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Abstract Using rounded data to estimate moments and regression coefficients typi-
cally biases the estimates. We explore the bias-inducing effects of rounding, thereby
reviewing widely dispersed and often half forgotten results in the literature. Under
appropriate conditions, these effects can be approximately rectified by versions of
Sheppard’s correction formula. We discuss the conditions under which these approx-
imations are valid and also investigate the efficiency loss caused by rounding. The
rounding error, which corresponds to the measurement error of a measurement er-
ror model, has a marginal distribution, which can be approximated by the uniform
distribution, but is not independent of the true value. In order to take account of
rounding preferences (heaping), we generalize the concept of simple rounding to that
of asymmetric rounding and consider its effect on the mean and variance of a distri-
bution.

Keywords Simple rounding · Asymmetric rounding · Euler–Maclaurin · Moments ·
Sheppard’s correction · Maximum likelihood

1 Introduction

Data often contains rounding errors. Variables (such as heights or weights) that by
their very nature are continuous are, nevertheless, typically measured in a discrete
manner. They are rounded to a certain level of accuracy, often to some preassigned
decimal point of a measuring scale (e.g., to multiples of 10 cm, 1 cm, or 0.1 cm).
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The reason may be the avoidance of costs associated with a fine measurement or
the imprecise nature of the measuring instrument. Even if precise measurements are
available, they are sometimes recorded in a coarsened way in order to preserve con-
fidentiality or to compress the data into an easy-to-grasp frequency table. Sometimes
the rounding process shows some asymmetry due to the preferences of the recorder
for even numbers or for multiples of five; see, e.g., Myers (1954).

There are quite a few research areas where very crudely rounded data are common
and where the effect of rounding is not negligible, e.g., in social sciences, in eco-
nomic history or in demography, e.g., Crockett and Crockett (2006). Rounding and
more general quantization procedures play a fundamental role in the discretization of
continuous data in information processing, see Gray and Neuhoff (1998) and Widrow
et al. (1996).

In the following we analyze statistical characteristics of rounded data X∗ of a
variable X and of the rounding error δ. We consider means, variances, and higher
moments, and also regression parameters obtained from rounded variables and show
how they are related to the parameters of unrounded data. We study in particular
the approximations that arise when the rounding interval is small. These approxima-
tions are governed by Sheppard’s (1898) correction. We give conditions under which
Sheppard’s correction can be applied.

This report is to a large extent a review of the literature. It highlights some re-
sults which are not so often discussed in the literature, such as the distribution of
the rounding error and the efficiency loss due to rounding. In addition, new results
concerning asymmetric rounding are presented. Earlier reviews are Eisenhart (1947),
Stuart and Ord (1987, Sects. 3.18–3.30), Gjeddebaek (1968), Haitovsky (1982), and
Heitjan (1989). The latter also deals with the more general concept of grouped data.
For more details with respect to the present paper, see Schneeweiss et al. (2006).

Although rounding is widely applied in real data—in fact any histogram is a
rounded data set—, most of the literature is of a theoretical nature. But there are
some exceptions. Sheppard (1898) gives typical examples of rounded data, e.g.,
weight frequencies in intervals of 10 lb.s and frequencies of examination marks in
intervals of 100 points; Gjeddebaek (1968) analyzes a set of weight data coars-
ened in several different ways; Heitjan (1989) analyzes Fisher’s famous Iris data;
Johnson et al. (2004) discuss parturition data in wild sheep that have been sam-
pled with a coarse scale and cite many other studies on live-history events; Braun
et al. (2005) apply their method to interval-censored HIV infection time data
and to a histogram for body mass index; Lambert and Eilers (2009) study the
distribution of lead concentration in blood samples and certain mortality statis-
tics.

Heaping, in which some numbers are preferred, is a more general case of rounding,
and is treated only partly in this paper. Asymmetric rounding is a special kind of
heaping, where the preferred points are evenly spaced on the line. In general, heaping
points need not be evenly spaced; see e.g., Heitjan and Rubin (1991), Wolff and
Augustin (2003), Augustin and Wolff (2004), Wang and Heitjan (2008).

