm{Bim}=$ benzimidazol-2-yl) gives the pyrrole 41 when treated with KOH but 42 with triethylamine, both arising through the Schiff base intermediate 40 (Scheme 6). Several transition metal complexes of these pyrroles possess antiviral activity. ${ }^{30}$

42

Scheme 6

Iodine-catalyzed Pictet-Spengler condensation between ChrCHO and tryptamine yielding 1,2,3,4-tetrahydro- β-carboline $\mathbf{4 3}$ evidently through the Schiff base intermediate $\mathbf{4 2}$ has been reported by Prajapati and Gohain (Scheme 7). ${ }^{31}$

Scheme 7

Synthesis of the propenone 44 from 1 and piperidine has been achieved by conventional method ${ }^{32}$ as well as under ultrasound irradiation. ${ }^{33}$ Ultrasonication of a mixture of $\mathbf{1}$ and pyrrolidine affords the propenone $\mathbf{4 5}$. ${ }^{34}$ Here piperidine or pyrrolidine undergoes aza-Michael addition to $\mathbf{1}$; the resultant adduct by base catalyzed deformylative pyran ring opening gives the propenone 44 or $\mathbf{4 5}$. ${ }^{32}$

5.2.2. Addition of aromatic amines. Ten aryl- and hetaryl- amines have been condensed with 3formylchromone in refluxing water containing $\mathrm{Zn}[\mathrm{L}(-) \text { proline }]_{2}(10 \mathrm{~mol} \%)$ as the catalyst to give the 2-hydroxychromanone $46 .{ }^{35}$ 2-Methoxychromanone derivatives $\mathbf{4 7 - 5 1}$ are obtained by reacting 3 -formylchromone with the appropriate aniline in MeOH-PTS under reflux. ${ }^{36-38}$ X-ray crystallography shows the presence of methoxy groups and intramolecular hydrogen bonding in all these compounds. The compound 49 is stable up to $90^{\circ} \mathrm{C}$ and decomposes in three stages where as $\mathbf{5 1}$ is stable up to $100{ }^{\circ} \mathrm{C}$ and decomposes in five stages. ${ }^{37}$ The compound $\mathbf{4 7}$ decomposes only when heated above $128{ }^{\circ} \mathrm{C} .{ }^{38}$ Some of the chromone based sulphonamides 52, prepared from 3-formylchromones and the appropriate aminobenzenesulfonamide in refluxing EtOH containing catalytic amount of PTS are highly potent and selective inhibitors of alkaline phosphatase. ${ }^{39,40}$ 2-Ethoxychromanone 52d resulting from the reaction of 3-formylchromone and o-aminobenzenesulfonamide is always admixed with the benzothiadiazine derivative 53. X-ray study reveals that one water molecule of crystallization is present in the crystal of the compound 52a $\left(\mathrm{R}^{1}=\mathrm{H}\right) .{ }^{39}$ The compounds 52a-c $\left(\mathrm{R}^{1}=\mathrm{H}\right)$ possess excellent bovine carbonic acid anhydrase (BCA) inhibitory activities. ${ }^{40}$ Kamal et al. ${ }^{41}$ have reported reductive amination of ChrCHO with several aromatic amines $\left(\mathrm{ArNH}_{2}\right)$ to $\mathrm{ChrCH}_{2} \mathrm{NHAr}$ using sodium cyanoborohydride in methanol with a catalytic amount of acetic acid.

The Schiff bases prepared from 1 and several arylamines have been evaluated for their antibacterial activities. ${ }^{42-44}$ The Schiff base $\mathbf{5 4}$ has been prepared from $\mathbf{1}$ and 4 -aminoantipyrine by conventional method ${ }^{45}$ as well as in an ionic liquid. ${ }^{46}$ Many other hetarylamines such as 1,3-diaryl-5-aminopyrazole 55, ${ }^{47}$ 3-aminoquinazolone 56, ${ }^{48}$ thiazolylcoumarin 57, ${ }^{49} 4$-amino-1,2,4triazole $\mathbf{5 8}^{50}$ and aminophenazone $\mathbf{5 9}^{51}$ have been condensed with ChrCHO to give the
corresponding Schiff bases. Pandey et al. ${ }^{52}$ made a comparative study of conventional and microwave assisted synthesis of Schiff bases of ChrCHO.

46

47: $\mathrm{Ar}=$ phenyl
48: $\mathrm{Ar}=3$-carboxyphenyl
49: $\mathrm{Ar}=5$-carboxy-2-chlorophenyl
50: $\mathrm{Ar}=3,4,5$-trimethoxyphenyl

52a: $\mathrm{R}^{2}=p-\mathrm{SO}_{2} \mathrm{NH}_{2}$
52b: $\mathrm{R}^{2}=p-\mathrm{SO}_{2} \mathrm{NH}-\mathrm{Hetaryl}$
52c: $\mathrm{R}^{2}=m-\mathrm{SO}_{2} \mathrm{NH}_{2}$
52d: $\mathrm{R}^{2}=\mathrm{o}-\mathrm{SO}_{2} \mathrm{NH}_{2}$

53
For 52a-d and 53:
$R^{1}=H, E t, B r, F$

3-Formylchromones as well as Schiff bases obtainable therefrom can function as ligands towards many metal ions. The complexes of $\mathrm{Mn}(\mathrm{II}), \mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II})$ and Zn (II) with unsubstituted 4-oxo-4H-1-benzopyran-3-carboxaldehyde $\mathbf{1}$ are polycrystalline compounds with various formulae and different ratios of metal to ligand. ${ }^{53}$ The Schiff base obtainable from 56 functions as a neutral bidentate ligand towards $\mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II}), \mathrm{Zn}(\mathrm{II}), \mathrm{Pd}(\mathrm{II})$ and $\mathrm{Cd}(\mathrm{II})$, quinazolone carbonyl oxygen and azomethine nitrogen being involved in the corordination. ${ }^{48}$ The Schiff base corresponding to hetaryl amine 57 coordinates as a neutral bidentate ligand with oxovanadium(IV), $\mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II})$ or $\mathrm{Pd}(\mathrm{II})$ ions. ${ }^{49}$ The Schiff bases derived from 3formylchromones and aminophenazone 59 as well as their $\operatorname{Ln}(I I I)$ complexes can bind to DNA via an intercalation binding mode, the complexes having better DNA binding affinity than the free ligand alone. ${ }^{51}$ The Schiff base 54 in its solid state as well as in solution has E stereochemistry around its azomethine double bond and S-cisoid conformation for its α, β unsaturated imine functionality. It functions as a fluorescent probe for Fe^{3+} in acetonitrile-water (1:9 by volume); while complexing with $\mathrm{Fe}(\mathrm{III})$ it assumes a conformation having S-transoid for $\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{N}$ and Z-stereochemistry around $\mathrm{CH}=\mathrm{N}$ so that the metal can bind with azomethine nitrogen, chromone carbonyl oxygen and pyrazolinone oxygen. ${ }^{54}$ Same is the case for the condensate from 1 and 2-aminothiazole; it assumes the conformation as shown in $\mathbf{6 0}$ so as to function as an NNO coordinating ligand for several metal ions. Its $\mathrm{Cu}(\mathrm{II})$ complex possesses tetrahedrally distorted square planar geometry whereas $\mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II})$ and $\mathrm{Zn}(\mathrm{II})$ complexes show distorted tetrahedral geometry and VO (IV) complex shows square pyramidal geometry. ${ }^{55}$ The azo-Schiff base 61 forms complexes with VO (IV), $\mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II}), \mathrm{Cu}(\mathrm{II})$ and $\mathrm{Zn}(\mathrm{II})$; octahedral geometry is proposed for all those complexes from their electronic spectra and magnetic
susceptibilities. The conductance data indicate non-electrolytic nature of the complexes except the $\mathrm{VO}(\mathrm{IV})$ one which is electrolytic in nature. ${ }^{56} \mathrm{Cu}$ (II) complexes of $\mathbf{6 2}$ and $\mathbf{6 3}$ having metal to ligand ratio as 1:2 have been subjected to rigorous spectral analysis. ${ }^{57}$

$58 \quad 59$

62
$61 \quad \mathrm{X}=\mathrm{H}, \mathrm{SH}, \mathrm{COOH}$
63
1

E

I

Scheme 8

An aryl- or hetaryl- amine of general structure \mathbf{E} undergoes [3+3] annulation with α, β unsaturated aldehyde functionality of $\mathbf{1}$ in TMSCl-DMF promoted reactions to give ultimately either the chromenopyridine \mathbf{H} or 3-(2-hydroxybenzoyl)pyridine \mathbf{I} or both (Scheme 8). Here the
initially formed condensate having a structure akin to the Schiff bases \mathbf{F} undergoes electrocyclization to \mathbf{G}, the latter aromatizing to \mathbf{H} by air oxidation and to \mathbf{I} by pyran ring opening.

TMSCl mediated reaction of $\mathbf{1}$ with aniline or substituted aniline in DMF at $100{ }^{\circ} \mathrm{C}$ in a sealed tube produces either 3-(2-hydrobenzoyl)quinoline $\mathbf{6 4}$ or the chromenofused pyridine $\mathbf{6 5}$ depending on the structure of the starting aniline. ${ }^{58,59}$ Substituents in aniline molecule that withdraw electron from the ortho-position or increase electron density on nitrogen favour the formation of 65 ; on the contrary, electron rich anilines give only 64 . 4-Chloroaniline gives with $\mathbf{1}$ both 64 and $65 .{ }^{59}$ Similar reactions of 3-formylchromones with more than a dozen of aminoheterocycles promoted by either AcOH or PTS or TMSCl leading to only the heterofused pyridine \mathbf{H} have been well documented in a Tetrahedron Report. ${ }^{2}$ Iodine catalyzed condensation of ChrCHO with 1,3-disubstituted 5-aminopyrazole gives the pyrazolo[3,4-b]pyridine $\mathbf{6 6}\left(\mathrm{R}, \mathrm{R}^{1}\right.$ $=$ alkyl, aryl).60 Microwave irradiated condensation of 1 with 2-aminopyridine $67\left(\mathrm{R}^{1}, \mathrm{R}^{2}=\mathrm{H}\right.$, Me, Br) in MeCN - PTS gives 68; indium triflate catalyzed cyclization of the latter with N aroylpropargylamine $69(\mathrm{Ar}=\mathrm{Ph}$, substituted phenyl, naphthyl etc.) under microwave irradiation furnishes the 2,10 -dihydro- $4 \mathrm{a} H$-chromeno[3,2-c]pyridine 70 which has been evaluated for its preliminary in vitro and in vivo activity against MTB and MDR-TB. ${ }^{61}$

64

67

65

68

66

69

70
5.2.3. Addition of aryl- and hetaryl- amine having a second nucleophilic group attached to the ring. Dibenzotetraaza[14]annulene (DBTAA) 71 ${ }^{6,62}$ has been recently synthesized by reacting 1 with o-phenylenediamine in an organised aqueous medium in the presence of a surfactant (viz. DBSA) as catalyst and iodine as co-catalyst. ${ }^{63}$ Liquid crystalline DBTAA derivative as $\mathbf{7 2}$ bearing four 3,7-dimethyloctoxy peripheral tails ${ }^{64}$ and its chiral variant 73 bearing four (S)- or (R)-enantiomeric 3,7-dimethyloctoxy groups have been prepared by
condensing 1 with the appropriate 4,5 -disubstituted 1,2 -diaminobenzene in methanol. ${ }^{65,66}$ DBTAA based lacunar type receptors 74-76 have been prepared by alkylation of both phenolic OH groups using the appropriate aliphatic dibromide or ditosylate. ${ }^{67}$ Esterification of 71 with octane-1,8-dicarboxylic acid and benzene-1,4-diacetic (or di-n-propanoic acid) gives respectively 77 and 78, 4-dimethylaminopyridine (DMAP) being used as an acylation catalyst and $N, N-$ diisopropylcarbodiimide (DIC) as a dehydrating agent. ${ }^{68}$

71: $R=X=H$
72: $\mathrm{R}=\mathrm{H} ; \mathrm{X}=\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
73: $\mathrm{R}=\mathrm{H} ; \mathrm{X}=\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
74: $\mathrm{R}-\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{5} ; \mathrm{X}=\mathrm{H}$
75: $\mathrm{R}-\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{10} ; \mathrm{X}=\mathrm{H}$
76: $\mathrm{R}-\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}-\left(p-\mathrm{C}_{6} \mathrm{H}_{4}\right)-\mathrm{OCH}_{2} \mathrm{CH}_{2}-\mathrm{OCH}_{2} \mathrm{CH}_{2}-$
77: $\mathrm{R}-\mathrm{R}=\mathrm{OC}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CO} ; \mathrm{X}=\mathrm{H}$
78: $\mathrm{R}-\mathrm{R}=\mathrm{OC}-\left(\mathrm{CH}_{2}\right)_{\mathrm{n}}-\left(\mathrm{p}-\mathrm{C}_{6} \mathrm{H}_{4}\right)-\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{CO}-; \mathrm{n}=1$ or $2 ; \mathrm{X}=\mathrm{H}$

79

80

83

84

85

The annule 71 on digestion in acetic acid or oxidation with chloranil gives the chromonylbenzimidazole (bzch) 79. A mononuclear rhenium(I) complex cuplex fac-
$\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{bzchCl}\right]$ is formed by treating $\left[\mathrm{Re}(\mathrm{CO})_{5} \mathrm{Cl}\right]$ with bzch. ${ }^{69}$ Grinding at ambient temperature a mixture of $\mathbf{1}$ and benzo $[c][1,2,5]$ thiadiazole-4,5-diamine $\mathbf{8 0}$ with either xanthan sulphuric acid (XSA) ${ }^{70}$ or cellulose sulphuric acid (CSA) ${ }^{71}$ without any solvent affords the fused benzimidazole 81. ChrCHO with 4-(4-chlorophenyl)-1,6-diamino-2-oxopyridine-3,5dicarbonitrile $\mathbf{8 2}$ in hot pyridine gives the pyrido[1,2-b][1,2,4] triazepin $\mathbf{8 3}$. ${ }^{72}$ An Indian group ${ }^{73}$ reports condensation of $\mathbf{1}$ with 3 -alkyl(or aryl)-4-amino-5-mercapto-s-triazole 84 in the presence PTS to 4,5-dihydro-3-alkyl(or aryl)-s-triazolo[3,4-b][1,3,4]thiadiazole $\mathbf{8 5}$.
5.2.4. Addition of hydrazine. The hydrazone 86 and acylhydrazone 87 can function as ligands to coordinate with metal ions; these hydrazones and their metal complexes may have some biological activities. As for example, the hydrazone $\mathbf{8 6}(\mathrm{R}=\mathrm{Ph})$ is a neutral bidentate ligand coordinating through its azomethine nitrogen and carbonyl oxygen with tripositive Fe , dipositive $\mathrm{Fe}, \mathrm{Ni}, \mathrm{Cu}$ and Pd ions. ${ }^{73}$ DNA binding properties of the ligand $87(\mathrm{R}=\mathrm{Ph})$ and its complexes with several metals have been studied. ${ }^{74,75}$ Many members of $\mathbf{8 7}(\mathrm{R}=$ mono- or disubstituted phenyl) have been evaluated against cyanobacteria fructose-1,6-biphosphatase and sedoheptulose-1,7-biphosphatase. ${ }^{76,77}$ Chromone-3-carboxaldehyde isonicotinylhydrazone 87 (R $=4$-pyridyl) and lanthanide ions form mononuclear 10-cordinate complexes with 1:2 metal to ligand stoichiometry. ${ }^{78}$ Acylhydrazone $\mathbf{8 8}\left(R^{1}=R^{2}=H ; R^{1}-R^{2}=\right.$ bond) has been prepared by reacting the appropriate 6 -oxopyridazine-3-carboxylic acid hydrazide with $\mathrm{ChrCHO} .{ }^{79}$ The thiosemicarbazone $\mathbf{8 9}$ forms complexes with $\mathrm{Cu}(\mathrm{II}), \mathrm{Zn}(\mathrm{II}), \mathrm{Ni}(\mathrm{II})$ nitrates having 1:1 metal to ligand stoichiometry; these complexes bind to calf thymus DNA via an intercalation binding mode. ${ }^{80,81}$ Cytotoxicity activity and DNA binding of the semicarbazone $\mathbf{8 9}$ itself have also been studied. ${ }^{82} \mathrm{PhNHNHCOCONHNH}_{2}$, obtainable by treating diethyl oxalate sequentially with phenylhydrazine and hydrazine has been condensed with ChrCHO to form the acylhydrazone $\mathbf{9 0}$. An octahedral geometry for its $\mathrm{Co}(\mathrm{II}), \mathrm{Cu}(\mathrm{II})$ and $\mathrm{U}(\mathrm{VI}) \mathrm{O}_{2}$ and a tetrahedral structure for its $\mathrm{Ni}(\mathrm{II}), \mathrm{Cd}(\mathrm{II}), \mathrm{Zn}(\mathrm{II})$ and $\mathrm{Hg}(\mathrm{II})$ complexes have been proposed. The ligand 90 and its metal complexes have been screened against some gram (+)ve and gram (-)ve bacteria. ${ }^{83}$ The hydrazone 86 ($\mathrm{R}=3$-chlorophenyl, ${ }^{84}$ 2,4-dichlorophenyl, ${ }^{85}$ fluorophenyl, ${ }^{86}$ 2-pyridylphenyl ${ }^{87}$) have been converted to the corresponding 4-salicyloyl-1-arylpyrazole 91. The pyrazole $91(\mathrm{Ar}=$ Ph) on treatment with O, O-diethylphosphochloridothiate gives the biologically active organophosphorus compound $92 .{ }^{88}$ The ketoxime of 91 on treatment with phosphorus oxychloride undergoes Beckmann rearrangement and cyclization to the benzoxazole 93 . ${ }^{84-87}$ The hydrazone 94 in the presence of iodobenzene diacetate $\left[\mathrm{PhI}(\mathrm{OAc})_{2}\right]$ on solvent free microwave irradiation undergoes oxidative cyclization to 1,2,4-triazolo[4,3-a]-1,8-naphthyridine 95. ${ }^{89}$ Azomethine functionality in acylhydrazone $87(\mathrm{R}=$ aryl or hetaryl) behaves similarly as that in a Schiff base towards mercaptoacetic acid and chloroacetyl chloride to give the corresponding thiazolidine and β-lactam, respectively. ${ }^{90,91}$ The phosphorohydrazone 96 exhibits high in vitro antileukemic activity. ${ }^{92}$

86

87

89

90
91: $\mathrm{R}=\mathrm{H}$
92: $\mathrm{R}=\mathrm{P}(=\mathrm{S})(\mathrm{OEt})_{2}$

93

94

96

101

Scheme 9. Reagents and conditions: (i) 1 eq. $\mathrm{ChrCHO}, \mathrm{EtOH}, \Delta$; (ii) 2 eq. $\mathrm{ChrCHO}, \mathrm{EtOH}, \Delta$; (iii) $\mathrm{HP}(=\mathrm{O})(\mathrm{OEt})_{2}, \mathrm{EtOH}, \Delta$.

An ethanolic solution of phosphonic dihydrazide 97 gives the hydrazones 98 and 99 with 1 and 2 equivalents of ChrCHO , respectively. Diethylphosphite converts 98 to the 1,2,3,4,5triazadiphosphinane $\mathbf{1 0 1}$ most likely via the intermediate $\mathbf{1 0 0}$ formed by addition of diethyl phsphite to the azomethine double bond of $\mathbf{9 8}$ followed by cyclization whereas it simply adds to 99 giving 102 (Scheme 9). ${ }^{93}$
5.2.5. Reaction with hydroxylamine. Intricacy of the reaction between 1 and hydroxylamine has been discussed earlier. ${ }^{5}$ A later detailed study of the reaction by Sosnovskikh et al. ${ }^{94}$ gives interesting results (Scheme 10). The initially formed aldoxime $\mathbf{1 0 3}$ when treated with alkaline hydroxylamine gives the chromane-2,4-dione 106 via the isolable isoxazolocoumarin intermediate $\mathbf{1 0 5}$. Here the O-N bond in 105 is reduced by hydroxylamine to form 106. The amide $\mathbf{1 0 4}$ obtainable from $\mathbf{1}$ is also transformed into $\mathbf{1 0 6}$ under similar conditions. Reflux of $\mathbf{1 0 6}$ in acetic anhydride gives an E-, Z-isomeric mixture of the monoacetate 107 . The chromanedione $106(\mathrm{R}=\mathrm{H}, \mathrm{Me})$ is formed in $46-51 \%$ yield upon reflux of an ethanolic solution of $\mathbf{1}(\mathrm{R}=\mathrm{H}$, $\mathrm{Me})(1 \mathrm{eq})$ with aq $\mathrm{NH}_{2} \mathrm{OH} . \mathrm{HCl}(8 \mathrm{eq})$ in the presence of $\mathrm{NaOH}(14 \mathrm{eq})$ for 3 h , no intermediate as $\mathbf{1 0 4}$ and $\mathbf{1 0 5}(\mathrm{R}=\mathrm{H}, \mathrm{Me})$ being isolated. The reaction of $\mathbf{1}(\mathrm{R}=\mathrm{Cl})$ with hydroxylamine under the same conditions furnishes a mixture of $\mathbf{1 0 6}$ and $\mathbf{1 0 5}$ in 7:3 proportion. ${ }^{94}$ Zirconium oxychloride $\left(\mathrm{ZrOCl}_{2} .8 \mathrm{H}_{2} \mathrm{O}\right)$ in aqueous acetone (1:1) can regenerate 3 -formylchromone from its aldoxime 103. ${ }^{95}$

Scheme 10. Reagents in hot conditions: (i) $\mathrm{NH}_{2} \mathrm{OH} . \mathrm{HCl}$, EtOH ; (ii) $\mathrm{NH}_{2} \mathrm{OH} . \mathrm{HCl}$, pyridinewater; (iii) $\mathrm{NH}_{2} \mathrm{OH} . \mathrm{HCl}, \mathrm{NaOH}, \mathrm{EtOH}, \mathrm{H}_{2} \mathrm{O}$; (iv) $\mathrm{Ac}_{2} \mathrm{O}$.
5.2.6. Reaction with guanidine. Reaction of $\mathbf{1}$ with cyanoguanidine $\mathbf{1 0 8}$ or metformine $\mathbf{1 0 9}$ gives biologically important pyrimidine $\mathbf{1 1 0}$ or $\mathbf{1 1 1} .^{88}$

108

110: $X=$ NHCN
111: $X=\mathrm{NHC}(=\mathrm{NH}) \mathrm{NMe}_{2}$

5.3. Addition of phosphorus nucleophiles

Ammonium metavanadate $\left(\mathrm{NH}_{4} \mathrm{VO}_{3}\right)$ catalyzes addition of triethyl phosphite to ChrCHO at room temperature under solvent free conditions yielding the α-hydroxyphosphonate derivative 112. ${ }^{96}$ Potassium dihydrogen phosphate ${ }^{97}$ and sulfamic acid ${ }^{98}$ are also effective catalysts for the solvent free ultrasound irradiated synthesis of $\mathbf{1 1 2}$ from the above said two reactants.

112

5.4. Addition of carbon nucleophiles

5.4.1. Addition of active methyl and acyclic methylene compounds. The aryl(or hetaryl) methyl ketone \mathbf{J} condenses with 3-formylchromone 1 under various conditions to give the chalcone K (Scheme 11). Several 2- or 4- substituted acetophenones have been condensed with ChrCHO in ethanol containing either pyridine ${ }^{99}$ or sodium hydroxide ${ }^{100}$ or under solvent free condition. ${ }^{101}$ The hetaryl methyl ketones 113-116 have been used for preparation of chalcones in refluxing ethanol containing pyridine or water containing $\mathrm{Zn}(\mathrm{L}-\text { proline })_{2}{ }^{102,103}$ Synthesis of chalcones by Claisen-Schmidt condensation of ChrCHO with ketones using ecofriendly nontoxic bismuth(III) chloride catalyst under solvent free conditions is also reported. ${ }^{104}$ Many of the chalcones and the products obtained therefrom by treatment with $\mathrm{NH}_{2} \mathrm{NHR}(\mathrm{R}=\mathrm{H}, \mathrm{Ph})$ have been screened against many gram $(+)$ ve and (-)ve bacteria and fungi. ${ }^{101,103 d}$ Gold(III) mediated condensation of $\mathbf{1}$ with aryl methyl ketone to produce the 1,5 -diketone $\mathbf{1 1 8}$ admixed with a little amount of the chalcone $\mathbf{1 1 7}$ deserves special mention. Here the initially formed condensate $\mathbf{1 1 7}$ functions as a Michael acceptor towards a second molecule of aryl methyl ketone to give the adduct 118. The best result is obtained when the reaction is conducted in MeCN at ambient temperature using $\mathrm{AuCl}_{3}(5 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(15 \mathrm{~mol} \%)$ and aryl methyl ketone (2.2 eq). ${ }^{105}$

Scheme 11

113: $R=M e, E t$

116: $X=H, O H$

114

117

115

118

Interaction of 6-chloro-3-formylchromone with the pyridazinone 119 (1:1) in NaOEtEtOH gives the corresponding chalcone $\mathbf{1 2 0}$ whereas the above reaction when carried out in EtOH containing piperidine gives the pyrano[2,3-c]pyridazone 121 via an intramolecular 1,4addition in the compound $\mathbf{1 2 0}$ (Scheme 12). ${ }^{106}$

Scheme 12

The methyl group directly linked to a very few aromatic or heterocyclic rings is sufficiently active to undergo condensation with ChrCHO giving $\mathrm{ChrCH}=\mathrm{CH}-\Phi(\Phi=\mathrm{Ar}$, Het). This aspect mainly studied before 2000 has been the subject matter of seven publications well comprehended in a recent review. ${ }^{3}$ ChrCHO has been reacted with methoxy(methyl)pentacarbonyltungsten
carbene complex $\mathbf{1 2 2}$ in the presence of TMSCl and triethylamine; the carbanion generated from the carbene complex $\mathbf{1 2 2}$ condenses with the pyrylium salt generated from $\mathbf{1}$ and TMSCl to give the benzopyran Fischer carbene complex 123. ${ }^{107}$

122

123

Several new catalysts have been used for the Knoevenagel condensation of 1 with active methylene compounds. As for example, ChrCHO has been condensed with $\mathrm{XCH}_{2} \mathrm{CN}(\mathrm{X}=\mathrm{CN}$, $\mathrm{COOH}, \mathrm{COOEt}, \mathrm{CONH}_{2}$) under polyethylene glycol-400 (PEG-400) catalysis and microwave irradiation. ${ }^{108}$ Alum $\left[\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}\right]$ mediated solvent free microwave induced clean process for preparation of α, β-unsaturated carboxylates is known, only $10 \mathrm{~mol} \%$ of alum being sufficient for optimum yields. ${ }^{109}$ Knoevenagel condensation of $\mathbf{1}$ with ethyl cyanoacetate, Meldrum's acid etc. using biosupported cellulose sulphuric acid (CSA) in the solid state under solvent free condition is reported. ${ }^{110}$ The condensate 124 resulting from 1 and $\mathrm{XCH}_{2} \mathrm{Y}(\mathrm{X}=\mathrm{Y}=\mathrm{COMe} ; \mathrm{X}=$ $\left.\mathrm{Y}=\mathrm{CO}_{2} \mathrm{Et} ; \mathrm{X}=\mathrm{CN}, \mathrm{Y}=\mathrm{CO}_{2} \mathrm{Et} ; \mathrm{X}=\mathrm{COPh}, \mathrm{Y}=\mathrm{CO}_{2} \mathrm{Et}\right)$ undergoes chemoselectively reductive dimerisation to $\mathbf{1 2 5}$ with Sm in THF containing aq $\mathrm{NH}_{4} \mathrm{Cl}$ whereas Zn under similar conditions brings about chemoselective reduction of exocyclic olefinic bond. ${ }^{111} E$-(chromon-3-yl)acrylic acid $\mathbf{1 2 6}$ obtained by conventional pyridine catalyzed Knoevenagel condensation of $\mathbf{1}$ with malonic acid ${ }^{112,113}$ has been subjected to molecular hybridization with isoniazide $\mathbf{1 2 8}$ using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDCI) and 1-hydroxybenztriazole (HOBt) under ultrasonication to afford the hydrazide $\mathbf{1 2 7}{ }^{114}$ A mixture of allyl bromide and zinc dust in THF containing saturated $\mathrm{NH}_{4} \mathrm{Cl}$ converts ChrCHO to the homoallylic alcohol 129; the latter when heated with formalin in AcOH containing a few drops of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is reconverted to 3formylchromone 1. Hydroxylamine converts $\mathbf{1 2 9}$ to the dioxime $\mathbf{1 3 0}$ (diastereoisomeric mixtures). ${ }^{115}$

3-Formylchromone 1 when reacted with the substituted acetic acid $\mathbf{1 3 1}$ under Perkin reaction condition gives the pyranopyran 132 that on treatment with $\mathrm{XOH}(\mathrm{X}=\mathrm{H}$ or alkyl) in the presence of PTS affords $\mathbf{1 3 3}$ (Scheme 13). The compounds $\mathbf{1 3 2}$ and $\mathbf{1 3 3}$ when heated in aqueous acid at elevated temperature rearrange to $\mathbf{1 3 4}$ that can be alkylated to $\mathbf{1 3 5}$ by an alkanol in the presence of PTS. ${ }^{116}$ Another publication reveals the formation of small amounts of 5-(2-hydroxybenzoyl)pyran-2-one $\mathbf{1 3 6}$ along with the major product $\mathbf{1 3 2}$ in the above mentioned condensation of $\mathbf{1}$ with 131 under MWI. ${ }^{117}$ Recently several p-substituted phenylacetic acids have been condensed with 3-formylchromones in $\mathrm{Ac}_{2} \mathrm{O}-\mathrm{AcONa}$ under reflux to give pyranochromone 132. ${ }^{3}$ Coumarin-3- or 4-acetic acid similarly condenses with $\mathbf{1}$ giving $132(\mathrm{R}=$ coumarin-3- or 4-yl). ${ }^{118}$

For 131-136: $\mathrm{R}=\mathrm{Z}$
$\mathrm{Z}=$ bond, S , Se, phenylsulfanyl, phenylselanyl
$\mathrm{R}^{\prime}=\mathrm{H}, \mathrm{Me}, \mathrm{Br}, \mathrm{NO}_{2}$

Scheme 13. Reagents and conditions: (i) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{AcOK}, \Delta$; (ii) $\mathrm{XOH}(\mathrm{X}=\mathrm{H}$, Alkyl), PTS; (iii) $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}^{+}, \Delta$; (iv) YOH (Y = alkyl), PTS; (v) Ac $\mathrm{A}_{2} \mathrm{O}, \mathrm{AcOK}$, MWI.

The reaction of $\mathbf{1}$ with phenylacetic acid when conducted in the presence of t - BuOK under MWI, however, takes a different course; here initial condensation followed by decarboxylation produces only the E-isomeric form of 3-styrylchromone (E-137). ${ }^{119}$ Z-3-Styrylchromone (Z-137) can be conveniently prepared by reacting ChrCHO with benzylic ylid. ${ }^{119}$ Patonay et al. ${ }^{120}$ prepared the $\boldsymbol{E}-\mathbf{1 3 7}$ by exposing a mixture of $\mathbf{1}$ and phenylmalonic acid on solvent free NaOAc support to MWI. The compounds $\boldsymbol{E} \mathbf{- 1 3 7}$ and $\mathbf{1 3 9}$ are obtained by treating $\mathbf{1}$ in dry pyridine-
${ }^{t} \mathrm{BuOK}$ with phenylacetic acid and E-styrylacetic acid 138, respectively. ${ }^{121}$ A dichloromethane solution of dimethyldioxirane (DMD) brings about epoxidation of 3-styrylchromone with complete regio- and diastereo-selectivity, E-isomer giving the epoxide $\mathbf{1 4 0}$ and Z-isomer the epoxide 141; On the contrary, treatment with $\mathrm{H}_{2} \mathrm{O}_{2}$ under alkaline condition affords the corresponding 2,3-epoxy-3-styrylchromone. ${ }^{120} \mathrm{ChrCHO}$ with benzisoxazole-3-acetic acid under MWI gives E-dihetaryl substituted ethene 142. In its reaction with urea, thiourea and guanidine, the α, β-unsaturated carbonyl functionality of $\mathbf{1 4 2}$ is involved, the hetarylvinyl moiety remaining unaffected. ${ }^{122}$ (p-Nitrophenyl)(tetrazol-5-yl)methane with $\mathbf{1}$ in dry pyridine gives the Z-isomer of trihetarylethene 143 ; similar condensation of 144 with 1 gives 145 having Z-stereochemistry around its exocyclic olefinic bond. Both the chromone based compounds $\mathbf{1 4 3}$ and $\mathbf{1 4 5}$ have been assayed against gram (+)ve and (-)ve bacteria. ${ }^{123}$

E-137

139

Z-137

140

138

141

142

144

143

145

Heating 3-formylchromone $\mathbf{1}$ with a variety of imidazole (146, $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$) and benzimidazole $146\left(\mathrm{R}^{1}-\mathrm{R}^{2}=-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}-\right.$) in DMF in the presence of TMSCl as a promoter and scavenger gives the midazole[1,2-a]pyridine 148. The reaction goes via an intermediate having a structure akin to $\mathbf{1 4 7}$ that by a domino aza-Michael - retro-Michael gives $\mathbf{1 4 8}$ (Scheme 14). ${ }^{124}$ The pyrido $[1,2-a]$ benzimidazole $148\left(\mathrm{R}=\mathrm{CN} ; \mathrm{R}^{1}-\mathrm{R}^{2}=-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}-\right)$ is also obtained by reacting 1 with benzimidazole-2-acetonitrile under Perkin condition. ${ }^{3}$ TMSCl mediated cyclization of 1 with pyrimidinones 149 and 150 yields the pyridopyrimidinones 151 and $\mathbf{1 5 2}$, respectively. ${ }^{125}$

For 146-148: $\mathrm{R}=\mathrm{CN}, \mathrm{COPh}, \mathrm{CONH}_{2}, \mathrm{CONHPh}, \mathrm{CSNH}_{2}$, $\mathrm{SO}_{2} \mathrm{Me}, \mathrm{SO}_{2} \mathrm{Ph}, \mathrm{Ph}, \mathrm{SCH}_{2} \mathrm{COOH}, \mathrm{Cl}, \mathrm{NHCOPh}$, $\mathrm{OPh}, \mathrm{H}, \mathrm{OC}^{-</ l}$ etc. $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H} ; \mathrm{R}^{1}-\mathrm{R}^{2}=-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}-$

Scheme 14

149

151

150

152
For 149 and 151: $\mathrm{R}=\mathrm{H}, \mathrm{Cl}, \mathrm{CN}, \mathrm{CH}_{2} \mathrm{COOH},\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}$,

For 150 and 152: $\mathrm{R}=\mathrm{H}, \mathrm{CN}, \mathrm{CO}_{2} \mathrm{Me}, \mathrm{Cl}, \mathrm{SMe}, \mathrm{Ph}, 2$-pyridyl etc.
$R^{1}=R^{2}=M e, \quad R^{1}-R^{2}=\left(\mathrm{CH}_{2}\right)_{4}$;
$R^{1}=\mathrm{COOH}, R^{2}=\mathrm{Me}$

A few acyclic compounds having two active methylene groups have been condensed with $\mathbf{1}$. As for example, dimethyl acetonedicarboxylate functions as a 1,3-C,C-binucleophile in condensing with $\mathbf{1}$ in THF under DBU catalysis to give the benzophenone $\mathbf{1 5 3}$. ${ }^{126}$ Wittig reaction of the ylid 154 with 1 in THF containing NaH gives $155 .{ }^{127}$ The compound 156, obtained by condensing 1 with triethyl 3-methylphosphocrotonate under Wittig-Horner-Emmons reaction conditions, is sequentially subjected to reduction with LAH , oxidation with MnO_{2}, Wittig
reaction with (methoxycarbonylmethyl)triphosphonium bromide and hydrolysis by LiOH to give the benzophenone based retinoid $157 .{ }^{128}$ Acetoacetanilide functions as a 1,3-C,N-binucleophile towards 1 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing $\mathrm{FeCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}, \mathrm{Cs}_{2} \mathrm{CO}_{3}$ and MgSO_{4} so as to form the pyridine 158. ${ }^{129}$

153

For 154 and 155: $\mathrm{R}=\mathrm{OMe}, \mathrm{OEt}, \mathrm{OPr}^{i}$,

$$
\mathrm{NH}_{2}, \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{4}, \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{5}
$$

$\begin{aligned} & \text { For } 154 \text { and 155: } \mathrm{R}=\mathrm{OMe}, \mathrm{OEt}, \mathrm{OPr}^{i}, \\ & \mathrm{NH}_{2}, \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{4}, \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{5}\end{aligned}$

156

157

158
5.4.2. Addition of cyclic active methylene compounds. A methylene group incorporated in some cyclic, mostly heterocyclic, systems \mathbf{L} is sufficiently active so as to condense with 3formylchromone $\mathbf{1}$ giving the product \mathbf{M} (Scheme 15). A number of such cyclic active methylene compounds that have been condensed with 1 and the condensation conditions with the appropriate references are given in Table 1.

Scheme 15

Table 1. Condensation of $\mathbf{1}$ with the compound \mathbf{L}
Active methylene compound $\mathbf{L} \quad$ Reaction conditions ${ }^{\text {ref. }}$
(a) gl. $\mathrm{AcOH}, \mathrm{AcONa}, \Delta^{130}$

159
(b) Zn nanobelts, Solvent free, $\Delta^{131 \mathrm{a}}$
(c) 1,13,3-tetramethyl-guanidine lactate
[TMG][Lac] ionic Liquid, solvent free, ultrasonication ${ }^{132}$
(d) PEG-400, MWI ${ }^{108}$

Table 1. Continued

Active methylene compound \mathbf{L}	Reaction conditions ${ }^{\text {ref }}$.
R	(a) $\mathrm{NaHCO}_{3} / \mathrm{MWI}^{133 \mathrm{a}}$
$O^{\text {R }}$	(b) Solid state, $\Delta^{133 b}$
	AcOH, Δ or MWI or ultrasonication ${ }^{134}$
161	
	$\mathrm{AcOH}, \mathrm{AcONa}{ }^{135}$
	$\mathrm{AcOH}, \mathrm{AcONa}, \Delta^{136}$
	(a) PEG-400/ MWI ${ }^{108}$
	(b) solid state, Δ^{137}
	(c) solid state, MWI ${ }^{138}$
0	(d) cellulose sulphuric acid (CSA), solvent free ${ }^{110}$
164	(e) 1-Benzyl-3-methylimidazolium chloride [bnmim] Cl ionic liquid, room temp. ${ }^{139}$
	PEG-400/MWI ${ }^{108}$
165	
	$\mathrm{AcOH}, \Delta^{140-142}$
$\begin{aligned} & \mathrm{X}=\mathrm{S}, \mathrm{NH} ; \\ & \mathrm{Y}=\mathrm{O}, \mathrm{~S} ; \\ & \mathrm{R}=\mathrm{H}, \mathrm{Ar} \end{aligned}$	

Table 1. Continued

Active methylene compound \mathbf{L}	Reaction conditions ${ }^{\text {ref }}$.