Section 2 introduces the concept of simple rounding. In Sect. 3, approximate ex-
pressions of the moments of rounded data are derived. Section 4 pertains to the effect
of rounding on regression results. The rounding error δ itself is analyzed in Sect. 5.
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Section 6 investigates the validity of the approximations introduced earlier. Section 7
examines some special distributions where these approximations are either exact or
completely invalid. Estimating and testing with rounded data is considered in Sect. 8.
Section 9 is devoted to ML estimation and related methods. Asymmetric rounding is
the subject of Sect. 10. Some concluding remarks are found in Sect. 11.

2 Simple rounding

Let X be a continuous random variable with density ϕ(x) and let X∗ be the corre-
sponding rounded variable. The rounding model is as follows. Let there be given a
set of equidistant points on the real line, the rounding lattice,

R
∗ := R

∗
a,h := {

(a + i)h, i ∈ Z
}
,

where h is the rounding width, i.e., the distance between two adjacent points of the
rounding lattice, and ah, 0 ≤ a ≤ 1, is the origin of the lattice. We call a the shift
parameter of the lattice. For simplicity, we will assume, unless otherwise stated, that
a = 0. Most of the following approximate results do not depend on the value of a.
For any value of X, the rounded value X∗ is that point of R

∗ which is nearest to X.
Using the floor function, this can be expressed as

X∗ = h

{
a + floor

(
X

h
− a + 1

2

)}
,

where floor(x) is the largest integer ≤ x.
The rounding error δ is defined as δ = X∗ − X. The equation

X∗ = X + δ (1)

looks like the measurement equation of a classical measurement error model with X

being the unobservable variable, X∗ the observable variable, and δ the measurement
error. However, unlike the measurement error in such a model, δ is not independent
of X. It is a function of X because X∗ is a function of X, see also Vardeman (2005).
But δ is not independent of X∗ either. The conditional density of δ given X∗ = x∗,
where x∗ ∈ R

∗, is given by

h
(
δ|x∗) =

⎧
⎨

⎩

ϕ(x∗−δ)
p(x∗) for −h

2 ≤ δ ≤ h
2

0 for δ < −h
2 or δ > h

2 ,
(2)

where

p
(
x∗) := P

(
X∗ = x∗) =

∫ x∗+ h
2

x∗− h
2

ϕ(x)dx =
∫ h

2

− h
2

ϕ
(
x∗ + u

)
du. (3)
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3 Moments of rounded values

3.1 Univariate moments

We relate the moments of X∗ to those of X. The kth moment of the distribution of
the rounded values X∗ (assuming a = 0) can be computed as

EX∗k =
∑

i

(ih)kP
(
X∗ = ih

) =
∑

i

(ih)k
∫ h

2

− h
2

ϕ(ih + u)du. (4)

We can approximate the sum in (4) by an integral using the Euler–Maclaurin for-
mula (see, e.g., Stuart and Ord 1987, and Sect. 3.2 for more details). We rewrite each
term of the sum in (4) as follows:

f (y) = yk

∫ h
2

− h
2

ϕ(y + u)du

with y = ih. Then, according to the Euler–Maclaurin formula, the sum in (4) becomes

∑

i

f (ih) = 1

h

∫ ∞

−∞
f (y)dy + R, (5)

where R is a remainder term (often quite small) to be treated in more detail in
Sect. 3.2. Ignoring it, we can write the kth moment of the rounded variable X∗ in (4)
as follows:

EX∗k ≈
∫ ∞

−∞
yk 1

h

∫ h
2

− h
2

ϕ(y + u)dudy. (6)

Substituting x = y + u and v = u/h into (6) we obtain

EX∗k ≈
∫ ∞

−∞

∫ 1
2

− 1
2

(x − vh)k dv ϕ(x)dx. (7)

Equation (7) can be used to compute approximately any kth moment of the rounded
data. For example, for k = 1, we obtain

EX∗ ≈
∫ ∞

−∞

[
xv − v2

2
h

] 1
2

− 1
2

ϕ(x)dx =
∫ ∞

−∞
xϕ(x)dx = EX. (8)

Thus, the expectations of the rounded and unrounded data are approximately equal.
For the second moment we obtain