174

175

176

The compound $166\left(\mathrm{X}=\mathrm{O}, \mathrm{S} ; \mathrm{Y}=\mathrm{O} ; \mathrm{R}=\mathrm{CH}_{2} \mathrm{Ar}\right),{ }^{144}$ naphtho[2,1-b]furan-3-(or 2)-ones ${ }^{145}$ and 7-methoxychromanone ${ }^{146}$ have been condensed with 1 by one or other method mentioned in Table 1. 8-Allyl-3-formylchromone like its 8 -unsubstituted analogue 1 has been condensed with hippuric acid in $\mathrm{AcOH}-\mathrm{AcONa}$, with barbituric acid and dimedone in dry pyridine to give the expected condensates. ${ }^{112}$ Condensation of 1-phenyl-3-methylpyrazolidin-5-one $\mathbf{1 6 8}$ with ChrCHO either in aqueous medium containing $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{ZrO}_{2}$ solid catalyst ${ }^{147}$ or with PEG-400 under MWI ${ }^{108}$ or under MWI without any catalyst ${ }^{133 b}$ gives the normal condensate 169. A mixture of $\mathbf{1}$ and $\mathbf{1 6 8}$ in 1:2 molar ratio on MWI gives $\mathbf{1 7 0}$ that arises by a Michael addition of 168 to 169. ${ }^{148}$ Xanthan sulphuric acid (XSA) has also been used as a solid catalyst for the formation of $\mathbf{1 7 0}$ from $\mathbf{1}$ and $\mathbf{1 6 8} .{ }^{149}$ Similar condensation of $\mathbf{1}$ with triacetic acid lactone (4-hydroxy-6-methylpyran-2-one) and 4-hydroxycoumarin (2 eq) under conventional or solvent free conditions gives the trihetarylmethanes $\mathbf{1 7 1}$ and $\mathbf{1 7 2}$, respectively. ${ }^{148}$ The compound $\mathbf{1 7 2}$ is also formed from 1 and 3-bromo-4-hydroxycoumarin (1:2 molar ratio) in MeOH-pyridine under reflux. ${ }^{150}$ Shutov et al. ${ }^{151}$ have rectified their earlier report ${ }^{152}$ on the reaction of 1 with 2-aryl-4-hydroxy-1,3-thiazin- $6(6 H)$-one $\mathbf{1 7 3}\left(\mathrm{Ar}=\mathrm{Ph}, \mathrm{p}-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)$. The said reaction at $50-58{ }^{\circ} \mathrm{C}$ in THF
containing pyridine as catalyst is now claimed to give a mixture of the pyrano fused heterocycles 174 and 175 admixed with a little amount of the byproduct $\mathbf{1 7 6}$. The condensates of $\mathbf{1}$ and different active methylene compounds as well as the products easily obtainable therefrom by reaction with some $\mathrm{N}-\mathrm{N}, \mathrm{N}-\mathrm{O}, \mathrm{N}-\mathrm{C}-\mathrm{N}$ binucleophiles have been evaluated for their biological activities.
5.4.3. Addition of enol ethers. The formation of benzophenones by reacting 3-formylchromone $\mathbf{1}$ with 1,3-bis-silyl enolates of general formula $\mathbf{1 7 8}$ as the synthetic equivalent of 1,3-dicarbonyl compounds in the presence of trimethylsilyl triflate (TMSOTf) has been exploited by Langer and co-workers; ${ }^{153,154}$ the earlier works in this aspect has been accounted by Langer himself. ${ }^{155}$ Here the terminal carbon of the butadiene moiety of $\mathbf{1 7 8}$ undergoes Michael addition to the benzopyrylium triflate 177, generated from 1 and TMSOTf; the adduct 179 undergoes sequentially retro-Michael ($\rightarrow \mathbf{1 8 0}$), intramolecular aldol reaction $(\rightarrow \mathbf{1 8 1})$ and hydrolytic elimination of siloxane to give the product $\mathbf{1 8 2}$ (Scheme 16).

$$
\text { For 178-182: } \begin{aligned}
& \mathrm{R}^{1}=\mathrm{H}, \mathrm{Me}, \mathrm{Et}, n-\mathrm{Bu}, \mathrm{Bn}, \\
& \mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2},\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Cl} \text { etc. } \\
& \mathrm{R}^{2}=\mathrm{Me}, \mathrm{Et}, \mathrm{Ph}, \mathrm{OEt}, \mathrm{OMe}
\end{aligned}
$$

Scheme 16

The bis-silyl enolates $178\left(\mathrm{R}^{1}=\mathrm{SC}_{6} \mathrm{H}_{4}-\mathrm{R}^{3}, \mathrm{R}^{3}=\mathrm{H}, \mathrm{Me}, \mathrm{Cl}, \mathrm{OMe} ; \mathrm{R}^{2}=\mathrm{OEt}\right)^{156}$ and $\mathbf{1 7 8}\left(\mathrm{R}^{1}=\right.$ $\left.\mathrm{Cl} ; \mathrm{R}^{2}=\mathrm{OMe}, \mathrm{OEt}\right)^{157}$ have been similarly utilized for the formation of the corresponding benzophenones 182. Deprotonation of ethyl 3,5-bis(trimethylsiloxy)-2,4-hexadienoate $\mathbf{1 8 3}$ with LDA and subsequent addition of TMSCl gives 1,3,5-tris(silyloxy)-1,3,5-triene 184. TMSCl catalyzed reaction of ChrCHO with 183 gives the benzophenone $\mathbf{1 8 5}$ and that with $\mathbf{1 8 4}$ gives 186, the latter product being a regioisomer of the former one. ${ }^{158} \mathbf{1 8 2}\left(\mathrm{R}^{1}=H ; \mathrm{R}^{2}=\mathrm{OMe}\right)$ derived
from 1 and $178\left(\mathrm{R}^{1}=\mathrm{H} ; \mathrm{R}^{2}=\mathrm{OMe}\right)$ has been reacted with phenylboronic acid in the presence of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{~K}_{3} \mathrm{PO}_{4}$ in 1,4-dioxane to get the 2,4'-diphenylbenzophenone 187. ${ }^{159}$

5.4.4. Reaction with enamines. β-Aminocrotonic ester or β-aminocrotononitrile 188 ($\mathrm{X}=$ $\mathrm{CO}_{2} \mathrm{Et}, \mathrm{CO}_{2} \mathrm{Me}, \mathrm{CN}$) with $\mathbf{1}$ in acetic acid ${ }^{160}$ or in the presence of TMSCl^{161} forms only the Hantzsch type dihydropyridines 189. The keten-aminal 190 functions as an enamine to undergo Michael addition to $\mathbf{1}$ with pyran ring opening and ring closure ($\rightarrow \mathbf{1 9 1}$), water elimination $(\rightarrow \mathbf{1 9 2})$ and electrocyclization to the tetracyclic heterocycle 193 as the final product (Scheme 17). ${ }^{162}$

For 190-193: $\mathrm{n}=1,2,3$
$R=C_{6} H_{5}, 4-C l,-F,-M e,-C_{6} H_{4}, 2$-furyl

Scheme 17

5.4.5. Electrophilic substitution reaction of aromatic and heterocyclic compounds with 3formylchromone. 3-[(Bisarylmethyl)chromone 194 ($\mathrm{Ar}=4-N, N$-dialkylaminophenyl) and 194 ($\mathrm{Ar}=2,4$-dimethoxybenzene) are prepared by treating 1 with N, N-dialkylaminobenzene in aq. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and 1,3-dimethoxybenzene in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}$, respectively. The chromone 194 on oxidation with p-chloranil followed by treatment with NaOMe gives the acetal 195. The pyrazoles derived from 195 and $\mathrm{NH}_{2} \mathrm{NH}_{2}$ as well as $\mathrm{NH}_{2} \mathrm{NHMe}$ have also been subjected to oxidation by p-chloranil. ${ }^{163}$ Condensation of $\mathbf{1}$ with β-naphthol in the presence of CSA under solvent free condition affords the chromenyl-14H-dibenzo $[a, j]$ xanthene 196. ${ }^{164}$

194

195

196

199

201
200

202: $\mathrm{R}=\mathrm{H}, \mathrm{Me}$

203

Pyrrole and indole have been subjected to react with ChrCHO under different conditions. The reaction of $\mathbf{1}$ with pyrrole in DMF-PTS forms the meso-tetrakis(chromon-3-yl)porphyrin $197{ }^{165}$ whereas that in TFA gives the trisubstituted methane $198 .{ }^{166}$ The porphyrin 197 exhibits antioxidative activity against DNA damage induced by bleomycin-iron complex. ${ }^{165}$ The trihetarylmethane 198 on DDQ oxidation gives the chromanone 199 that can form a luminescent N,O-chelated chroman BF_{2} complex 200 with BF_{3}-etherate in triethylamine. ${ }^{166}$ Sosnovskikh et $a l .{ }^{167 a}$ reported the formation of 201 having E-stereochemistry around its exocyclic olefinic bond
from the uncatalyzed reaction of $\mathbf{1}$ with 1-methylpyrrole under solvent free conditions; in a later publication ${ }^{167 \mathrm{~b}} \mathbf{1}$ is reported to form with indole as well as 1-methylindole the trihetarylmethane 202 under the same condition. A solid complex, conveniently prepared from sodium triphenylphosphine-m-sulfonate and carbon tetrachloride ${ }^{168}$ as well as XSA under solvent free conditions at room temperature ${ }^{169}$ has been used for the Friedel-Craft alkylation of indole with ChrCHO to produce $202(\mathrm{R}=\mathrm{H})$. (3,5-Dimethoxyphenyl)(3,5-dimethoxybenzyl)ether undergoes $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mol} \%)$ catalyzed alkylation with ChrCHO in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature to give 6,11-dihydrodibenzo $[b, e]$ oxepine 203. ${ }^{170}$

5.5. Baylis-Hillman reaction

Baylis-Hillman reaction of the electron deficient olefin $204\left(\mathrm{X}=\mathrm{CN}, \mathrm{CO}_{2} \mathrm{Me}\right)$ with $\mathbf{1}$ using as catalyst 3-hydroxyquinnuclidine (3HQ) or DBU in chloroform or DABCO in 1methylpyrrolidine gives the adduct 205. DABCO catalyzed reaction in chloroform between 1 and acrylonitrile 204a gives 205a admixed with a small amount of 207a whereas that between $\mathbf{1}$ and methyl acrylate 204b gives exclusively the dimer 207b (Scheme 18). ${ }^{171}$ The olefin 204 in the presence of the tertiary nitrogeneous base catalyst undergoes Baylis-Hillman reaction with the aldehyde function of 1 to give the alcohol 205. A second Baylis-Hillman reaction involving Michael addition of the carbanion at C-3 of $\mathbf{1}$ to the exocyclic α, β-unsaturated nitrile or ester functionality of $\mathbf{2 0 5}$ followed by elimination of $\mathrm{HO}^{-}(\boldsymbol{2 0 6})$ and base catalyzed deformylation gives the trisubstituted propene 207.

For 204-207a : $\mathrm{X}=\mathrm{CN}$
b: $\mathrm{X}=\mathrm{CO}_{2} \mathrm{Me}$

Scheme 18

Synthesis of 3-hydrazinochromone 211 from 1 and azidodicarboxylate $208\left(\mathrm{E}=\mathrm{CO}_{2} \mathrm{Et}\right.$ or $\mathrm{CO}_{2} \mathrm{Me}$) in the presence of DABCO (here written as NR_{3}) involves an aza-Baylis-Hillman type reaction $(\rightarrow \mathbf{2 0 9} \rightarrow \mathbf{2 1 0})$ followed by deformylation (Scheme 19). ${ }^{172} \mathrm{ChrCHO}$ and $\mathbf{2 0 8}$ in the presence of PPh_{3} take a different reaction course (vide section 6.5).

Scheme 19

6. Cycloaddition

6.1. [2+2]Cycloaddition

2,4-Bis-(4-methoxyphenyl)-1,3,2,4-thiaphosphetane-2,4-disulfide (Lawesson's reagent, LR) 212 capable of thiating a carbonyl group stays at elevated temperature in equilibrium with the monomeric 1,2-dipolar species 213. It can convert the Schiff base 214 into the chromonethione 215 and 1,3,2-thiazaphosphetidine derivative 216, the latter arising through [2+2]cycloaddition of $\mathbf{2 1 3}$ with the azomethine double bond of 215. LR under similar conditions converts 217 into 219a and 220; it also converts 218 to $\mathbf{2 1 9 b}$ that involves its NH_{2} and ester groups to further undergo cyclization with a second molecule of 213. ${ }^{173}$

$214 \mathrm{R}=\mathrm{Cl}, \mathrm{OMe}, \mathrm{NH}_{2}$

215

217 : $\mathrm{X}=\mathrm{CN}$
218 : $X=\mathrm{CO}_{2} \mathrm{Et}$

219a: $X=C N$
219b : $X=\mathrm{CO}_{2} \mathrm{Et}$

216

220

For 212, 213, 216 and $220: \mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{OMe}(p)$

6.2. [3+2]Cycloaddition

Reaction of ChrCHO with N -methylglycine (sarcosine) 221 is dependent on the reaction conditions. The reaction in refluxing toluene containing PTS forms 1-methyl-3-salicyloylpyrrole 223a. ${ }^{174}$ Here the dipolar compound 222 undergoes 1,5-electrocyclization with concomitant opening of the pyran ring (Scheme 20 - path a). The above reaction in refluxing toluene in the absence of any acid catalyst gives the pyrrolo[3,4-b]chroman 225 in addition to 223a. The compound $\mathbf{2 2 5}$ arises by 1,3-dipolar addition of the ylid $\mathbf{2 2 2}$ to the pyran 2,3-olefinic bond of $\mathbf{1}$ followed by deformylation (Scheme 20 - path b). ${ }^{175 a} \mathrm{ChrCHO}$ and 221 together in DMF under reflux, however, produces the pyran ring opened form of $\mathbf{2 2 5}$. ${ }^{175 \mathrm{~b}} \mathrm{ChrCHO}$ with N -benzylglycine hydrochloride in refluxing 1,4-dioxane containing $\mathrm{K}_{2} \mathrm{CO}_{3}$, however, gives only the pyrrole 223b.

Scheme 20

When the azomethine ylid 222 is generated in the presence of N-phenylmaleimide, the cycloadducts 226a and 226b are obtained in 60% yield as a mixture of cis/trans diasteroisomers, the pyrrole 223a also being formed in 27% yield. The ylid 222 fails to add to dipolarophiles as dimethyl fumarate, DMAD, 1,4-naphthoquinone, only pyrrole 223a being formed in nearly 80% yield. ${ }^{175 a}$

226a

226b

The 1,3-dipole 227' generated in situ from the allene ester 227 and PPh_{3} adds to ChrCHO , the resultant adduct 228 undergoing deformylation to the cyclopentenobenzopyranone 229 (Scheme 21). ${ }^{176}$

Scheme 21

Regio- and steroeselective 1,3-dipolar cycloadditions of C-(chromon-3-yl)- N-phenylnitrone 230 with several dipolarophiles in dry DCM at room temperature have been carried out. With 230 the dipolarophile $231\left(\mathrm{R}=\mathrm{OEt}, \mathrm{Ph}, i-\mathrm{BuO}, \mathrm{CN}, \mathrm{CO}_{2} \mathrm{Me}, \mathrm{CONH}_{2}\right.$, pyridyl) gives a mixture of exo- and endo- adducts 232 and 233, methyl α-methylacrylate 234 only the exo-adduct 235, and N-phenylmaleimide a mixture of endo-236 and exo-237 adducts (Scheme 22). ${ }^{177}$ Many of these chromenylisoxazolidines possess excellent antiproliferative activity against some selected human cancer cells.

The allenic ester 238a with the nitrone 230 in benzene under reflux gives the benzindolizine 240a and a trace amount of the indole 241a whereas the ketone 238b and the nitrone $\mathbf{2 3 0}$ under the same conditions give indolizine 240b, no indole as 241b is detected; in both cases the products are admixed with varying amounts of the nitrone rearrangement product namely 3-
formyl-2-phenylaminochromone and both the products 240 and 241 arise through the initially formed [3+2] cycloadduct $\mathbf{2 3 9}$ of the nitrone $\mathbf{2 3 0}$ and the allene $\mathbf{2 3 8}$ (Scheme 23). ${ }^{178}$

exo-232 endo-233
For 231-233:
$\mathrm{R}=\mathrm{OEt}, \mathrm{Ph}, \mathrm{O}-{ }^{i} \mathrm{Bu}$ $\mathrm{CN}, \mathrm{CO}_{2} \mathrm{Me}$, CONH_{2}, pyridyl

\downarrow-phenylmaleimide

endo-236 $+$

exo-237

Scheme 22

240

241

For 238-241: $\mathbf{a}=\mathrm{R}_{1}=\mathrm{H}, \mathrm{Me} ; \mathrm{R}_{2}=\mathrm{OEt}$
b $=\mathrm{R}_{1}=\mathrm{H}, \mathrm{Ph} ; \mathrm{R}_{2}=\mathrm{Me}, \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}(p)$
Scheme 23

In the presence of the base DBU, tosylmethylisocyanide (TosMIC) 242A remains in equilibrium with the 1,3-dipole 242B; the latter is likely to undergo 1,3-dipolar cycloaddition to the olefinic bond of $\mathbf{1}$ and the resultant adduct $\mathbf{2 4 3}$ by base catalyzed deformylative pyran ring opening and a subsequent 1,5-H shift to form 2-tosyl-4-(2-hydroxybenzoyl)pyrrole 244 (Scheme 24). DBU catalyzed reaction of 1 with TosMIC in THF at room temperature indeed gives the pyrrole 244 in $\sim 60 \%$ yield. The pyrrole 244 is also obtained but in lower yield $(\sim 25 \%)$ when the above reaction is performed with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH under reflux; use of a strong base like NaOH forms only a small amount of $E-\mathrm{Chr}-\mathrm{CH}=\mathrm{N}-\mathrm{CO}-\mathrm{Tos}$ along with a polymeric material. ${ }^{179}$

244

243

Scheme 24

6.3. $[4+1]$ Cycloaddition

An Indian group ${ }^{180}$ reported the formation of the pyranochromene $246\left(\mathrm{R}^{1}=\mathrm{H}, \mathrm{Me}, \mathrm{Cl} ; \mathrm{R}^{2}=c\right.$ hexyl) from the reaction of 3-formylchromone with cyclohexyl isocyanide $245\left(\mathrm{R}^{2}=c\right.$-hexyl) in DCM at room temperature whereas Teimouri ${ }^{181}$ assigned the furochromene structure $247\left(\mathrm{R}^{1}=\right.$ $\mathrm{H}, \mathrm{Me}, \mathrm{Cl} ; \mathrm{R}^{2}=n$ - Bu, t-Bu, c-hexyl, $\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{Me}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CMe}_{2}-, \mathrm{PhCH}_{2} \mathrm{CH}_{2}$) to the product arising from ChrCHO and several alkyl isocyanides under identical reaction conditions, no unequivocal arguments being given in favour of these proposed structures. Later the Indian group ${ }^{182}$ subjected the product previously assigned by $246\left[\mathrm{R}^{1}=\mathrm{H} ; \mathrm{R}^{2}=c\right.$-hexyl $]$ to X-ray analysis and rectified its structure as $247\left(\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=c\right.$-hexyl $)$, the stereochemistry around both $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$ bonds being Z . Neo et al. ${ }^{183}$ apparently unaware of this corrected report ${ }^{182}$ reinvestigated the reaction of 3-formylchromones (2 eq.) and several alkyl isocyanides (1 eq.) in THF under reflux and the resultant products were assigned the structure $247\left(\mathrm{R}^{1}=\mathrm{H}, \mathrm{Me}, \mathrm{Cl}, \mathrm{Br}\right.$; $\mathrm{R}^{2}=t$ - $\mathrm{Bu}, \mathrm{C}_{5} \mathrm{H}_{11}, \mathrm{PhCH}_{2}$ etc) based on X-ray diffraction analysis and two dimensional NMR methods. Aryl isocyanides are found to be unreactive towards ChrCHO. ${ }^{183}$ The mechanism for the formation of $\mathbf{2 4 7}$ from 3-formylchromone and an alkyl isocyanide is shown in scheme 25. The isocyanide 245 undergoes [4+1]cycloaddition with 3-formylchromone to give the adduct 248; its tautomer 249 functions as a dienamine to undergo Michael addition to the α, β unsaturated carbonyl functionality of a second molecule of $\mathbf{1}$ with concomitant opening of the
pyran ring, recyclization ($\boldsymbol{\rightarrow} \mathbf{2 5 0}$) and water elimination to give furo[3,4-b]chromene 247. The imine 247 in ethanol - conc HCl under conventional heating or MWI rearranges to the pyrrolochromone 251. ${ }^{183}$

Scheme 25

6.4. [4+2]Cycloaddition or annulation

6.4.1. ChrCHO as a 2π component. ChrCHO can function as a dienophile. Its [4+2]cycloaddition with the appropriate four carbon components followed by in situ deformylation leading to either xanthone or benzophenone derivatives or both has been compiled in a recent review article. ${ }^{184}$ The publications in this aspect appearing only since 2007 are briefly discussed here. [4+2]Cycloaddition of indole-o-quinodimethane 252, generated by treating 1-benzoyl-2,3-bis(bromomethyl)indole with sodium iodide in DMF or PhMe containing 18-crown6 under reflux, with $\mathbf{1}$ is neither regiospecific nor stereoselective in giving after in situ deformylation a stereoisomeric mixture of the dihydroxanthones $\mathbf{2 5 3}$ and $\mathbf{2 5 4}{ }^{185}$ D-A reaction of $\mathbf{1}$ with pyrazole-o-quinodimethane $\mathbf{2 5 5}$ is regiospecific giving only the stereoisomeric mixture of the deformylated cycloadduct 256. On air oxidation, 253 and 254 are aromatized to the corresponding chromenocarbazoles and 256 to chromeno[3,2-f]indazole. ${ }^{185}$

252

253

254

255

256

Organocatalyzed reaction of 3-formylchromones with acetylenedicarboxylate depends on the nature of the substituents in the chromone substrates and that of the catalyst. The zwitterion 257 ($\mathrm{E}=\mathrm{CO}_{2} \mathrm{Me}$ or $\mathrm{CO}_{2} \mathrm{Et}, \mathrm{X}=\mathrm{Me}$ or NMe_{2}) arising from acetylenedicarboxylate and the catalyst 4picoline or 4-dimethylaminopyridine (DMAP) gets annulated with the 2,3-olefinic bond of 3formylchromone having an electron-withdrawing bromo or nitro group at its 6-position and the resultant annulated intermediate ultimately gives the xanthone 258 ($\mathrm{R}=\mathrm{Br}$ or NO_{2}) by an organocatalyzed elimination process. In contrast, the organocatalyzed reaction of 3formylchromone 1 and its 6-chloro- and 6-methyl-analogues with acetylenedicarboxylate leads to benzophenones 259 if catalyzed by DMAP or to pyrano[4,3-b]chromones $\mathbf{2 6 0}$ if catalyzed by 4-picoline. In the formation of $\mathbf{2 6 0}$, 3-formylchromone functions as a heterodiene to undergo $[4+2]$ annulation with acetylenedicarboxylate in the presence of 4-picoline. ${ }^{186,187}$

257

259

258

260

For 259-260 : R = H, CI, Me

A cascade reaction sequence of [4+2] annulation of the zwitterion 262, generated by addition of tri- n-butylphosphine to the allene 261, with 3-formylchromone followed by deformylation affords in excellent yield and with good diastereoselectivity ($\sim 8: 1$) the tetrahydroxanthone 263
that can be dehydrogenated by DDQ under microwave heating in 1,2-dichlorobenzene to the xanthone 264. ${ }^{188}$

261 : $\mathrm{R}=\mathrm{H}, \mathrm{Ph}, \mathrm{CO}_{2} \mathrm{Et}$
262

264
6.4.2. ChrCHO as 4π component. ChrCHO when reacted with Lawesson's reagent in boiling toluene gives a mixture of the thione 265 (20\%) and [1,3,2]-oxathiaphosphino[4,5-b]chromene-5-thione 266 (60\%), the former resulting from thiation of ChrCHO by LR and the latter by a [4+2]cycloaddition of $\mathbf{1}$ with the monomeric 1,2-dipolar species 213 of LR followed by thiation. ${ }^{173}$

265

266 : $\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}(p)$
[4+2]-Ring annulation reaction of $\mathbf{1}$ with electron poor acetylene as $267\left(\mathrm{R}=\mathrm{H}, \mathrm{Ph}, \mathrm{CO}_{2} \mathrm{Me}\right.$,; $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{Et}, t-\mathrm{Bu}$) in the presence of triphenyl(or tributyl)phosphine in toluene at $80{ }^{\circ} \mathrm{C}$ giving pyrano[4,3-b]chromone 268 has been reported by Waldman et al. ${ }^{189 a}$ This organocatalyzed hetero-Diels-Alder type reaction proceeds well in PhH and PhMe but not in more polar solvents like DCM or THF, and tributylphosphine drives the reaction faster. This reaction also successfully performed by using $\mathrm{DABCO}^{189 a}$ as well as 4-picoline ${ }^{186}$ generates a tricyclic benzopyran with one stereocentre. So an enantioselective version of this reaction has been attempted by using several chiral catalysts. ${ }^{189 b}$ Five chiral phosphines and naturally occurring alkaloids like cinchonine, cinchonidine, O-methylhydroquinidine fail to catalyze the reaction whereas S-isomer of the fused pyran $268\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}^{1}=\mathrm{Me}\right)$ is formed in nearly 54% ee when 1 is annulated with DMAD in the presence of β-isoquinidine. ${ }^{189 \mathrm{~b}}$ Under mild acidic conditions (10% TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}$) the pyranochromone $\mathbf{2 6 8}$ rearranges to $\mathbf{Z}-\mathbf{2 6 9}$ or $\boldsymbol{E}-269{ }^{\prime} .{ }^{190}$

IEDDA reaction of $\mathbf{1}$ with ethyl vinyl ether leading to the endo-adduct $\mathbf{2 7 0}$ and its conversion by treatment with aqueous acid to $E-\beta$-(chromon-3-yl)acrolein 271 have been reported long back. ${ }^{191}$ Similar cycloaddition of 6,6'-tethered bis(3-formylchromone) 272 with ethyl vinyl ether gives 273 that on treatment with NaOMe in MeOH followed by acidification affords the bisacrolein derivative 274. ${ }^{192}$ IEDDA reaction between 1 and n-butyl vinyl ether performed under inductive heating with superparamagnetic nanoparticles coated with silica (MAGSILICA) inside the flow reactor gives a mixture of endo-and exo- adducts 275. ${ }^{193}$

Asymmetric IEDDA reaction of 1 with 3-vinylindole $276(\mathrm{R}=\mathrm{H}, \mathrm{Cl}, \mathrm{Br}, \mathrm{F}, \mathrm{OMe})$ as dienophile catalyzed by various chiral tertiary amine thiourea gives a mixture of endo and exoadducts 277 ($\sim 3.4: 1$) with enantiomeric excess approaching to 97%. The endo-adduct 277 has been isomerized by Wilkinson's catalyst $\left[\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}\right](5 \mathrm{~mol} \%)$ and $\mathrm{Et}_{3} \mathrm{SiH}$ ($7 \mathrm{~mol} \%$) in toluene under reflux to the pyranochromone 278. ${ }^{194}$

6.4.3. $[4+2]$ Cycloaddition of 3 -(2 -substituted vinyl)chromone. IEDDA reaction of the vinylchromone 279 ($\mathrm{EWG}=\mathrm{COMe}, \mathrm{COPh}, \mathrm{CO}_{2} \mathrm{Et}, \mathrm{CONEt}_{2}, \mathrm{SO}_{2} \mathrm{Ph}, \mathrm{CN}, \mathrm{Ar}$) with electron rich ethene $280\left(\mathrm{R}=\mathrm{R}^{1}=\mathrm{OMe} ; \mathrm{R}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{NMe}_{2}\right)$ is followed by elimination to produce the xanthone 281. ${ }^{195}$ 5-Hydroxychromone $\mathbf{2 8 2}$ with ethyl vinyl ether produces the xanthone $\mathbf{2 8 3}$ along with two other minor products. ${ }^{196} \mathrm{It}$ is relevant to mention here that the reaction between $279\left(\mathrm{EWG}=\mathrm{CO}_{2} \mathrm{Et}\right)$ and several acyclic or cyclic enamine $284(\mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{Ph} ; \mathrm{X}=\mathrm{Ph}, \mathrm{Y}=\mathrm{H}$; $\mathrm{XY}=\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{1-4} \mathrm{CH}_{2}$ involves a domino IEDDA, elimination of dialkylamine and pyran ring opening to give benzophenone $\mathbf{2 8 5}$, no xanthone being formed at all. ${ }^{197}$

Intermolecular [4+2]cycloaddition involving the diene system present in 3-(2acetylvinyl)chromone) $\mathbf{2 8 6}$ ($\mathrm{X}=\mathrm{COMe}, \mathrm{Y}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{Z}=\mathrm{OMe}$) with the acetyl olefinic functionality (dienophile) of its second molecule has been utilized for the synthesis of naturally occurring vinaxanthone. When a solution of $\mathbf{2 8 6}$ in PhMe with 4.0 equivalent of 2,6-di- t-butyl-4methoxyphenol(DTBMP) is heated in a sealed tube at $200{ }^{\circ} \mathrm{C}$ for 24 h with air, the cycloadduct 287 (non-isolable) gives xanthone 289 (40%) by aromatization and benzophenone $\mathbf{2 8 8}$ by pyran
ring opening (Scheme 26-path a). This intermolecular cycloaddition is not regiospecific, the regioisomer 291 producing the deacylated products 292 and 293 respectively in 17% and 5% yields (Scheme 26-path b). The additive DTBMP is assumed to be oxidized to quinone that brings about aromatization of 287 to 289 and of 291 to 292. Demethylation of dimethoxyxanthone $\mathbf{2 8 9}$ by AlCl_{3} in PhMe at $110^{\circ} \mathrm{C}$ gives vinaxanthone 290. ${ }^{198}$

Scheme 26
6.4.4. $[4+2]$ Cycloaddition of 3-iminomethylchromone. 3-Iminomethylchromones function as azadienes to undero [4+2]cycloaddition with several dienophiles. Cycloaddition of the tosylimine 294 with DMAD under PPh_{3} or PBu_{3} catalysis in boiling toluene gives the chromenopyridine 295 and salicyloylpyridine $296\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me} ; \mathrm{R}^{1}=\mathrm{Me}\right.$) in 50% and 40% yields whereas PPh_{3} catalyzed reaction of 294 with methyl propiolate gives $296\left(\mathrm{R}=\mathrm{H}, \mathrm{R}^{1}=\right.$ Me) in 60% yield, the dihydropyridine 295 being obtained in trace amounts. ${ }^{189 \mathrm{~b}}$ Chiral tertiary amine thiourea catalyzed IEDDA reaction of 294 with 3-vinylindole 276 (R as before) gives a mixture of exo- and endo- adducts 297. ${ }^{194}$

A mixture of ChrCHO and 1,3-bis(dimethylaminomethylene)thiourea 298 (1:2) in toluene under reflux gives 5-(2-hydroxybenzoyl)pyrimidine 301 in 78% yield. ${ }^{199}$ A plausible mechanism for the formation of $\mathbf{3 0 1}$ is shown in Scheme 27. The initially formed azadiene 299 undergoes IEDDA reaction with the azaenamine functionality of a second molecule of 298, the resultant intermediate $\mathbf{3 0 0}$ by an elimination - pyran ring opening sequence gives the pyrimidine 301. Several 6- or 7-monosubstituted 3-formylchromones have been subjected to react with 298 and the resultant pyridines have been evaluated for their antibacterial property. ${ }^{199}$

Scheme 27

6.5. $[4+3]-$, $[5+3]$ - and $[5+4]$-Annulation

The zwitterionic intermediates generated from dialkyl azidocarboxylates and triphenylphosphine undergo Mitsunobu reaction with 3-formylchromone in toluene under reflux to afford a mixture of chromeno[2,3-c]pyrazoline 305 and chromeno[2,3-e]tetrazepine 308. ${ }^{200}$ Here the Huisgen zwitterion 303 generated from azidocarboxylate 302 and PPh_{3} undergoes [4+3]annulation with ChrCHO and the resultant intermediate $\mathbf{3 0 4}$ elides triphenylphosphine oxide to give fused the pyrazoline 305 (Scheme 28), this elimination of OPPh_{3} being the driving force of the reaction. The zwitterion $\mathbf{3 0 3}$ adds on to a second molecule of the azo-ester $\mathbf{3 0 2}$ yielding the zwitterion $\mathbf{3 0 6}$ which by a domino [5+4]annulation with $1(\rightarrow \mathbf{3 0 7})$ and elimination of OPPh_{3} gives the seven membered ring compound 308 (Scheme 28).

Scheme 28

Baskar and coworkers ${ }^{201}$ have reported that an equimolar mixture of 1 and diisopropyl azidodicarboxylate (DIAD) $302\left(\mathrm{E}=\mathrm{CO}_{2}{ }^{i} \mathrm{Pr}\right.$) in THF on treatment with PPh_{3} gives 305 (26\%)
and the tetracyclic compound 309 (27%). Increased amount of DIAD and phosphine in the above reaction gives a higher yield of $\mathbf{3 0 9}$. Evidently this is an example of stereoselective cascade double annulations, the initially formed pyranopyran 305 undergoing [3+2] cycloaddition with the Huisgen zwitterions 303 followed by elimination of triphenylphosphine oxide. Similar cascade double annulation of $\mathbf{1}$ first with $\mathbf{3 0 3}\left(\mathrm{E}=\mathrm{CO}_{2}{ }^{i} \mathrm{Pr}\right)$ and then with allenic ester $\mathbf{3 1 0}$ gives the tetracyclic pyranone 311 (Scheme 29). In contrast to the PPh_{3} catalyzed regiospecific [3+2] cycloaddition of $\mathbf{3 1 0}$ with $\mathbf{3 0 5}$, that with $\mathbf{2 6 8}\left(\mathrm{R}=\mathrm{H}\right.$ or $\left.\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}^{1}=\mathrm{Me}\right)$, the [4+2] adduct of $\mathbf{1}$ and $\mathrm{R}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CO}_{2} \mathrm{Me}\left(\mathrm{R}=\mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right)$, gives the two regioisomers 312 and 313. ${ }^{201}$

Scheme 29

312

313
N-Phenylnitrone 314 reacts with DMAD in the presence of PPh_{3} (1.2 eq.) to give the pyrido[4,3-b]chromone 317. Here the nitrone 314 and the zwitterion $315\left(\mathrm{E}=\mathrm{CO}_{2} \mathrm{Me}\right)$ derived from DMAD and PPh_{3} add initially in a [5+3]annulation mode (either in a concerted or stepwise manner) to give the intermediate $\mathbf{3 1 6}$ that by a sequential phosphine oxide elimination and a 1,3H shift gives the fused pyridine 317 (Scheme 30). ${ }^{202}$

Scheme 30

7. 3-Formylchromone as a Component in One Pot Multicomponent Synthesis

This section deals in the reaction of 3-formylchromone with at least two other different reactants, if not more, put together at a time in one reaction vessel. As ChrCHO contains three electropositive centres, most of the other reacting partners should function as nucleophiles either in the absence or in the presence of a suitable catalyst. The final product arises through a sequence of reactions between the reactants and the reaction intermediates. This reaction is further divided into a few subsections based on the number and nature of the components involved in the multi-component (M-C) reactions.

7.1. Three component condensation between $\mathbf{C h r C H O}$, a nitrogen nucleophile and a third reactant

For the sake of brevity, a few examples of the title type of condensation involving an amine as the nitrogen nucleophile are tabulated in Table 2.