EX∗2 ≈
∫ [

x2v − xv2h + v3

3
h2

] 1
2

− 1
2

ϕ(x)dx =
∫ (

x2 + h2

12

)
ϕ(x)dx = EX2 + h2

12
.
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Because of (8) it follows that

VX∗ ≈ VX + h2

12
. (9)

Thus the variance of the rounded data has to be “corrected” by the term −h2

12 , known
as Sheppard’s (1898) correction, in order to derive an approximate value for the (un-
observable) variance of the unrounded data:

VX ≈ VX∗ − h2

12
. (10)

Note that the term h2

12 is just the variance of a variable uniformly distributed on the
interval [−h

2 , h
2 ]; see also Sect. 5.

An interesting application of Sheppard’s correction is to decide how many signif-
icant figures in experimental data should be recorded, when these data are imprecise
anyway (Wilrich 2005; see also Wimmer et al. 2000 for a similar idea).

For the third to sixth common moments the corresponding formulas are (cf.
Kendall 1938, and Stuart and Ord 1987):

μ3 ≈ μ∗
3 − 1

4
μ∗

1h
2,

μ4 ≈ μ∗
4 − 1

2
μ∗

2h
2 + 7

240
h4,

(11)
μ5 ≈ μ∗

5 − 5

6
μ∗

3h
2 + 7

48
μ∗

1h
4,

μ6 ≈ μ∗
6 − 5

4
μ∗

4h
2 + 7

16
μ∗

2h
4 − 31

1344
h6,

where μk = EXk , μ∗
k = EX∗k . In general, see Stuart and Ord (1987),

μk =
k∑

j=0

(
k

j

)(
21−j − 1

)
Bjμ

∗
k−jh

j , (12)

where Bj is the j th Bernoulli number. These are found from the recurrence relation
∑j−1

i=0

(
j
i

)
Bi = 0 for j > 1, starting with B0 = 1. By omitting all terms of higher

powers of h2, which is justified if h is small, we obtain the approximate equation

μk ≈ μ∗
k −

(
k

2

)
h2

12
μ∗

k−2. (13)

Similar relations for the central moments are found by setting μ∗
1 = 0 in the above

formulas and redefining μk := E(X − EX)k and μ∗
k := E(X∗ − EX∗)k .

By the same principles, one can also derive a relation between the characteristic
functions of the unrounded and rounded variables, respectively, cf. Kullback (1935).
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Let ψ(t) = ∫
eitxϕ(x) dx and ψ∗(t) = ∑

j eitjhp(jh) be the characteristic functions
of X and X∗, respectively. Then

ψ∗(t) ≈ 2

ht
sin

(
ht

2

)
ψ(t). (14)

The r.h.s. of (14) is the characteristic function of X + U , where U is a random vari-
able independent of X and uniformly distributed over [−h

2 , h
2 ]. Thus X∗ = X + δ has

approximately the same distribution as if δ were uniformly distributed and indepen-
dent of X, see also Sect. 5. If follows that approximately

EX∗m ≈ E(X + U)m

or

κm

(
X∗) ≈ κm(X) + κm(U) = κm(X) + Bm

m
hm, m > 1,

where κm is the mth semi-invariant. From this follow all the moment relations con-
sidered before.

An exact expression of the characteristic function of X∗ (including the shift para-
meter a) is

ψ∗(t) =
∞∑

j=−∞
exp(−i2πja)ψ

(
t + 2πj

h

)
sin[(ht + 2πj)/2]

(ht + 2πj)/2
, (15)

from which exact expressions for the moments can be derived (Tricker 1984b;
Widrow et al. 1996; and Janson 2006). Note that the term for j = 0 in the sum
of (15) corresponds to (14). If ψ(t) happens to be “limited” in the sense that ψ(t) = 0
for |t | ≥ 2π

h
, then the above approximate relations for the moments become exact

(Tricker 1984b). In practice, ψ(t) will hardly ever be limited, but it will often go to
zero quite rapidly for |t | → ∞, which again justifies the above approximations.