Table 2. Products from 3-C condensation of ChrCHO , an amine and a third reactant along with reaction conditions and references

$\begin{gathered} \text { Entry } \\ \text { No } \end{gathered}$	Third Reactant	Amine component	Reaction conditions	Product	Ref.
1	$\mathrm{P}(\mathrm{OMe})_{3}$	$\mathrm{PhCH}_{2} \mathrm{NH}_{2}$	Yittria-Zirconia Lewis acid catalyst, aq. $\mathrm{MeCN}, 60^{\circ} \mathrm{C}$		203

Table 2. Continued

Entry No	Third Reactant	Amine component	Reaction conditions	Product	Ref.
2	PhCOMe	$\mathrm{PhCH}_{2} \mathrm{NH}_{2}$	-do-		204
3	$\mathrm{PhC} \equiv \mathrm{CH}$	MeCONH_{2}	$\mathrm{MeCN}-\mathrm{AcOH}-\mathrm{TFA}$, AlCl_{3}, reflux		205a
4	β-Naphthol	$\begin{gathered} \mathrm{RCONH}_{2} \\ (\mathrm{R}=\mathrm{Me} \text { or } \\ \mathrm{OEt}) \end{gathered}$	Ethylammonium nitrate (EAN), neat, r.t.	 321	206
5	$\mathrm{R}=\mathrm{H}, \mathrm{Me}$	$\begin{gathered} \mathrm{X}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{2} \\ (\mathrm{X}=\mathrm{H}, \mathrm{Me}, \mathrm{Cl}, \\ \left.\mathrm{Br}, \mathrm{NO}_{2}\right) \end{gathered}$	$\begin{aligned} & \operatorname{In}(\mathrm{OTf})_{3}, \mathrm{MeCN}, \Delta \\ & \text { or MWI } \end{aligned}$		207
6		$\mathrm{RNH}_{2}(\mathrm{R}=\mathrm{H},$ $\mathrm{Me}, \mathrm{Ph}, \mathrm{PhCH}_{2}$ etc.)	PhMe, Δ		208
7	$\mathrm{HSCH}_{2} \mathrm{COOH}$	ArNH2	MWI		209
8	$\mathrm{HSCH}_{2} \mathrm{COOH}$	2-Aminobenzthiazole	$\mathrm{ZnCl}_{2}, \mathrm{PhH}, \Delta$		210
9	 (Dimedone)	$\mathrm{NH}_{4} \mathrm{OAc}$	EtOH, Δ		211
10		$\mathrm{NH}_{4} \mathrm{OAc}$	EtOH, Δ		212

Table 2. Continued

Entry No	Third Reactant	Amine component	Reaction conditions	Product	Ref.
11	Dimedone		$\begin{gathered} \mathrm{TBAB}, \mathrm{H}_{2} \mathrm{O}, \\ 70-80^{\circ} \mathrm{C} \end{gathered}$		213
12	$\begin{gathered} \mathrm{R}^{1} \mathrm{COCH}_{2} \mathrm{CO}_{2} \mathrm{R}^{2} \\ \left(\mathrm{R}^{1}=\mathrm{Me}, \mathrm{Ph} ; \mathrm{R}^{2}\right. \\ =\mathrm{Me}, \mathrm{Et}) \end{gathered}$	$\mathrm{NH}_{4} \mathrm{OAc}$	Wells-Dawson heteropolyacid $\mathrm{H}_{6} \mathrm{P}_{2} \mathrm{~W}_{18} \mathrm{O}_{62} .24 \mathrm{H}_{2} \mathrm{O}$ (WD) catalyst, solvent free, $80^{\circ} \mathrm{C}$		214
13	$\mathrm{MeCOCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$	$\mathrm{NH}_{2} \mathrm{OH} . \mathrm{HCl}$	Sodium salt of saccharin, water, Δ		215
14	$\begin{gathered} \mathrm{E}-\mathrm{C} \equiv \mathrm{C}-\mathrm{E} \\ \left(\mathrm{E}=\mathrm{CO}_{2} \mathrm{Me},\right. \\ \left.\mathrm{CO}_{2} \mathrm{Et}\right) \end{gathered}$	$\mathrm{RNH}_{2}(\mathrm{R}=$ alkyl or aryl)	$\begin{gathered} \mathrm{PhMe}, \mathrm{POCl}_{3}, \\ 80^{\circ} \mathrm{C} \end{gathered}$		216
15	-do-	ArNH_{2}	EtOH, Δ		208
16	$\mathrm{CH}_{2} \mathrm{O}$	$\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{COOH}$	MeOH, Δ	$\left(\mathrm{Chr}_{2}\right)_{236} \mathrm{~N} \mathrm{COOH}$	217
17	$\mathrm{CH}_{2} \mathrm{O}$	$\begin{gathered} \mathrm{H}_{2} \mathrm{~N}_{Y} \mathrm{CO}_{2} \mathrm{H} \\ \mathrm{R} \\ \mathrm{R}=\mathrm{Me}, \\ \mathrm{CH}_{2} \mathrm{CHMe}_{2}, \\ \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SMe} \end{gathered}$	MeOH, Δ	 337	217

${ }^{a}$ It is also obtained by $\mathrm{SiCl}_{4}-\mathrm{ZnCl}_{2}$ catalyzed 3-C condensation of $\mathrm{ChrCHO}, \mathrm{PhCOMe}$ and MeCN in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at r.t.; ${ }^{205 b}$ b the product $\mathbf{3 2 2}$ is admixed with a little amount of 3-bis(indol-3yl)methylchromone; ${ }^{c}$ the product 329 is contaminated with the corresponding Hantzsch 1,4-dihydro-4-(chromon-3-yl)pyridine derivative.

One pot reaction of 3-formylchromone, alkyne $267\left(\mathrm{R}=\mathrm{H}, \mathrm{CO}_{2} \mathrm{Me} ; \mathrm{R}^{1}=\mathrm{Me}, \mathrm{Et}\right)$ and 3-(2aminoethyl)indole 338 in the presence of PPh_{3} gives the tetrahydroindolo[2,3-a]quinolizine (centrocountin) 339. Here the alkyne 267 gives with 1 in the presence of PPh_{3} the pyranochromone 268. ${ }^{189}$ Aza-Michael addition of indole 338 through its primary amino group to 268 is succeeded by a domino sequence of reactions to give ultimately the indoloquinolizine 339 (Scheme 31). ${ }^{218,219}$ This 3-C condensation is also catalyzed by ZnCl_{2} (1.2 equiv) in DMSO. Some chiral 1,1'-binaphthyl-2,2'-dihydrogenophosphates have been used to form 339 ($\mathrm{R}=$ $\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}_{1}=\mathrm{Me}$) in 48-63\% ee. ${ }^{219}$

Scheme 31

ChrCHO when subjected to Biginelli reaction with a β-ketoester $\mathbf{3 4 0}$ and guanidine or urea or thiourea 341 behaves as a simple aldehyde to give the 1,4-dihydropyrimidine derivative 342 (Scheme 32). Thus ChrCHO, ethyl acetoacetate and guanidine together in DMF-NaHCO 3 at 70 ${ }^{\circ} \mathrm{C}$ gives $342\left(\mathrm{R}=\mathrm{Me}, \mathrm{R}^{1}=\mathrm{Et} ; \mathrm{X}=\mathrm{NH}\right) .{ }^{220} \mathrm{PTS}$ in ethanol, ${ }^{221}$ trifluoroethanol ${ }^{222}$ and xanthan sulphuric acid ${ }^{223}$ as well as $\mathrm{TaBr}_{5}{ }^{224}$ under solvent free condition can catalyze the formation of $342(X=O, S)$ from ChrCHO, different β-ketoesters $340\left(R=M e, R^{1}=M e, E t\right)$ and $341(X=O$, S).

Scheme 32

When a methanolic solution of ChrCHO , DL-alanine, dimethyl fumarate and a few drops of acetic acid is refluxed for 1 h , proline $\mathbf{3 4 4 a}(60 \%)$ without any trace of the other diastereoisomer 345a is isolated. Here ChrCHO and alanine forms the syn-dipole $\mathbf{3 4 3}$ stabilized by double hydrogen bond formation that captures the dipolarophile dimethyl fumarate (Scheme 33). ${ }^{225}$

When dimethyl fumarate is replaced by fumaronitrile, both the diastereoisomers $\mathbf{3 4 4 b}$ and $\mathbf{3 4 5 b}$ (4.5:1) are obtained. 3-C condensation involving ChrCHO, N-phenylmaleimide and an α aminoacid also leads to a proline derivative; use of glycine, alanine and L-cysteine as the aminoacid in the above 3-C reaction yields 346a,b and \mathbf{c}, respectively. ${ }^{225}$

$$
\begin{array}{ll}
\text { 344a: } \mathrm{E}=\mathrm{CO}_{2} \mathrm{Me} & \text { 345a: } \mathrm{E}=\mathrm{CO}_{2} \mathrm{Me} \\
\text { 344b: } \mathrm{E}=\mathrm{CN} & \text { 345b: } \mathrm{E}=\mathrm{CN}
\end{array}
$$

Scheme 33

A mixture of ChrCHO , sarcosine 347 and ninhydrin 348 in methanol under reflux produces the dispiropyrrolidines $\mathbf{3 5 0}$ and $\mathbf{3 5 1}$ sometimes admixed with dispiropiperazine $\mathbf{3 5 2}{ }^{226}$ Ninhydrin being far more reactive than ChrCHO forms with sarcosine the azomethine ylid 349 that adds to ChrCHO to give 351; the compound $\mathbf{3 5 0}$ arises through the reaction of $\mathbf{3 4 9}$ with in situ generated formaldehyde followed by interaction with $\mathbf{1}$. Addition of formalin in the reaction mixture produces $\mathbf{3 5 0}$ exclusively. ${ }^{226}$ The piperazine $\mathbf{3 5 2}$ arises by dimerization of the ylid $\mathbf{3 4 9}$ (Scheme 34).

Formation of the pyrrolo[2,1-a]isoquinoline by stirring a mixture of $\mathbf{1}$, isoquinoline and phenacyl bromide (or ethyl bromoacetate) in water containing a surfactant as CTAB and a base as DBU has been reported by Naskar and co-workers. ${ }^{227}$ Here the isoquinolinium bromide 353, derived from isoquinoline and $\mathrm{BrCH}_{2} \mathrm{COZ}(\mathrm{Z}=\mathrm{Ph}$ or OEt$)$, gives in the presence of DBU the dipole $\mathbf{3 5 4}$ that undergoes [3+2]cycloaddition with the pyran-2,3-double bond of $\mathbf{1}$; the resultant adduct 355 (non-isolable) undergoes base catalyzed deformylation followed by pyran ring opening and air oxidation to give the fused isoquinolidine 356 (Scheme 35).

Scheme 34

For 353-356: Z = Ph or OEt

Scheme 35

The 1,4-dipole 357 derived from 3-methylisoquinoline and acetylene dicarboxylate undergoes $[4+2]$ cycloaddition with the pyran 2,3 -olefinic bond of $\mathbf{1}$ to give the chromenopyridoisoquinoline 358 (Scheme 36). ${ }^{228}$

Scheme 36

[4+2]-Dipolar cycloaddition of the zwitterion generated from isoquinoline and DMAD in ionic liquid $[\mathrm{bmim}] \mathrm{BF}_{4}$ at room temperature with pyran 2,3 -olefinic bond of $\mathbf{1}$ followed by deformylation gives 359 and that with its aldehyde carbonyl group gives $\mathbf{3 6 0}$ (Scheme 37), the two products being formed in 8:2 proportion in 72% total yield. ${ }^{229}$

For 359 and 360 : $\mathrm{E}=\mathrm{CO}_{2} \mathrm{Me}$

Scheme 37

The 1,4-zwitterion derived from 4,5-dimethylthiazole and acetylenedicarboxylate has been shown to react at low temperature readily with 3 -formylchromone $\mathbf{1}$ giving the thiazolo[3,2a]pyridines $\mathbf{3 6 3}$ and $\mathbf{3 6 4}$. The said reaction with $\mathbf{1 a}$ as the substrate in DMF at $-10^{\circ} \mathrm{C}$ to r.t. gives 363a and 364a in 45 and 4% yield, respectively whereas $\mathbf{1 b}$ and $\mathbf{1 c}$ having electron donating substituents at p-position of the pyran oxygen, the yields of $\mathbf{3 6 3 b}, \mathbf{c}$ and $\mathbf{3 6 4 b}, \mathbf{c}$ being around 7 and 35%. However, at higher temperature the thiazolopyridine $\mathbf{3 6 2}$ is formed as a mixture of two rotamers presumably after a 1,2-aryl migration from $\mathbf{3 6 4}$ (Scheme 38). ${ }^{230}$

An example of 3-C reaction involving 3-formylchromone and two nitrogen nucleophiles is also known. 2-(3-Chromenyl)-1-hydroxyimidazoles 365-368 have been prepared by one pot three component condensation of unsubstituted 3-formylchromone, AcONH_{4} and the appropriate α-hydroxyiminoketone in hot glacial acetic acid and their protropic tautomerism studied. ${ }^{231} \mathrm{C} 2-\mathrm{H}$ of the chromone moiety of all these 1-hydroxyimidazoles in $\mathrm{CD}_{3} \mathrm{CN}+\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ as well as in TFA appears as a narrow singlet (at $\delta \sim 9.50$) precluding the tautomeric exchange process. 4,5-

Dimethylimidazole 365 exists in solution exclusively as the N-hydroxytautomer regardless of the nature of the solvent. In a hydrogen bond acceptor DMSO- d_{6}, 5 -carbonylimidazoles 366-368 exist in the N-oxide form. In a weak hydrogen donor $\mathrm{CDCl}_{3}, \mathbf{3 6 6}$ also exists as the N -oxide tautomer whereas 367-368 exist in a tautomeric equilibrium, the N-oxide forms 367^{\prime} and 368^{\prime} prevailing over the N-hydroxy ones $\mathbf{3 6 7}$ and $\mathbf{3 6 8}$.

$$
\begin{aligned}
\text { For 1, 362-364 } & \text { a, } \mathrm{R}=\mathrm{H} \\
& \text { b, } \mathrm{R}=\mathrm{Me} \\
& \text { c, } \mathrm{R}=\mathrm{Cl}
\end{aligned}
$$

Scheme 38

7.2. Three component reactions of 3-formylchromone with reagents other than a nitrogen nucleophile

Palladium catalyzed three component coupling reaction between 3-formylchromone, alcohol and allyl acetate leads to the highly substituted chromanone $\mathbf{3 6 9}$ (Scheme 39 - path a). ${ }^{232}$ This
reaction most probably proceeds via the formation of the benzopyrylium cation, generated from the Pd-catalyzed reaction between chromone 1 and allyl acetate. The subsequent trapping of the benzopyrylium cation by alcohol gives the corresponding product $\mathbf{3 6 9}$ in excellent yield. This alkoxy-allylation reaction is highly diastereo-selective and only one diasteroisomer is obtained. The chromanone 371 very much analogous to $\mathbf{3 6 9}$ is obtained by Pd-catalyzed decarboxylative aza-Michael addition - allylation reaction between $\mathbf{1}$ and allyl carbamate 370 (Scheme 39 - path b). ${ }^{233}$ The plausible formation of $\mathbf{3 7 1}$ by Pd-catalyzed three component coupling among $\mathbf{1}$, allyl acetate and ethyl N -phenylcarbamate has not been attempted.

Scheme 39

Diastereoselective synthesis of the pyrano-fused coumarin 372 via DBU catalyzed 3-C reaction of ChrCHO , 4-hydroxycoumarin and 3-bromo-4-hydroxycoumarin has been achieved. ${ }^{234}$ The compound 372 arises by a sequence of intramolecular lactonizationdelactonisation of the initially formed bis(coumarin-3-yl)(chromon-3-yl)methane 172. ${ }^{149,151}$ An equimolar mixture of $\mathbf{1}$, dimedone and β-naphthol in hot AcOH gives the naphthopyran $\mathbf{3 7 3}$; use of Meldrum's acid in place of dimedone in the above reaction produces the naphthopyrone 374 admixed with the pentacyclic compound 375. Proper mechanisms for the formation of 373-375 have been proposed. ${ }^{235}$ The heterodiene $376\left(R^{1}=H, R^{2}=P h ; R^{1}=R^{2}=M e\right)$, preformed from 3boronoacrolein pinacolate and hydrazine $H_{2} N N R^{1} R^{2}\left(R^{1}=H, R^{2}=P h ; R^{1}=R^{2}=\mathrm{Me}\right)$ is heated together with N-methylmaleimide and 3 -formylchromone in toluene at $85{ }^{\circ} \mathrm{C}$; the initially formed bicyclic allylic boronate intermediate 377 reacts with ChrCHO to give the highly substituted piperidine derivative $\mathbf{3 7 8}$ after hydrolytic workup. ${ }^{236}$ Passerini reaction involving ChrCHO, tosylmethylisocyanide and benzoic acid gives chromenyl-amido ester $\mathbf{3 7 9}$ that can be transformed into chromenylacetamide $\mathbf{3 8 0}$ by treatment with $\mathrm{NaOEt}-\mathrm{EtOH} .{ }^{237}$

372

374

373

375

376

377

378

379

380

An equimolar mixture of ChrCHO, alkylisocyanide $\mathrm{RNC}(\mathrm{R}=t$ - Bu, c-hexyl) and methyl (or ethyl) acetylenedicarboxylate in PEG-400 at room temperature is reported to give the chromenylfuran $\mathbf{3 8 1}{ }^{238}$ but that in benzene at $40{ }^{\circ} \mathrm{C}$ a mixture of $\mathbf{3 8 1}$ and the cyclopentanochromone $\mathbf{3 8 2}$. ${ }^{239}$ The reaction of ChrCHO with the zwitterionic intermediate generated in situ from RNC and acetylenecarboxylate (1:2) in benzene at $40{ }^{\circ} \mathrm{C}$ affords an isomeric mixture of the cyclohepta[b]chromene carboxylates $\mathbf{3 8 3}$ and $\mathbf{3 8 4}{ }^{239}$

381

384

The formation of the furocoumarin $\mathbf{3 8 5}$ and biscoumarin $\mathbf{3 8 6}$ by treating ChrCHO with 4 hydroxycoumarin and cyclohexylisocyanide in ethanol-pyridine under reflux has been rationalized. ${ }^{240}$ The compound 386 is also obtained by reacting bis(coumarin-3-yl)(chromon-3yl) methane $\mathbf{1 7 2}{ }^{149,151}$ with cyclohexylamine under similar condition. ${ }^{240}$ An equimolar mixture of ChrCHO, cyclohexylisocyanide and ninhydrin in a boiling mixture of DCM and MeOH (7:1 by volume) affords the furochromone $\mathbf{3 8 7 a}$ that on hydrolysis by $\mathrm{HCl}-\mathrm{MeOH}$ leads to the fused furanone $\mathbf{3 8 7 b}$, no dehydration taking place. ${ }^{182}$ The one pot three component reaction of ChrCHO, 1,3-disubstituted barbituric acid and $\mathrm{R}^{2} \mathrm{NC}\left(\mathrm{R}^{2}=\right.$ alkyl $)$ in DMF at room temperature furnishes the furo $[2,3-d]$ pyrimidine $\mathbf{3 8 8}$. The product $\mathbf{3 8 8}$ presumably arises via [4+1]cyclization of $\mathrm{R}^{2} \mathrm{NC}$ with the initially formed condensate of $\mathbf{1}$ and barbituric acid followed by a $1,3-\mathrm{H}$ shift. ${ }^{241}$

385

387a $X=N R$ 387b $X=0$

386

$388 \mathrm{R}^{1}, \mathrm{R}^{2}=$ Alkyl

For 385-387 : R = c-hexyl

7.3. 3-Formylchromone as a component in the four component reactions

Application of the Hantzsch procedure for synthesis of 1,4-dihydropyridine in one-pot reaction of ChrCHO , dimedone, ethyl acetoacetate and ammonium acetate gives the cyclohexanopyridine derivative 389. ${ }^{242,243}$ An Ugi four component reaction of 3-formylchromone $\mathrm{ArNH}_{2}, \mathrm{RNC}(\mathrm{R}=t$ Bu, c-hexyl, 2,6-dimethylphenyl) and cyanoacetic acid at room temperature gives the diamide 390. ${ }^{244}$ Similar 4-C reaction involving 3-formylchromone, 2-haloaniline $391(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$, $\mathrm{RNC}\left(\mathrm{R}=t\right.$-Bu, c-hexyl) and $\mathrm{R}^{1} \mathrm{COOH}\left(\mathrm{R}^{1}=\mathrm{Me}, \mathrm{Et}\right)$ provides the Ugi product 392 convertible into 1-benzopyrano[3,2-c]quinolin-12-one 393 by a ligand free Pd-catalyzed intramolecular C-H arylation protocol $\left[\mathrm{PdCl}_{2}\right.$ or $\left.\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{KOAc}, \mathrm{DMF}, \Delta\right)$ at the $\mathrm{C}-2$ position of the chromone moiety. ${ }^{245}$ Synthesis of chromone containing tripeptide 394 via a pseudo-five-component reaction between ChrCHO, Meldrum's acid, alkylisocyanide RNC and ArNH_{2} (2-equivalent) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature has been achieved. ${ }^{246}$

Marcaccini et al. ${ }^{247}$ have reported a diastereoselective, one-pot, two step synthesis of the spiropyrrolidinochromanone 397. Their method consists of an Ugi 4-C condensation of 3formylchromone, $\mathrm{ArNH}_{2}(\mathrm{Ar}=\mathrm{Ph}$, substituted phenyl), $\mathrm{RNC}(\mathrm{R}=t$ - Bu, c-hexyl, 2,6diphenylphenyl) and glyoxylic acid $\mathbf{3 9 5}(\mathrm{Z}=\mathrm{H}, \mathrm{OMe})$ followed by an aza-Michael addition of a second amine $\mathrm{R}^{1} \mathrm{NH}_{2}\left(\mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{X} ; \mathrm{X}=\mathrm{H}, \mathrm{Cl}\right.$ etc.) to the resultant Ugi product 396 and subsequent cyclization (Scheme 40). ${ }^{247}$

Scheme 40

One pot three component reaction of thiophene-2-carbaldehyde, the β-ketoester 398 and guanidine followed by addition of 3-formylchromone as the fourth component in the pot gives the pyrimidopyrimidine 400 evidently through the intermediacy of the 3,4-dihydropyrimidine 399 (Scheme 41). ${ }^{248}$

Scheme 41

8. Conclusions

Interest in the chemistry of 3-formylchromone and its use as a synthon for several novel heterocyclic systems has been amply vindicated by a spate of publications. The present article, complementary to an earlier one ${ }^{6}$ is a comprehensive survey of a huge number of publications that have appeared mainly since 2007 to February 2014 and it provides a quick view of the research work already done in the title topic.