3.2 The remainder term R

The sum in (5) can be approximated by the integral on the r.h.s. of (5) only if R is
small. Suppose for the moment that the function f is restricted to a finite interval
[a, b] with f (a) = f (b) = 0 and that a + h

2 and b − h
2 are points of the rounding

lattice. If the following two conditions are satisfied:

• f (y) is differentiable on the interval [a, b] to the order 2m + 2,
• all derivatives of odd order to the order 2m − 1 vanish at the points a and b,

then the remainder term R equals

R = B2m+2

(2m + 2)! (b − a)h2m+1f (2m+2)(ym),

where ym ∈ [a, b] and B2m+2 is the (2m+2)-th Bernoulli number (Stoer and Bulirsch
1980).
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The magnitude of the remainder term R, and thus the closeness of the approxima-
tion of the sum in (5) by the integral in (5), depends on h and on the smoothness of f .
The smaller are h and maxa≤y≤b f (2m+2)(y), the better is the approximation.

Clearly, a sum can always be approximated by a corresponding integral if h is
sufficiently small, no matter if the conditions for the Euler–Maclaurin formula are
satisfied or not. However, if the conditions are satisfied, then the Euler–Maclaurin
approximation is typically extremely good even if h is (moderately) large. See also
Sect. 6.

3.3 Multivariate moments

The analysis of moments of rounded and unrounded data can be extended to the
multivariate case, cf. Baten (1931), Wold (1934). Here we restrict our account to the
bivariate case.

Let ϕ(x, y) be the joint density of the random variables X and Y . Let these be
rounded according to two rounding lattices with widths h and k, respectively, and
origin (0,0) and let X∗ and Y ∗ be the rounded variables. By arguments similar to
those in Sect. 3.1 we derive an expression for mixed moments of X∗ and Y ∗ analo-
gous to (7):

E
(
X∗mY ∗n

) ≈
∫ ∞

−∞

∫ ∞

−∞

∫ 1
2

− 1
2

∫ 1
2

− 1
2

(t − uh)m(s − vk)n dudv ϕ(t, s) dt ds.

Specializing to the case m = n = 1, we find

E
(
X∗Y ∗) ≈ E(XY).

As EX∗ ≈ EX and EY ∗ ≈ EY , it follows that

Cov
(
X∗, Y ∗) ≈ Cov(X,Y ). (16)

By the same arguments, a similar relation holds if only one variable is rounded. Thus

Cov
(
X∗, Y

) ≈ Cov
(
X,Y ∗) ≈ Cov(X,Y ). (17)

4 The influence of rounding on regression estimates

We are now ready to analyze the influence of rounding on the estimates of the co-
efficients of a linear regression. We always assume that the assumption for the ap-
plication of the Euler–Maclaurin approximation is satisfied. Let Y be the unrounded
response variable, and X∗ (X) the rounded (unrounded) explanatory variable, and
consider a simple linear regression model

Y = α + βX + ε.
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The corresponding regression for rounded data is Y = α∗ + β∗X∗ + ε∗. The true
regression coefficient is given by β = Cov(X,Y )/VX, whereas the regression co-
efficient computed from the rounded variable X∗ is β∗ = Cov(X∗, Y )/VX∗ which
differs from β . However, one can retrieve β using Shepard’s correction:

β = Cov(X,Y )

VX
≈ Cov(X∗, Y )

VX∗ − h2

12

= β∗
(

1 − 1

12

h2

VX∗

)−1

. (18)

This formula is convenient since we normally know h and can estimate VX∗ from
the data. The naive estimate of β (i.e., β̂∗ = sx∗y/s2

x∗ ), which is biased due to round-
ing, can be corrected according to (18), which leads to an approximately unbiased
estimate of β:

β̂c := β̂∗
(

1 − 1

12

h2

s2
x∗

)−1

= sx∗y

s2
x∗ − h2

12

. (19)

If the response variable Y is rounded but not the covariate X, then because of (17),
β ≈ β∗. If both the response and the explanatory variables are rounded, the same
result as (18) is obtained. Thus, in a linear regression of Y on X, only rounding of X

and not of Y affects the value of the slope parameter.
These results can be easily generalized to a multiple linear regression Y = β0 +

β1X1 + · · · + βpXp + ε. If the variables Xi have been rounded to X∗
i with rounding

width hi , corrected values for the regression coefficients are found in the usual way
as solutions to the normal equations, where the variances VX∗

i have been corrected
by subtracting h2

i /12 while leaving all the covariances unchanged. Using (11), one
can find similar correction formulas for a polynomial regression model; see Müller
(2008).

5 Rounding error

As mentioned in Sect. 2, the rounding error δ = X∗ − X is not independent of X.
Nevertheless, X and δ are approximately uncorrelated:

Cov(X, δ) = Cov
(
X,X∗ − X

) = Cov
(
X,X∗) − VX ≈ 0,

because, by (17) with Y = X, Cov(X,X∗) ≈ VX. Moreover, the marginal distribu-
tion of δ is approximately the uniform distribution on the interval [−h

2 , h
2 ]. Indeed,

the marginal distribution of δ is given by

g(δ) =
∑

x∗
h
(
δ|x∗)p

(
x∗), −h

2
< δ <

h

2
,

with h(δ|x∗) from (2), and consequently

g(δ) =
∑

x∗
ϕ
(
x∗ − δ

) =
∑

i

ϕ(ih − δ). (20)
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Using the Euler–Maclaurin formula, the sum can be approximated by a corresponding
integral

g(δ) ≈ 1

h

∫ ∞

−∞
ϕ(y − δ) dy = 1

h
, −h

2
< δ <

h

2
.

Thus δ is approximately uniformly distributed on [−h
2 , h

2 ]. It follows that Eδ ≈ 0

and Vδ ≈ h2

12 , which is Sheppard’s correction. The representation (14) of the charac-
teristic function of X∗ confirms this result.

6 Goodness of the approximation

For practical purposes it is important to know by how much the moments computed
from the rounded data differ from those of the original data. We compare the mean
and variance of X∗ with the mean and variance of X. The difference depends not only
on h but also on the shift parameter a. It also depends on the underlying distribution
ϕ of the unrounded data. Here we only study the standard normal distribution X ∼
N(0,1). For other distributions, see Tricker (1984b). From (4) we can compute the
exact expected value of the rounded data X∗ when X ∼ N(0,1):

EX∗ =
∑

i

(i + a)h

[
�

((
i + a + 1

2

)
h

)
− �

((
i + a − 1

2

)
h

)]
.

Figure 1 shows the mean of the rounded data for various values of h as a function of
the shift parameter a. We need to consider only the interval 0 ≤ a < 1, as with a = 1
the rounding lattice is in the same position as with a = 0. The length of the rounding
interval h varies from two to four standard deviations of the distribution. We see that

Fig. 1 Mean of the rounded
data, μ∗, as a function of the
shift parameter a for
X ∼ N(0,1) and for various
interval lengths h
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Fig. 2 Sheppard-corrected
variance of the rounded data,

σ 2
X∗ − h2

12 , as a function of a,
for X ∼ N(0,1)

a rounding interval of length up to two standard deviations has a negligible influence
on the data mean. The curve for h = 2 is almost indistinguishable from the zero line.
Furthermore, the bias disappears for a = 0, a = 1 as well as a = 0.5.

The variance of the rounded data can be computed using the following equations:

EX∗2 =
∑

i

[
(i + a)h

]2
[
�

((
i + a + 1

2

)
h

)
− �

((
i + a − 1

2

)
h

)]
,

VX∗ = EX∗2 − (
EX∗)2

.

Figure 2 shows the Sheppard-corrected variance of the rounded data as a function
of a for X ∼ N(0,1). In this case, the deviation from the variance of the unrounded
data is largest for a = 0.5. Again, the correction performs quite well for rounding
intervals h less than or equal to about two standard deviations. For larger rounding
intervals, the Sheppard-corrected variance functions deviate from the true variance,
particularly at a = 0, 0.5, and 1, where the approximation becomes very poor.