Acknowledgements

Helpful discussion with Dr. C. Bandyopadhyay, Department of Chemistry, R. K. Mission Vivekananda Centenary College, Rahara, Kolkata 700118 India, who is presently having significant contribution in the title subject is gratefully acknowledged. A.C. acknowledges IACS for a research fellowship.

References

1. Gasparova, R.; Lacova, M. Molecules 2005, 10, 937-960.
http://dx.doi.org/10.3390/10080937
2. Plaskon, A. S.; Grygorenko, O. O.; Ryabukhin, S. V. Tetrahedron 2012, 68, 2743-2757. http://dx.doi.org/10.1016/j.tet.2012.01.077
3. Ibrahim, M. A.; El-Sayed Ali, T.; El-Gohary, N. M.; El-Kazak, A. M. Eur. J. Chem. 2013, 4, 311-328.
http://dx.doi.org/10.5155/eurjchem.4.3.311-328.815
4. Sabitha, G. Aldrichimica Acta 1996, 29, 15-25.
5. Ghosh, C. K. J. Heterocycl. Chem. 1983, 20, 1437-1445.
http://dx.doi.org/10.1002/jhet. 5570200601
6. Ghosh, C. K.; Patra, A. J. Heterocycl. Chem. 2008, 45, 1529-1547.
http://dx.doi.org/10.1002/jhet. 5570450601
7. Akanksha; Maiti, D. Green Chem. 2012, 14, 2314-2320.
8. Modak, A.; Deb, A.; Patra, T.; Rana, S.; Maity, S.; Maiti, D. Chem. Commun. 2012, 48, 4253-4255.
http://dx.doi.org/10.1039/c2cc31144e
9. Ibrahim, M. A. Tetrahedron 2009, 65, 7687-7690.
http://dx.doi.org/10.1016/j.tet.2009.06.107
10. Sun, W.; Carrol, P. J.; Soprano, D. R.; Canney, D. J. Bioorg. Med. Chem. Lett. 2009, 19, 4339-4342.
http://dx.doi.org/10.1016/j.bmcl.2009.05.081
11. Dey, S. P.; Dey. S. K.; Mallik, A. K.; Dahlenburg, L. J. Chem. Research 2007, 97-98.
12. Bandyopadhyay, C.; Sur, K. R.; Das, H. K. J. Chem. Res(S) 1999, 598-599; (M) 1999, 2561-2568.
13. Ambartsumyan, A. A.; Vasil'eva, T. T.; Chakhovskaya, O. V.; Mysova, N. E.; Tuskaev, V. A.; Khrustalev, V. N.; Kochetkov, K. A. Russ. J. Org. Chem. 2012, 48, 451-455.
http://dx.doi.org/10.1134/S1070428012030207
14. Zimmerman, J. R.; Manpadi, M.; Spatney, R.; Baker, A. J. Org. Chem. 2011, 76, 80768081.
http://dx.doi.org/10.1021/jo201350w
15. Jadav, J. S.; Reddy, B. V. S.; Sreedhar, P.; Kondaji, G.; Nagaiah, K. Catal. Commun. 2008, 9, 590-593.
http://dx.doi.org/10.1016/j.catcom.2007.02.031
16. Azarifar, D.; Ghasemnejad, H.; Razanian-Lehmali, F. Mendeleev Commun. 2005, 15, 209210. http://dx.doi.org/10.1070/MC2005v015n05ABEH002124
17. Jung, M.; Yoon, J.; Kim, H. S.; Ryu, J.-S. Synthesis 2010, 2713-2720.
18. Shelke, K. F.; Sapkal, S. B.; Kakade, G. K.; Shinde, P. V.; Shingate, B. B.; Shingare, M. S. Chinese Chem. Lett. 2009, 20, 1453-1456.
http://dx.doi.org/10.1016/j.cclet.2009.07.009
19. Shelke, K. F.; Sapkal, S. B.; Kategaonkar, A.; Shingate, B. B.; Shingare, M. S. S. Afr. J. Chem. 2009, 62, 109-112.
20. Shindalkar, S. S.; Madje, B. R.; Shingare, M. S. Mendeleev Commun. 2007, 17, 43-44. http://dx.doi.org/10.1016/j.mencom.2007.01.017
21. Azarifar, D.; Forghaniha, A. J. Chin. Chem. Soc. 2006, 53, 1189-1192.
22. Madabhushi, S.; Reddy Malu, K. K.; Chinthala, N.; Beeram, C. R.; Vangipuram, V. S. Tetrahedron Lett. 2012, 53, 697-701.
http://dx.doi.org/10.1016/j.tetlet.2011.11.135
23. Raj, T.; Ishar, M. P. S.; Gupta, V.; Pannu, A. P. S.; Kanwal, P.; Singh, G Tetrahedron Lett. 2008, 49, 243-246.
http://dx.doi.org/10.1016/j.tetlet.2007.11.081
24. Raj, T.; Kaur Bhatia, R.; Sharma, R. K.; Gupta, G.; Sharma, D.; Ishar, M. P. S. Eur. J. Med. Chem. 2009, 44, 3209-3216.
http://dx.doi.org/10.1016/j.ejmech.2009.03.030
25. Raj, T.; Kaur Bhatia, R.; Kapur, A.; Sharma, M.; Saxena, A. K.; Ishar, M. P. S. Eur. J. Med. Chem. 2010, 45, 790-794.
http://dx.doi.org/10.1016/j.ejmech.2009.11.001
26. Tharmaraj, P.; Kodimunthiri, D.; Sheela, C. D.; Shanmuga Priya, C. S. J. Coord. Chem. 2009, 62, 2220-2228.
http://dx.doi.org/10.1080/00958970902783576
27. Arjmand, F.; Yousuf, I. J. Organomet. Chem. 2013, 743, 55-62.
http://dx.doi.org/10.1016/j.jorganchem.2013.06.018
28. Figueiredo, A. G. P. R.; Tome, A. C.; Silva, A. M. S.; Cavaleiro, J. A. S. Tetrahedron 2007, 63, 910-917.
http://dx.doi.org/10.1016/j.tet.2006.11.034
29. Plaskon, A. S.; Ryabukhin, S. V.; Volochnyuk, D. M.; Shivanyuk, A. N.; Tolmachev, A. A. Tetrahedron 2008, 64, 5933-5943.
http://dx.doi.org/10.1016/j.tet.2008.04.041
30. Galal, S. A.; Abd El-All, A. S.; Hegab, K. H.; Magd El-Din, A. A.; El-Diwani, H. I.; Youssef. N. S. Eur. J. Med. Chem. 2010, 45, 3035-3046.
http://dx.doi.org/10.1016/j.ejmech.2010.03.034
31. Prajapati, D.; Gohain, M. Synth. Commun. 2008, 38, 4426-4433.
http://dx.doi.org/10.1080/00397910802369547
32. Ghosh, C. K.; Khan, S. Synthesis 1981, 719-721.
http://dx.doi.org/10.1055/s-1981-29574
33. Delvi, N. R.; Shelke, S. N.; Karale, B. K.; Gill, C. H. Synth. Commun. 2007, 37, 14211424.
http://dx.doi.org/10.1080/00397910500385266
34. Shelke, S. N.; Pawar, Y. J.; Pawar, S. B.; Golap, S. S.; Gill, C. H. J. Indian Chem. Soc. 2011, 88, 461-463.
35. Siddiqui, Z. N.; Farooq, F. J. Chem. Sci. (Bangalore, India) 2012, 124, 1097-1105. http://dx.doi.org/10.1007/s12039-012-0300-y
36. Malecka, M.; Ciolkowski, M.; Budzisz, E. Acta Crystallogr. Sect. E: Struct. Rep. Online 2010, 66, 246.
http://dx.doi.org/10.1107/S1600536809054889
37. Dziewulska-Kulaczkowska, A.; Mazur, L. J. Mol. Struct. 2011, 985, 233-242. http://dx.doi.org/10.1016/j.molstruc.2010.10.049
38. Dziewulska-Kulaczkowska, A.; Bartyzel, A. J. Mol. Struct. 2011, 997, 87-93; 2013, 1033, 67-74.
39. al-Rashida, M.; Tahir, M. N.; Nagra, S. A.; Imran, M.; Iqbal, J. Acta Crystallogr. Sect. E: Struct. Rep. Online, 2009, 65, 1818-1819. http://dx.doi.org/10.1107/S1600536809026154
40. (a) al-Rashida, M.; Ashraf, M.; Hussain, B.; Nagra, S. A.; Abbas, G. Bioorg. Med. Chem. 2011, 19, 3367-3371
http://dx.doi.org/10.1016/j.bmc.2011.04.040
(b) Ekinci, D.; al-Rashida, M.; Abbas, G.; Sentrük, M. Supuran, C. T. J. Enz. Inhib. Med. Chem. 2012, 27, 744-747
http://dx.doi.org/10.3109/14756366.2011.614607
(c) al-Rashida, M.; Raja, R.; Abbas, G.; Shah, M. S.; Kostakis, G. E.; Lecka, J.; Sevigny. J.; Muddassar, M.; Papatriantafyllopoulou, C.; Iqbal, J. Eur. J. Med. Chem. 2013, 66, 438-439. http://dx.doi.org/10.1016/j.ejmech.2013.06.015
41. Kamal, A.; Bharathi, E. V.; Ramaiah, M. J.; Reddy, J. S.; Dastagiri, D.; Viswanath, A.; Sultana, F.; Pushpavalli, S. N. C. V. L.; Pal-Vadra, M.; Juvekar, A.; Sen, S.; Zingde, S. Bioorg. Med. Chem. Lett. 2010, 20, 3310-3313.
http://dx.doi.org/10.1016/j.bmcl.2010.04.037
42. (a) Khan, K. M.; Ambreen, N.; Hussain, S.; Perveen, S.; Iqbal Choudhary, M. Bioorg. Med. Chem. 2009, 17, 2983-2988.
http://dx.doi.org/10.1016/j.bmc.2009.03.020
(b) Khan, K. M.; Ahmad, A.; Ambreen, N.; Amyn, A.; Perveen, S.; Khan, S. A.; Iqbal Choudhary, M. Lett. Drug Des. Discov. 2009, 6, 363-373.
43. Khan, K. M.; Ambreen, N.; Mughal, U. R.; Jalil, S.; Perveen, S.; Iqbal Choudhary, M. Eur. J. Med. Chem. 2010, 45, 4058-4064.
http://dx.doi.org/10.1016/j.ejmech.2010.05.065
44. (a) Zhou, H.; Wang, H. L. Hubei Minzu Xueyuan Xuebao, Ziran Kexueban 2009, 27, 154155.
(b) Feng, F.; Nie, X.; Hu, W.; Liu, H.; Huang, L. ibid 2008, 26, 78-77.
45. Wang, J.; Liu, J.; Miao, C.; Li, G. Huaxue Shiji 2006, 28, 45-46.
46. Wang, J.; Song, Y.; Gao, X. Hencheng Hauxe 2008, 16, 225-226.
47. Reddy, G. J.; Manjula, D.; Rao, K. S.; Khalilullah, M.; Latha, D.; Thirupathiah, C. Heterocycl. Commun. 2006, 12, 19-24.
48. Mamatha, K.; Mogili, R.; Ravinder, M.; Srihari, S. J. Indian Council Chemists 2007, 24, 48.
49. Rupini, B.; Mamatha, K.; Mogili, R.; Ravinder, M.; Srihari, S. Int. J. Chem. Sci. 2007, 8, 2203-2210.
50. Yan, K.; Liu, J.; Cao, L.-H. Youji Hauxue 2006, 26, 387-390.
51. Li, Y.; Yang, Z.; Li, T.; Liu, Z.; Wang, B. J. Fluoresc. 2011, 21, 1091-1102. http://dx.doi.org/10.1007/s10895-010-0782-2
52. Pandey, V.; Chawla, V.; Saraf, S. K. Med. Chem. Res. 2012, 21, 844-852. http://dx.doi.org/10.1007/s00044-011-9592-6
53. Dziewulska-Kulaczkowska, A. J. Therm. Anal. Calorim. 2010, 101, 1019-1026. http://dx.doi.org/10.1007/s10973-009-0605-3
54. Xu, H.; Liu, Z.; Sheng, L.; Chen, M.; Huang, D.; Zhang, H.; Song, C.; Chen, S. New. J. Chem. 2013, 37, 274-277. http://dx.doi.org/10.1039/c2nj40767a
55. Kalanithi, M.; Kodimunthiri, D.; Rajarajan, M.; Tharmaraj, P. Spectrochimica Acta, Part A: Mol. Biomol. Spectroscopy 2011, 82, 290-298.
http://dx.doi.org/10.1016/j.saa.2011.07.051
56. Anitha, C.; Sheela, C. D.; Tharmaraj, P.; JohnsonRaja, S. Spectrochim. Acta, A 2012, 98, 35-42.
http://dx.doi.org/10.1016/j.saa.2012.08.022
57. Kavitha, P.; Saritha, M.; Laxma Reddy, K. Spectrochim. Acta, Part A 2013, 102, 159-168. http://dx.doi.org/10.1016/j.saa.2012.10.037
58. Ryabukhin, S. V.; Plaskon, A. S.; Volchnyuk, D. M.; Tolmachev, A. A. Synthesis 2007, 1861-1871.
59. Plaskon, A. S.; Ryabukhin, S. V.; Volchnyuk, D. M.; Gavrilenko, K. S.; Shivanyuk, A. N.; Tolmachev, A. A. J. Org. Chem. 2008, 73, 6010-6013.
http://dx.doi.org/10.1021/jo800950y
60. Jin, Y.; Li, Z. Zhejiang Huagong 2011, 42, 6-8.
61. Sriram, D.; Yogeswari, P.; Dinakaran, M.; Banerjee, D.; Bhat, P.; Gadhwal, S. Eur. J. Med. Chem. 2010, 45, 120-123. http://dx.doi.org/10.1016/j.ejmech.2009.09.033
62. Maiti, S.; Panja, S. K.; Bandyopadhyay, C. Indian J. Chem. 2009, 48B, 1447-1452.
63. Kumar, V.; Khandare, D. G.; Chatterjee, A.; Banerjee, M. Tetrahedron Lett. 2013, 54, 5505-5509.
http://dx.doi.org/10.1016/j.tetlet.2013.07.147
64. Grolik, J.; Sieron, L.; Eilmes, J. Tetrahedron Lett. 2006, 47, 8209-8213. http://dx.doi.org/10.1016/j.tetlet.2006.09.134
65. Grolik, J.; Dudek, L.; Eilmes, J. Tetrahedron Lett. 2012, 53, 5127-5130. http://dx.doi.org/10.1016/j.tetlet.2012.07.053
66. Grolik, J.; Dudek, L.; Eilmes, J.; Eilmes, A.; Gorecki, M.; Frelek, J.; Heinrich, B.; Donnio, B. Tetrahedron 2012, 68, 3875-3884.
http://dx.doi.org/10.1016/j.tet.2012.03.037
67. Grolik, J.; Zwolinksi, K.; Sieron, L.; Eilmes, J. Tetrahedron 2011, 67, 2623-2632. http://dx.doi.org/10.1016/j.tet.2011.02.010
68. Grolik, J.; Dominiak, P. M.; Sieron, L.; Wozniak, K.; Eilmes, J. Tetrahedron 2008, 64, 7796-7806.
http://dx.doi.org/10.1016/j.tet.2008.05.124
69. Booysen, I. N.; Ismail, M.. B.; Munro, O. Q. Inorg. Chem. Commun. 2013, 30, 168-172. http://dx.doi.org/10.1016/j.inoche.2013.01.032
70. Kuarm, B. S.; Janardan, B.; Crooks, P. A.; Rajitha, B. Chinese J. Chem. 2012, 30, 947-950. http://dx.doi.org/10.1002/cjoc. 201100137
71. Kuarm, B. S.; Madhav, J. V.; Rajitha, B.; Reddy, Y. T.; Reddy, P. N.; Crooks, P. A. Synth. Commun. 2011, 41, 662-669.
http://dx.doi.org/10.1080/00397911003632899
72. Abdel-Magid, M. Chem. Heterocycl. Compd. 2009, 45, 1523-1531; J. Chem and Chem. Engineering 2010, 4, 32-40.
73. Govinda Chary, K.; Mamatha, K.; Mogili, R.; Ravinder, M.; Srihari, S. Int. J. Chem. Sci. 2007, 5, 1039-1046.
74. Li, Y.; Yang, Z. -Y. J. Fluoresc. 2010, 20, 329-342.
http://dx.doi.org/10.1007/s10895-009-0561-0
75. Padmaja, M.; Pragathi, J.; Anupama, B.; Gyana Kumari, C. J. Chem. 2012, 9, 2145-2154.
76. Li, D.; Han, X.; Tu, Q. D.; Feng, L.; Wu, D.; Sun, Y.; Chen, H.; Li, Y.; Ren, Y. L.; Wan, J. J. Agric. Food. Chem. 2013, 61, 7453-7461. http://dx.doi.org/10.1021/jf401939h
77. Tu, Q.-D.; Li, D.; Sun, Y.; Han, X.-Y.; Yi, F.; Sha, Y.; Ren, Y. L.; Ding, M. W.; Feng, L. L.; Wan, J. Bioorg. Med. Chem. 2013, 21, 2826-2831. http://dx.doi.org/10.1016/j.bmc.2013.04.003
78. Li, Y.; Yang, Z. J. Coord. Chem. 2010, 63, 1960-1968. http://dx.doi.org/10.1080/00958972.2010.496127
79. (a) Tao, J.; Yang, J. Shihezi Daxue Xuebao, Ziran Kexuban 2009, 27, 231-234. (b) Tao, J. Adv. Mater. Res. 2012, 361-362.
80. Li, Y.; Yang, Z.-Y.; Liao, Z.-C.; Han, Z.-C.; Liu, Z.-C. Inorg. Chem. Commun. 2010, 13, 1213-1216.
http://dx.doi.org/10.1016/j.inoche.2010.07.005
81. Li, Y.; Yang, Z.-Y.; Wu, J.-C. Eur. J. Med. Chem. 2010, 45, 5692-5701. http://dx.doi.org/10.1016/j.ejmech.2010.09.025
82. Wang, B.-D.; Yang, Z.-Y.; Lu, M.-H.; Hai, J.; Wang, Q.; Chen, Z.-N. J. Organomet. Chem. 2009, 694, 4069-4075. http://dx.doi.org/10.1016/j.ejmech.2010.09.025
83. El-Gammal, O. A.; El-Reash, G. A.; Ahmed, S. F. J. Mol. Struct. 2012, 1007, 1-10. http://dx.doi.org/10.1016/j.molstruc.2011.03.043
84. Shelke, S. N.; Gill, G. H.; More, M. S.; Kale, S. B.; Sonwane, S. M.; Karale B. K. Org. Chem.: Indian J. 2007, 3, 40-44.
85. Narwade, S. K.; Karale, B. K.; Jagdhani, S. G.; Chaudhari, C. S.; Rindhe, S. S. Orient. J. Chem. 2008, 24, 1029-1034.
86. Gadakh, A. V.; Pandit, C.; Rindhe, S. S.; Karale, B. K. Bioorg. Med. Chem. Lett. 2010, 20, 5572-5576.
http://dx.doi.org/10.1016/j.bmcl.2010.07.019
87. More, M. S.; Karale, B. K. Orient. J. Chem. 2007, 23, 329-334.
88. Randhavane, P. V.; Kale, S. B.; Jaghdhai, S. G.; Karale, B. K. Indian J. Heterocycl. Chem. 2007, 17, 153-156.
89. Mogilaiah, K.; Srivani, N.; Chandra, A. V.; Rao, A. N. Indian J. Heterocycl. Chem. 2012, 22, 185-190.
90. Zhou, Z.-Z.; Chen, Q.; Yang, G.-F. Youji Huaxue 2008, 28, 1385-1392.
91. Babu, M.; Pitchumani, K.; Ramesh, P. Med. Chem. Res. 2013, 22, 2964-2974. http://dx.doi.org/10.1007/s00044-012-0259-8
92. Lazarenkow, A.; Nawrot-Modranka, J.; Brzezinska, E.; Krajewska, U.; Rozalski, M. Med. Chem. Res. 2012, 21, 1861-1868. http://dx.doi.org/10.1007/s00044-011-9703-4
93. Ali, T. E. Arkivoc 2008, (ii), 71-79.
94. (a) Sosnovskikh, V. Y.; Moshkin, V. S.; Kodess, M. I. Tetrahedron Lett. 2008, 49, 68566859.
http://dx.doi.org/10.1016/j.tetlet.2008.09.091
(b) Sosnovskikh, V. Y.; Moshkin, V. S. Russ. Chem. Bull. Int. Ed. 2010, 59, 1056-1058.
95. Saikia, L.; Das, S.; Thakur, A. J. Synth. Commun. 2011, 41, 1071-1076.
http://dx.doi.org/10.1080/003h97911003797783
96. Sonar, S. S.; Kategaonkar, A. H.; Ware, M. N.; Gill. C. H.; Shigate, B. B.; Shingare, M. S. Arkivoc 2009, (ii), 138-148.
http://dx.doi.org/10.3998/ark.5550190.0010.215
97. Mandhane, P. G.; Joshi, R. S.; Nagargoje, D. R.; Gill, C. H. Tetrahedron Lett. 2010, 51, 1490-1492.
http://dx.doi.org/10.1016/j.tetlet.2010.01.031
98. Sadaphal, S. A.; Sonar, S. S.; Pokalwar, R.; Shitole, N. V.; Shingare, M. S. J. Korean Chem. Soc. 2009, 53, 536-541. http://dx.doi.org/10.5012/jkcs.2009.53.5.536
99. Hatzade, K. M.; Taile, V. S.; Gaidhane, P. K.; Halder, A. G. M.; Ingle, V. N. Indian J. Chem. 2008, 47B, 1260-1270.
100. Mohane, S. R.; Thakare, V. G.; Berad, B. N. Asian J. Chem. 2009, 21, 7422-7424.
101. Siddiqui, Z. N.; Praveen, S.; Mustafa, T. N. M.; Ahmad, A.; Khan, A. U. J. Enz. Inhib. Med. Chem. 2012, 27, 84-91.
http://dx.doi.org/10.3109/14756366.2011.577035
102. Abass, M.; Abdel-Megid, M.; Hassan, M. Synth. Commun. 2007, 37, 329-352.
http://dx.doi.org/10.1080/00397910601033930
103. (a) Siddiqui, Z. N.; Mustafa, T. N. M. Tetrahedron Lett. 2011, 52, 4008-4013. http://dx.doi.org/10.1016/j.tetlet.2011.05.118
(b) Mustafa, T. N. M.; Siddiqui, Z. N.; Hussain, F. M.; Ahmad, I. Med. Chem. Res. 2010, 19, 1473-1481.
(c) Mustafa, T. N. M.; Siddiqui, Z. N.; Hussain, F. M. Med. Chem. Res. 2011, 20, 14731481.
http://dx.doi.org/10.1007/s00044-010-9386-2
(d) Siddqui, Z. N.; Asad, M.; Praveen, S. Med. Chem. Res. 2008, 17, 318-325.
http://dx.doi.org/10.1007/s00044-007-9067-y
104. Kumar, D.; Suresh; Sandhu, J. S. Green Chem. Lett. Rev. 2010, 3, 283-286. http://dx.doi.org/10.1080/17518251003776893
105. Waldmann, H.; Karunakar, G. V.; Kumar, K. Org. Lett. 2008, 10, 2159-2162.
http://dx.doi.org/10.1021/ol8005634
106. Abdel-Megid, M.; Gabr, Y.; Awas, M. A. A.; Abdel-Fattah, N. M. Chem. Heterocycl. Compd. 2009, 45, 1354-1364. http://dx.doi.org/10.1007/s10593-010-0433-1
107. LeBihan, J.-Y.; Faux, N.; Caro, B.; Robin-Le Guen, F.; Le Poul, P. J. Organomet. Chem. 2007, 692, 5517-5522. http://dx.doi.org/10.1016/j.jorganchem.2007.08.039
108. Suresh; Kumar, D.; Sandhu, J. S. Indian J. Chem. 2012, 51B, 1743-1748.
109. Suresh; Kumar, D.; Sandhu, J. S. Indian J. Chem. 2011, 50B, 1479-1483.
110. Shelke, K. F.; Sapkal, S. B.; Niralwad, K. S.; Shingate, B. B.; Shingare, M. S. Cent. Eur. J. Chem. 2010, 8, 12-18.
http://dx.doi.org/10.2478/s11532-009-0111-2
111. Saha, S.; Ghosh, T.; Bandyopadhyay, C. Synth. Commun. 2008, 38, 2429-2436.
http://dx.doi.org/10.1080/00397910802139049
112. Ibrahim, S. S.; Allimony, H. A.; Abdel-Halim, A. M.; Ibrahim, M. A. Arkivoc 2009, (xiv), 28-38.
113. Carvaih, S. A.; Desilva, E. F.; Desouza, M. N.; Lourence, M. C. S.; Reckova, R. R. F. Bioorg. Med. Chem. Lett. 2008, 18, 538-541.
http://dx.doi.org/10.1016/j.bmcl.2007.11.091
114. Joshi, R. S.; Mandhane, P. G.; Badadhe, P. V.; Gill, C. H. Ultrason. Sonochem. 2011, 18, 735-738. http://dx.doi.org/10.1016/j.ultsonch.2010.11.001
115. Karmakar, P.; Ghosh, T.; Chakrabarty, D.; Maiti, S.; Bandyopadhyay, C. J. Chem. Res. 2008, 208-211.
116. Lacova, M.; Gasparova, R.; Kois, P.; Bohac, A.; El-Shaaer, H. M. Tetrahedron 2010, 66, 1410-1419.
http://dx.doi.org/10.1016/j.tet.2009.11.057
117. Kovacikova, L.; Gasparova, R.; Bohac, A.; Durana, M.; Lacova, M. Arkivoc 2010, (xi), 188-203.
118. Lacova, M.; Stankovicova, H.; Bohac, A.; Kotzianova, B. Tetrahedron 2008, 64, 96469653.
http://dx.doi.org/10.1016/j.tet.2008.07.032
119. Silva, V. L. M.; Silva, A. M. S.; Pinto, D. G. C. A.; Cavaleiro, J. A. S.; Vasas, A.; Patonay, T. Monatsch. Chemie 2008, 139, 1307-1315.
http://dx.doi.org/10.1007/s00706-008-0926-0
120. Patonay, T.; Kiss-Szikszai, A.; Silva, V. M. L.; Silva, A. M. S.; Pinto, D. C. G. A.; Cavaleiro, J. A. S.; Jeko, J. Eur. J. Org. Chem. 2008, 1937-1946.
http://dx.doi.org/10.1002/ejoc. 200701081
121. Conti, C.; Desideri, N. Bioorg. Med. Chem. 2010, 18, 6480-6488.
http://dx.doi.org/10.1016/j.bmc.2010.06.103
122. Gaikar, R. B.; Gadhave, A. G.; Karale, B. K. Indian J. Heterocycl. Chem. 2012, 22, 53-60.
123. (a) Diwakar, S. D.; Bhagwat, S. S.; Shingare, M. S.; Gill, C. H. Biorg. Med. Chem. Lett. 2008, 18, 4678-4681
http://dx.doi.org/10.1016/j.bmc.2010.06.103
(b) Diwakar, S. D.; Joshi, R. S.; Gill, C. H. J. Heterocycl. Chem. 2011, 48, 882-887.
http://dx.doi.org/10.1002/jhet. 656
124. Plaskon, A. S.; Volochnyuk, D. M.; Tolmachev, A. A. Synthesis 2007, 3155-3162.
125. Plaskon, A. S.; Ryabukhin, S. V.; Volochnyuk, D. M.; Tolmachev, A. A. Synthesis 2008, 1069-1077.
126. Terzidis, M. A.; Tsoleridis, C. A.; Stephanidou-Stephanatou, J.; Terzis, A.; Raptopoulou, C. P.; Psycharis, V. Tetrahedron 2008, 64, 11611-11617.