We obtain practically the same results if we use sampled data instead of the un-
derlying distribution, even if the sample size n is small. In a simulation with 1000
replications we generated, for each replication, a sample of size n = 30 N(0,1)-
variates and rounded these data with various values of h and a, where the origin of
the rounding lattice was set at 0 for a = 0. For each replication, we computed the
empirical means and variances of the rounded and unrounded data, denoted by m∗,
m, v∗, v, respectively, and also the corrected variance vc from the rounded data. We
then computed the differences dm∗ := m∗ − m, dv∗ := v∗ − v, dvc := vc − v and
averaged them over the replications. The results were in complete agreement with
Figs. 1 and 2. For example, for h = 1, 2, 3 and a = 0, 0.25, 0.5, we found that the av-
erage difference d̄m∗ was always 0.00 except for h = 3, a = 0.25, where d̄m∗ = 0.11,
just as in Fig. 1. As to the differences in variances, we have the following table for
d̄v∗ (in parentheses) and d̄vc . Clearly, Sheppard’s correction works extremely well for
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Table 1 Differences of
variances: d̄vc and d̄v∗
(in parentheses)

a h

1 2 3

0 (0.09) (0.30) (0.20)

0.00 −0.03 −0.55

0.25 (0.09) (0.34) (0.75)

0.00 0.01 0.00

0.5 (0.08) (0.37) (1.29)

0.00 0.04 0.54

Table 2 Regression coefficients
hx 2 2 1

ρ 0.50 0.90 0.90

b 0.50 0.90 0.90

b∗ 0.37 0.73 0.81

bc 0.53 1.03 0.89

h = 1 and nicely even for h = 2, while not so well for h = 3. Note the rather large
differences d̄v∗ of v∗ and v for h = 2 in Table 1 and how these differences almost
vanish after Sheppard’s correction has been applied.

Summarizing, the approximation of the mean and variance is quite accurate even
for values of h greater than 1 if the underlying distribution is Gaussian. For other,
in particular for skew, distributions, Sheppard’s correction only works well for con-
siderably smaller values of h (Tricker 1984b). Higher moments are also less well-
approximated by the corresponding correction formulas.

As to the accuracy of Sheppard’s correction in regression analysis, we here re-
port just a few selected results from a simulation study, see also Dempster and Ru-
bin (1983) and Liu et al. (2007). We generated a sample of n = 30 jointly normally
distributed pairs (Xi, Yi) with means 0, variances 1 and covariance ρ. Both vari-
ables were rounded with rounding widths hx and hy , respectively, and origins of the
rounding lattices at (0,0). We fixed hy = 2. We computed estimates of the regression
coefficient of a linear regression of Y on X with unrounded data, b, rounded data, b∗,
and corrected, bc. These were averaged over N = 1000 replications.

In all three cases considered (see Table 2) the uncorrected regression estimates
b∗ are far from the true value b and the corrected estimates bc come much closer.
However, for ρ = 0.9 and hx = 2 the correction overshoots. This is due to the fact
that with high correlation the joint distribution of (X,Y ) does not comply very well
with the Euler–Maclaurin condition and Sheppard’s correction does not yield good
results in this case, see also Daniels (1947). But reducing the rounding width hx to
hx = 1 produces excellent results again.
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Fig. 3 Piecewise linear lattice
density

7 Some special distributions

7.1 Piecewise linear lattice density

The approximation formulas (8) and (9) for mean and variance become exact equal-
ities when the density of the unrounded variable is a continuous, piecewise linear
function on a finite interval [c, d] with the following properties. The interval [c, d]
is subdivided into n subintervals of equal length h. Within each interval the density
is a linear function. For simplicity let c = 0, then d = nh. The density is zero at the
endpoints of the interval [c, d]. The rounding lattice consists of all midpoints of the
subintervals, x∗

i = (i + 1
2 )h, i = 0, . . . , n− 1 (Fig. 3). Let us call such a density func-

tion together with its rounding lattice a “piecewise linear lattice density” (plld). In
this case, the approximate relations for mean and variance become exact equations as
long as a = 0.