http://dx.doi.org/10.1016/j.tet.2008.10.023
127. Holtz, E.; Albrecht, U.; Langer, P. Tetrahedron 2007, 63, 3293-3301.
http://dx.doi.org/10.1016/j.tet.2007.02.062
128. (a) Sun, W.; Desai, S.; Piao, H.; Carrol, P.; Canney, D. J. Heterocycles 2007, 71, 557-567. http://dx.doi.org/10.3987/COM-07-11140
(b) Desai, S.; Sun, W.; Canney, D, J.; Gabriel, J. Heterocycl. Commun. 2008, 14, 129-136.
129. Sengupta, T.; Gayen, K. S.; Pandit, P.; Maiti, D. K. Chem.-Eur. J. 2012, 18, 1905-1909. http://dx.doi.org/10.1002/chem. 201103354
130. Ibrahim, M. A.; Abdel-Megid Abdel-Hamed, M.; El-Gohary, N. M. J. Brazil. Chem. Soc. 2011, 22, 1130-1139.
http://dx.doi.org/10.1590/S0103-50532011000600019
131. Suresh; Sandhu, J. S. Int. J. Org. Chem. 2012, 2, 305-310.
132. Suresh; Sandhu, J. S. Org. Med. Chem. Lett. 2013, 3, 1-6.
133. (a) Singh, P.; Kaur, M.; Holzer, W. Eur. J. Med. Chem. 2010, 45, 4968-4982
http://dx.doi.org/10.1016/j.ejmech.2010.08.004
(b) Liu, J.; Deng, L.; Dang, S. Hecheng Hиахие 2008, 16, 93-95.
134. (a) Jagadhani, S. G.; Kale, S. B.; Chaudhari, C. S.; Sangle, M. D.; Randhavane, P. V.; Karale, B. K. Indian J. Heterocycl. Chem. 2007, 16, 255-258.
(b) Shelke, S. N.; Dalvi, N. R.; Kale, S. B.; More, M. S.; Gill, C. H.; Karale, B. K. Indian J. Chem. 2007, 46B, 1174-1178.
(c) Gadhave, A.; Kuchekar, S.; Karale, B. K. J. Chem. 2013, Article ID 741953, 9pp.
135. Abass, M.; Othman, E. S.; Hassan, A. Synth. Commun. 2007, 37, 607-621.
http://dx.doi.org/10.1080/00397910601055180
136. Khodairy, A. J. Chin. Chem. Soc. 2007, 54, 93-102.
137. Deng, L.; Liu, J.; Dang, S. Henan Shifan Daxue Xuebao, Ziran Kexueban 2007, 35, 185186.
138. (a) Shindalkar, S. S.; Madje, B. R.; Shingare, M. S. Indian J. Chem. 2006, 45B, 2571-2573.
(b) Deng, L.; Liu, J.; Dang, S. Huaxue Shiji 2007, 29, 111-112.
139. Shelke, K. F.; Madje, B. R.; Sapkal, S. B.; Shingate B. B.; Shingare, M. S. Green Chem. Lett. Rev. 2009, 2, 3-7.
http://dx.doi.org/10.1080/17518250902763101
140. Hui, Y.-H.; Cao, L.-H. Youji Hиaxue 2006, 26, 391-395.
141. Bozdag-Dundar, O.; Evranos, B.; Das-Evcimen, N.; Sarikaya, M.; Ertan, R. Eur. J. Med. Chem. 2008, 43, 2412-2417. http://dx.doi.org/10.1016/j.ejmech.2008.01.004
142. Ceylan-Uenluesoy, M.; Verspohl, E. J.; Ertan, R. J. Enz. Inhib. Med. Chem. 2010, 25, 784789.
http://dx.doi.org/10.3109/14756360903357544
143. Gaikar, R. B.; Gadhave, A. G.; Karale, B. K. Indian J. Heterocycl. Chem. 2010, 19, 325328.
144. Bozdag-Dundar, O.; Ceylan- Uenluesoy, M.; Versphol, E. J.; Ertan, R. Arz. Forsch. 2007, 57, 532-536.
145. Lardic, M.; Patry, C.; Duflos, M.; Guillon, J.; Massip, S.; Cruzalegui, F.; Edmonds, T.; Giraudet, S.; Marini, L.; Leonce, S. J. Enz. Inhib. Med. Chem. 2006, 21, 313-325. http://dx.doi.org/10.1080/14756360600741834
146. Sankar, T.; Gandhidasan, R.; Venkatraman, S. Indian J. Chem. 2011, 50B, 1202-1207.
147. Shindalkar, S. S.; Madje, B. R.; Hangarge, R. V.; Pratap, T.; Dongare, M. K.; Shingare, M. S. J. Korean Chem. Soc. 2005, 49, 377-380. http://dx.doi.org/10.5012/jkcs.2005.49.4.377
148. Siddiqui, Z. N.; Mustafa, T. N. M.; Praveen, S. Med. Chem. Res. 2013, 22, 127-133. http://dx.doi.org/10.1007/s00044-012-0013-2
149. Kuarm, B. S.; Rajitha, B. Synth. Commun. 2012, 42, 2382-2387. http://dx.doi.org/10.1080/00397911.2011.557516
150. Siddiqui, Z. N.; Mustafa, T. N. M.; Ahmad, A.; Khan, A. U. Arch. Pharm. (Weinheim) 2011, 344, 394-401.
http://dx.doi.org/10.1002/ardp. 201000218
151. Shutov, R. V.; Kuklina, E. V.; Ivin, B. A. Tetrahedron Lett. 2011, 52, 266-269.
http://dx.doi.org/10.1016/j.tetlet.2010.11.023
152. Shutov, R. V.; Kuklina, E. V.; Ivin, B. A. Russian J. Gen. Chem. 2009, 79, 1049-1051.
http://dx.doi.org/10.1134/S107036320905034X
153. Langer, P.; Appel, B. Tetrahedron Lett. 2003, 44, 7921-7923.
http://dx.doi.org/10.1016/j.tetlet.2003.09.008
154. (a) Nguyen, V. T. H.; Appel, B.; Langer, P. Tetrahedron 2006, 62, 7674-7686.
http://dx.doi.org/10.1016/j.tet.2006.05.076
(b) Appel, B.; Rotzoll, S.; Kranich, R.; Reinke, H.; Langer, P. Eur. J. Org. Chem. 2006, 3638-3644.
http://dx.doi.org/10.1002/ejoc. 200600082
(c) Lube, M.; Appel, B.; Flemming, A.; Fischer, C.; Langer, P. Tetrahedron 2006, 62, 11755-11759.
http://dx.doi.org/10.1016/j.tet.2006.09.029
155. Langer, P. Synlett 2007, 1016-1025.
http://dx.doi.org/10.1055/s-2007-973894
156. (a) Rashid, M. A.; Rasool, N.; Adeel, M.; Reinke, H.; Fischer, C.; Langer, P. Tetrahedron 2008, 64, 3782-3793.
http://dx.doi.org/10.1016/j.tet.2008.02.010
(b) Iqbal, I.; Imran, M.; Rashid, M. A.; Hussain, M.; Villinger, A.; Langer, P.; Fischer, C. Tetrahedron 2009, 65, 7562-7572.
http://dx.doi.org/10.1016/j.tet.2009.06.119
157. (a) Wolf, V.; Adeel, M.; Reim, S.; Villinger, A.; Fischer, C.; Langer, P. Eur. J. Org. Chem. 2009, 5854-5867.
http://dx.doi.org/10.1002/ejoc. 200900816
(b) Reim, S.; Langer, P. Tetrahedron Lett. 2008, 49, 2329-2332.
http://dx.doi.org/10.1016/j.tetlet.2008.01.139
158. Adeel, M.; Nawaz, M.; Villinger, A.; Reinke, H.; Fischer, C.; Langer, P. Tetrahedron 2009, 65, 4099-4105.
http://dx.doi.org/10.1016/j.tet.2009.03.070
159. Nawaz, M.; Ullah, I.; Ur-Rahaman Abid, O.; Villinger, A.; Langer, P. Eur. J. Org. Chem. 2011, 6670-6694.
http://dx.doi.org/10.1002/ejoc. 201100762
160. Fawzy, M. N. Heterocycl. Commun. 2008, 14, 169-182. http://dx.doi.org/10.1515/HC.2008.14.3.169
161. Ryabukhin, S. V.; Plaskon, A. S.; Volochnyuk, D. M.; Tolmachev, A. A. Synthesis 2007, 1861-1871.
162. Yaqub, M.; Perveen, R.; Shafiq, Z.; Pervez, H.; Tahir, M. N. Synlett 2012, 1755-1758. http://dx.doi.org/10.1055/s-0031-1289787
163. Gabbutt, C. D.; Hargrove, T. F. L.; Heron, B. M.; Jones, D.; Poyner, C.; Yildiz, E.; Horton, P. N.; Hursthouse, M. B. Tetrahedron 2006, 62, 10945-10953.
http://dx.doi.org/10.1016/j.tet.2006.08.090
164. Venu Madhav, J.; Thirupathi Reddy, Y.; Narasimha Reddy, P.; Reddy, M. N.; Kuarm, S.; Cooks, P. A.; Rajitha, B. J. Mol. Catal. A: Chem. 2009, 304, 85-87.
http://dx.doi.org/10.1016/j.molcata.2009.01.028
165. Fadda, A. A.; El-Mekawy, R. E.; El-Shafei, A.; Freeman, H. Arch. Pharm. Chem. Life Sci. 2013, 346, 53-61.
http://dx.doi.org/10.1002/ardp. 201200313
166. Singh, R. S.; Yadav, M.; Gupta, R. K.; Pandey, R.; Pandey, D. S. Dalton Trans. 2013, 42, 1696-1707.
http://dx.doi.org/10.1039/C2DT31820B
167. (a) Sosnovskikh, V. Y.; Irgashev, R. A. Tetrahedron Lett. 2007, 48, 7436-7439
http://dx.doi.org/10.1016/j.tetlet.2007.08.078
(b) Sosnovskikh, V. Y.; Irgashev, R. A.; Levchenko, A. A. Tetrahedron 2008, 64, 66076614.
http://dx.doi.org/10.1016/j.tet.2008.05.032
168. Huo, C.; Sun, C.; Wang, C.; Jia, X.; Chang, W. ACS Sust. Chem. Eng. 2013, 1, 549-553. http://dx.doi.org/10.1021/sc400033t
169. Siddiqui, Z. N.; Tarannum, S. Compt. Rend. Chemie 2013, 16, 829-837. http://dx.doi.org/10.1016/j.crci.2013.04.013
170. Reddy, C. R.; Ramesh, P.; Rao, N. N.; Ali, S. A. Eur. J. Org. Chem. 2011, 2133-2141. http://dx.doi.org/10.1002/ejoc. 201001739
171. Molefe, D. M.; Kaye, P. T. Synth. Commun. 2009, 39, 3586-3600.
http://dx.doi.org/10.1080/00397910902788166
172. Terzidis, M. A.; Tsiaras, V. G.; Stephanidou-Stephanatou, J.; Tsoleridis, A.; Psycharis, V.; Raptopoulou, C. P. Synthesis 2012, 44. 3392-3398. http://dx.doi.org/10.1055/s-0032-1316777
173. Khidre, M. D.; Kamal, A. A. Arkivoc 2008, (xvi), 189-201. http://dx.doi.org/10.3998/ark.5550190.0009g18
174. Fitton, A. O.; Kosmirak, M.; Suschitzky, H.; Suschitzky, J. L. J. Chem. Soc. Perkin Trans. 1 1985, 1741-1756.
175. (a) Figueiredo, A. G. P. R.; Tome, A. C.; Silva, A. M. S.; Cavaleiro, J. A. S. Tetrahedron 2007, 63, 910-917; (b) Ghosh, T.; Bandopadhyay, C. J. Chem. Res. 2007, 190-192.
176. Goel, R.; Sharma, V.; Budhiraja, A.; Ishar, M. P. S. Bioorg. Med. Chem. Lett. 2012, 22, 4665-4667.
http://dx.doi.org/10.1016/j.bmcl.2012.05.086
177. Singh, G.; Kaur, A.; Sharma, V.; Suri, N.; Sharma, P. R.; Saxena, A. K.; Ishar, M. P. S. Med. Chem. Commun. 2013, 4, 972-978.
http://dx.doi.org/10.1039/c3md00055a
178. Kapur, A.; Kumar, K.; Singh, L.; Singh, P.; Elango, M.; Subramanian, V.; Gupta, V.; Kanwal, P.; Ishar, M. P. S. Tetrahedron 2009, 65, 4593-4603.
http://dx.doi.org/10.1016/j.tet.2009.03.076
179. Terzidis, M.; Tsoleridis, C. A.; Stephanidou-Stephanatou, J. Tetrahedron 2007, 63, 78297832.
http://dx.doi.org/10.1016/j.tet.2007.05.100
180. Panja, S. K.; Maiti, S.; Banerjee, S.; Bandyopadhyay, C. Synlett 2010, 1909-1914.
181. Teimouri, M. B. Tetrahedron 2011, 67, 1837-1843.
http://dx.doi.org/10.1016/j.tet.2011.01.033
182. Panja, S. K.; Maiti, S.; Drew, M. G. B.; Bandyopadhyay, C. J. Chem. Res. 2011, 225-228.
183. Neo, A. G.; Garrido, L.; Diaz, J.; Marcaccini, S.; Marcos, C. F. Synlett 2012, 2227-2230.
184. Ghosh, C. K. J. Ind. Chem. Soc. 2013, 90, 1721-1736.
185. Terzidis, M. A.; Tsoleridis, C. A.; Stephanidou-Stephanatou, J. Arkivoc 2008, (xiv), 132157.
http://dx.doi.org/10.3998/ark.5550190.0009.e15
186. Terzidis, M. A.; Dimitriadou, E.; Tsoleridis, C. A.; Stephanidou-stephanatou, J. Tetrahedron Lett. 2009, 50, 2174-2176. http://dx.doi.org/10.1016/j.tetlet.2009.02.077
187. Terzidis, M. A.; Tsiars, V. G.; Stephanidou-stephanatou, J.; Tsoleridis, C. A. Synthesis 2011, 97-103.
http://dx.doi.org/10.1016/j.tetlet.2009.02.077
188. Baskar, B.; Dakas, P. -Y.; Kumar, K. Org. Lett. 2011, 13, 1988-1991.
http://dx.doi.org/10.1016/j.tetlet.2009.02.077
189. (a) Waldmann, H.; Khedkar, V.; Dueckert, H.; Schuermann, M.; Oppel, I. M.; Kumar, K. Angew. Chem. Int. Ed. 2008, 47, 1-5.
http://dx.doi.org/10.1002/anie. 200790254
(b) Dueckert, H.; Khedkar, V.; Waldmann, H.; Kumar, K. Chem.-Eur. J. 2011, 5130-5137. http://dx.doi.org/10.1002/chem. 201003572
190. Khedkar, V.; Liu, W.; Dueckert, H.; Kumar, K. Synlett 2010, 403-406. (erratum: Khedkar, V.; Liu, W.; Dueckert, H.; Kumar, K. Synlett 2010, 1576.)
191. Ghosh, C. K.; Tewari, N.; Bhattacharyya, A. Synthesis 1984, 614-615. http://dx.doi.org/10.1055/s-1984-30915
192. Panja, S. K.; Maiti, S.; Bandyopadhyay, C. J. Ind. Chem. Soc._2011, 88, 1577-1580.
193. Ceylan, S.; Coutable, L.; Wenger, J.; Kirsching, A. Chem.-Eur. J. 2011, 17, 1884-1893. http://dx.doi.org/10.1002/chem. 201002291
194. Mao, J.; Lin, A.; Shi, Y.; Mao, H.; Li, W.; Cheng, Y.; Zhu, C. J. Org. Chem. 2013, 78, 10233-10239.
http://dx.doi.org/10.1021/jo401592w
195. Dang, A. T.; Miller, D. O.; Dawe, L. N.; Bodwell, G. J. Org. Lett. 2008, 10, 233-236. http://dx.doi.org/10.1021/ol702614b
196. Heredia-Moya, J.; Krohn, K.; Florke, U.; Pessoa-Mahana, H.; Weiss-Lopez, B.; EstevezBraun, A.; Araya-Maturana, R. Heterocycles 2007, 71, 1327-1345.
http://dx.doi.org/10.3987/COM-07-11026
197. (a) Bodwell, G. J.; Hawco, K. M.; Satou, T. Synlett 2003, 879-881.
http://dx.doi.org/10.1055/s-2003-38746
(b) Bodwell, G. J.; Hawco, K. M.; DaSilva, R. P. Synlett 2003, 179-182.
http://dx.doi.org/10.1055/s-2003-36800
198. Tatsuta, K.; Kasai, S.; Amano, Y; Yamaguchi, T.; Seki, M.; Hosokawa, S. Chem. Lett. 2007, 36, 10-11.
http://dx.doi.org/10.1246/cl.2007.10
199. Raj, T.; Singh, N.; Ishar, M. P. S. Bioorg. Med. Chem. Lett. 2013, 23, 6093-6096. http://dx.doi.org/10.1016/j.bmcl.2013.09.024
200. Papafilippou, A.; Terzidis, M. A.; Stephanidou-stephanatou, J.; Tsoleridis, C. A. Tetrahedron Lett. 2011, 52, 1306-1309.
http://dx.doi.org/10.1016/j.tetlet.2011.01.063
201. Baskar, B.; Wittstein, K.; Sankar, M. G.; Khedkar, V.; Schuermann, M.; Kumar, K. Org. Lett. 2012, 14, 5924-5927.
http://dx.doi.org/10.1021/ol3028412
202. Garcia, A. B.; Schuermann, M.; Kumar, K. Synlett 2012, 23, 227-232.
203. Ramalingam, S.; Kumar, P. Catal. Lett. 2008, 125, 315-319.
http://dx.doi.org/10.1007/s10562-008-9562-x
204. Ramalingam, S.; Kumar, P. Catal. Commun. 2008, 9, 2445-2448.
http://dx.doi.org/10.1016/j.catcom.2008.06.011
205. (a) Luo, Y.-P.; Chen, Q. Chem. Pap. 2013, 67, 532-537.
(b) Salama, T. A.; Elmorsy, S. S.; Khalil, A. -G. M.; Ismail, M. A. Tetrahedron Lett. 2007, 48, 6199-6203.
http://dx.doi.org/10.1016/j.tetlet.2007.06.128
206. Mulla, S. A. R.; Salama, T. A.; Pathan, M. Y.; Inamdar, S. M.; Chavan, S. S. Tetrahedron Lett. 2013, 54, 672-675.
http://dx.doi.org/10.1016/j.tetlet.2012.12.004
207. Prajapati, D.; Gadhwal, S.; Sharma, R. Lett. Org. Chem. 2008, 5, 365-369.
http://dx.doi.org/10.2174/157017808784872133
208. Dolatkhah, Z.; Nasiri-Aghdam, M.; Bazgir, A. Tetrahedron Lett. 2013, 54, 1960-1962. http://dx.doi.org/10.1016/j.tetlet.2013.01.122
209. Zhou, Z.-Z.; Huang, W.; Ji, F.-Q. Ding, M.-W.; Yang, G.-F. Heteroat. Chem. 2007, 18, 381-389.
http://dx.doi.org/10.1002/hc. 20309
210. Sharma, V. P.; Kumar, P.; Sharma, M. Asian J. Chem. 2011, 23, 4616-4620.
211. Sosnovskikh, V. Y.; Irgashev, R. A.; Demkovich, I. A. Russ. Chem. Bull. 2008, 57, 22102213.
http://dx.doi.org/10.1002/hc. 20309
212. Bhila, V. G.; Patel, C. V.; Patel, N. H.; Brahmbhatt, D. I. Med. Chem. Res. 2013, 22, 43384346.
http://dx.doi.org/10.1007/s00044-012-0437-8
213. Ghosh, J.; Biswas, P.; Sarkar, T.; Drew, M. G. B.; Bandyopadhyay, C. Tetrahedron Lett. 2014, 55, 2924-2928.
http://dx.doi.org/10.1016/j.tetlet.2014.03.072
214. Sanchez, L. M.; Sathicq, A. G.; Jios, J. L.; Baronetti, G.; Thomas, H.; Romanelli, G. P. Tetrahedron Lett. 2011, 52, 4412-4416.
http://dx.doi.org/10.1016/j.tetlet.2011.06.048
215. Kiyani, H.; Ghorbani, F. Heterocycl. Lett. 2013, 3, 359-369.
216. Balalaie, S.; Ashouriha, M.; Rominger, F.; Bijanzadeh, H. R. Mol. Divers. 2013, 17, 55-61. http://dx.doi.org/10.1007/s11030-013-9423-4
217. Panja, S. K.; Maiti, S.; Drew, M. G. B.; Bandyopadhyay, C. Tetrahedron 2009, 65, 12761280.
http://dx.doi.org/10.1016/j.tet.2008.12.065
218. Dueckart, H.; Pries, V.; Khedkar, V.; Menninger, S.; Bruss, H.; Bird, A. W.; Maliga, Z.; Brockmeyer, A.; Janning, P.; Hyman, A.; Grimme, S.; Schuermann, M.; Preut, H.; Huebel, K.; Ziegler, S.; Kumar, K.; Waldmann, H. Nat. Chem. Biol. 2012, 8, 179-184. http://dx.doi.org/10.1038/nchembio. 758
219. Eschenbrenner-Lux, V.; Dueckert, H.; Khedkar, V.; Bruss, H.; Waldmann, H.; Kumar, K. Chem. Eur. J. 2013, 19, 2294-2304. http://dx.doi.org/10.1002/chem. 201203714
220. Wyatt, E. E.; Galloway, W. R. J. D.; Thomas, G. L.; Welch, M.; Loiseleur, O.; Plowright, A. T.; Spring, D. R. Chem. Commun. 2008, 4962-4964. http://dx.doi.org/10.1039/b812901k
221. Raju, B. C.; Rao, R. N.; Suman, P.; Yogeeswari, P.; Sriram, D. Bioorg. Med. Chem. Lett. 2011, 21, 2855-2859.
http://dx.doi.org/10.1039/b812901k
222. Rashmi, S. V.; Sandhya, N. C.; Raghava, B.; Kumara, M. N.; Mantelingu, K.; Rangappa, K. S. Synth. Commun. 2012, 42, 424-433. http://dx.doi.org/10.1080/00397911.2010.525335
223. Kuarm, B. S.; Madhav, J. V.; Laxmi, S. V.; Rajitha B. Synth. Commun. 2012, 42, 12111217.
http://dx.doi.org/10.1080/00397911.2010.538483
224. Ahmed, N.; Van Lier, J. E. Tetrahedron Lett. 2007, 48, 5407-5409.
http://dx.doi.org/10.1016/j.tetlet.2007.06.005
225. Aly, M. F.; Abbas-Temirek, H. H.; Elboray, E. E. Arkivoc 2010, (iii), 237-263.
226. Panja, S. K.; Karmakar, P.; Chakraborty, J.; Ghosh, T.; Bandyopadhyay, C. Tetrahedron Lett. 2008, 49, 4397-4401.
http://dx.doi.org/10.1016/j.tetlet.2008.05.018
227. Naskar, S.; Banerjee, M.; Hazra, A.; Mondal, S.; Maity, A.; Paira, R.; Sahu, K. B.; Saha, P.; Banerjee, S.; Mondal N. B. Tetrahedron Lett. 2011, 52, 1527-1531. http://dx.doi.org/10.1016/j.tetlet.2011.01.141
228. Terzidis, M. A.; Tsoleridis, C. A; Stephanidou-stephanatou, J. Synlett 2009, 229-232.
229. Subba Reddy, B. V.; Yadav, N. N.; Srivastava, N.; Yadav J. S.; Sridhar, B. Helv. Chim. Acta. 2012, 95, 76-86.
http://dx.doi.org/10.1002/hlca. 201100250
230. (a) Terzidis, M. A.; Stephanidou-stephanatou, J; Tsoleridis C, A Tetrahedron Lett. 2009, 50, 1196-1198
http://dx.doi.org/10.1016/j.tetlet.2008.12.106
(b) Terzidis, M. A.; Stephanidou-Stephanatou, J.; Tsoleridis, C. A.; Terzis, A.; Raptopoulou, C. P.; Psycharis, V. Tetrahedron 2010, 66, 947-954.
http://dx.doi.org/10.1016/j.tet.2009.11.096
231. Nikitina, P. A.; Kuzmina, L. G.; Perevalov, V. P.; Tkach, I. I. Tetrahedron 2013, 69, 32493256.
http://dx.doi.org/10.1016/j.tet.2013.02.039
232. Patil, N. T.; Huo, Z.; Yamamoto, Y. Tetrahedron 2007, 63, 5954-5961. http://dx.doi.org/10.1016/j.tet.2007.02.110
233. Patil, N. T.; Huo, Z.; Yamamoto, Y. J. Org. Chem. 2006, 71, 6991-6995. http://dx.doi.org/10.1021/jo061110c
234. Ahadi, S.; Zolghadr, M.; Khavasi, H. R.; Bazgir, Org. Biomol. Chem. 2013, 11, 279-286. http://dx.doi.org/10.1039/c2ob26203g
235. Panja, S. K.; Maiti, S.; Bandyopadhyay, C. J. Chem. Res. 2009, 692-695.
236. Ulaczyk-Lesanko, A.; Pelletier, E.; Lee, M.; Prinz, H.; Waldmann, H.; Hall, D. G. J. Comb. Chem. 2007, 9, 695-703. http://dx.doi.org/10.1021/cc0700344
237. Terzidis, M. A.; Stephanidou-stephanatou, J.; Tsoleridis, C. A. Open Org. Chem. J. 2008, 2, 88-91. http://dx.doi.org/10.2174/1874095200801020088
238. Subba Reddy, B. V.; Somashekhar, D.; Mallikarjun Reddy, A.; Jadav, J. S.; Sridhar, B. Synthesis 2010, 2069-2074.
http://dx.doi.org/10.1055/s-0029-1218762
239. Terzidis, M. A.; Stephanidou-stephanatou, J.; Tsoleridis, C. A. J. Org. Chem. 2010, 75, 1948-1955.
http://dx.doi.org/10.1021/jo902702j
240. Panja, S. K.; Ghosh, J.; Maiti, S.; Bandyopadhyay, C. J. Chem. Res. 2012, 222-225.
241. Teimouri, M. B.; Eskandari, M. J. Chem. Res. 2011, 500-505.
242. Arumugam, P.; Perumal, P. T. Indian J. Chem. 2008, 47B, 1084-1090.
243. Liu, J.; Liu, G.; Tian, X.-H., Cao, L. -H Youji Hauxe 2008, 28, 73-73.
244. Carrilo, R. M.; Barriga, S.; Moman, E.; Marcaccini, S.; Marcos, C. F. Synlett 2007, 327329.
245. Ghosh, J.; Biswas, P.; Maiti, S.; Sarkar, T.; Drew, M. G. B.; Bandyopadhyay, C. Tetrahedron Lett. 2013, 54, 2221-2225. http://dx.doi.org/10.1016/j.tetlet.2013.02.057
246. Teimouri, M. B.; Akbari-Moghaddam, P.; Golbaghi, G. ACS Comb. Sci. 2011, 13, 659-666. http://dx.doi.org/10.1021/co200125a
247. Marcaccini, S.; Neo, A. G.; Marcos, C. F. J. Org. Chem. 2009, 74, 6888-6890. http://dx.doi.org/10.1021/jo900992w
248. Wyatt, E. E.; Fergus, S.; Galloway, W. R. J. D.; Bender, A.; Fox, D. J.; Plowright A. T.; Jessiman, A. S.; Welch, M.; Spring, D. R. Chem. Commun. 2006, 3296-3298. http://dx.doi.org/10.1039/b607710b