The value of the density function is given, for each rounding interval, by

ϕ
(
x∗ + u

) = ϕ
(
x∗) + ϕ′(x∗)u, −h

2
≤ u ≤ h

2
. (21)

We use the following identities:

h
∑

ϕ
(
x∗) = 1,

∑
ϕ′(x∗) = 0,

∑
x∗ϕ′(x∗) = −

∑
ϕ
(
x∗), (22)

which follow from the definition of the plld. The expected values of the unrounded
and rounded data, respectively, are

EX =
∑

x∗

∫ x∗+ h
2

x∗− h
2

xϕ(x)dx =
∑

x∗

∫ h
2

− h
2

(
x∗ + u

)
ϕ
(
x∗ + u

)
du

EX∗ =
∑

x∗
x∗

∫ x∗+ h
2

x∗− h
2

ϕ(x)dx =
∑

x∗
x∗

∫ h
2

− h
2

ϕ
(
x∗ + u

)
du,
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and the difference is

EX − EX∗ =
∑

x∗

∫ h
2

− h
2

uϕ
(
x∗ + u

)
du

=
∑

x∗

∫ h
2

− h
2

[
uϕ

(
x∗) + u2ϕ′(x∗)]du = 0,

where we used (21) and (22). Thus for the plld, EX∗ = EX.
To compute the variance of the unrounded and rounded data, respectively, we first

analyze the second moments of X and X∗:

EX2 =
∑

x∗

∫ h
2

− h
2

(
x∗ + u

)2
ϕ
(
x∗ + u

)
du,

EX∗2 =
∑

x∗
x∗2

∫ h
2

− h
2

ϕ
(
x∗ + u

)
du.

The difference is

EX2 − EX∗2 =
∑

x∗

∫ h
2

− h
2

(u2 + 2ux∗)
[
ϕ
(
x∗) + ϕ′(x∗)u

]
du

= h2

12

[
h

∑

x∗
ϕ
(
x∗) + 2h

∑

x∗
x∗ϕ′(x∗)

]
= −h2

12
,

where we used (21) and (22). It follows that

VX∗ = VX + h2

12
.

Thus in the case of a plld, Sheppard’s correction for the variance holds exactly.
This cannot be said of the moments higher than the third. For these moments, the

correction formula for the plld differs from the approximate general formula, but they
agree up to the h2 term, see (13), and only differ in terms of powers higher than h2.

One can also show that for the plld the marginal distribution of δ is not only
approximately but also exactly uniformly distributed on [−h

2 , h
2 ]. Indeed, by (20),

(21), and (22)

g(δ) =
∑

x∗

[
ϕ
(
x∗) − δϕ′(x∗)] = 1

h
, −h

2
≤ δ ≤ h

2
.

The piecewise linear lattice density may be a rather artificial density function. But
as far as other, more realistic, densities can be approximated by a plld, the latter serves
as a convenient model to explain the approximate relations between the moments of
rounded and unrounded data.
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Fig. 4 Histogram density

7.2 Histogram density

A completely different picture arises if we consider a distribution of X which has a
histogram density instead of a plld, where the rounding lattice is made up by the mid-
points of the histogram intervals (the bins), Fig. 4. The uniform distribution over an
interval which is subdivided into rounding intervals of equal length is a special case.
Note that this distribution does not satisfy the requirements for the Euler–Maclaurin
approximation. For more details, see Schneeweiss et al. (2006).

For a variable X following a histogram density, the measurement equation (1)
can be written as X = X∗ − δ. But now δ is uniformly distributed on the interval
[−h

2 , h
2 ] and is independent of X∗. (In the theory of measurement error models this

is Berkson’s case.) It follows that EX = EX∗ and

VX = VX∗ + Vδ = VX∗ + h2

12
. (23)

This is just the reverse of Sheppard’s correction formula (10). Instead of subtracting
h2

12 , we have to add this term. Other correction terms arise if the rounding lattice is
shifted (a �= 0), see Liu et al. (2007).

This example shows that completely different results with respect to Sheppard’s
correction can be obtained when the assumptions for the Euler–Maclaurin formula
are not satisfied; see also Example 2.9 in Janson (2006).

The same can be said of any distribution of X which, like the uniform, is restricted
to a finite interval and does not tend to 0 at the endpoints smoothly. A normal distri-
bution truncated at one or both sides is a case in point. The breakdown of Sheppard’s
correction for this case has been studied in Pairman and Pearson (1919).