Authors' Biographies

Born in 1943, Chandra Kanta Ghosh got from the University of Calcutta his M.Sc., Ph.D. and D.Sc. degrees in Chemistry in 1965, 1970 and 1996, respectively. He did his postdoctoral research in the Department of Organic Chemistry, Karlsruhe University, Germany (1973-74) and in the Biology Division of Oak Ridge National Laboratory, USA (1979-80). He was a faculty member in Organic Chemistry Section in the Department of Biochemistry, Calcutta University during 1969-2007. Even after his formal retirement as a Professor in 2007, Dr. Ghosh has been contributing to many journals. His research interest lies mainly in the chemistry of 1-benzopyran-4-one (chromone) having an electron withdrawing group at its 3-position. He has so far sixty three publications in this field.

Amarnath Chakraborty received his B.Sc. and M.Sc. in Chemistry from Vidyasagar University, India in 2002 and 2004 respectively. After obtaining Ph.D. in 2011 for his work on organometallic chemistry with Professor Amitabha Sarkar in Indian Association for the Cultivation of Science (IACS), Kolkata, he moved to Radboud University, Netherlands for his postdoctoral research with Professor Jan C. M. van Hest. Currently he is working as a Research Associate in the Department of Organic Chemistry at IACS, Kolkata. His current research interest is focused on synthetic organic and organometallic chemistry.