8 Estimation and testing

8.1 Estimation

Up to now we only dealt with various population parameters (moments and regression
coefficients) of rounded and unrounded random variables and their relations to each
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other. Let us now consider estimating and testing problems, in particular, estimating
the mean μ = EX of the underlying random variable X.

As we do not observe X but rather the rounded variable X∗, we have to use the
rounded data x∗

i , i = 1, . . . , n, in order to estimate μ. Let us assume that the con-
ditions for Sheppard’s correction are satisfied. If the original, unrounded, data xi ,
i = 1, . . . , n, is an iid sample, so is the rounded data x∗

i , i = 1, . . . , n. The arithmetic
mean x̄∗ of the x∗

i is therefore an unbiased as well as strongly consistent estimate
of μ∗ = EX∗. If the Euler–Maclaurin conditions are satisfied, μ∗ and μ are approx-
imately equal, and therefore x̄∗ =: μ̂∗ is also an approximately unbiased and consis-
tent estimate of μ. So we can estimate μ (at least approximately) without bias even
if only rounded data are available:

Eμ̂∗ = plim
n→∞μ̂∗ = μ∗ ≈ μ.

It should be noted that the bias due to rounding, though small, becomes noticeable if
n is large, while for small n it is swamped with sample randomness.

In a similar way, we can use the rounded data to estimate the variance of X, σ 2
x =

VX. However, here we must observe Sheppard’s correction. Thus

Es2
x∗ = plim

n→∞ s2
x∗ = σ 2

x∗ , σ 2
x ≈ σ 2

x∗ − h2

12
,

where s2
x∗ = 1

n−1

∑n
i=1(x

∗
i − x̄∗)2. Hence s2

x∗ − h2

12 is an approximately unbiased

estimate of σ 2
x .

Similarly, the slope parameter β of a linear regression can be consistently esti-
mated with rounded data as long as Sheppard’s correction is taken into account.

It should, however, be kept in mind that all these estimates are less efficient than
those computed from the unrounded data. Rounding leads to an efficiency loss. This
can be clearly seen in the case of estimating the mean. The variance of μ̂∗ = x̄∗ is
1
n
σ 2

x∗ , while the variance of μ̂ = x̄ is 1
n
σ 2

x , and σ 2
x∗ ≈ σ 2

x + h2

12 > σ 2
x . Thus the estimate

from the rounded data has a larger variance than the estimate from the unrounded
data. A confidence interval constructed from the rounded data,

x̄∗ ± t1− α
2

sx∗√
n

,

tends to be systematically larger than the corresponding confidence interval from the
unrounded data,

x̄ ± t1− α
2

sx√
n
.

The efficiency loss is measured by the ratio, see also Gjeddebaek (1956),

σx∗2

σ 2
x

≈ 1 + h2

12σ 2
x

.
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8.2 t-Test

The efficiency loss due to rounding can also be seen in parameter tests. As an exam-
ple, consider testing the mean of a N(μ,σ 2

x ) distribution. In the one-sided case, the
null hypothesis to be tested is

H0 : μ ≤ μ0.

Then, the t-test statistic, τ , computed from the unrounded data is given by

τ = μ̂ − μ0

σ̂μ̂

,

where μ̂ = x̄, σ̂μ̂ = σ̂x√
n

, and σ̂ 2
x = 1

n−1

∑n
i (xi − x̄)2. Under H0, the test statistic τ has

the Student t-distribution, τ ∼ t . For rounded data, the null hypothesis can be stated
as

H0 : μ∗ ≤ μ0

because μ∗ ≈ μ.
The corresponding test statistic is

τ ∗ = μ̂∗ − μ0

σ̂μ̂∗
,

where μ̂∗ = x̄∗, σ̂μ̂∗ = σ̂x∗√
n

and σ̂ 2
x∗ = 1

n−1

∑n
i (x

∗
i − x̄∗)2. This test statistic is no

longer t-distributed because the rounded data are no longer normally distributed—
they follow a discrete distribution. However, for large n, the distribution of τ ∗ con-
verges to the standard normal distribution N(0,1), and this distribution can be used
to construct an asymptotic Gauss-test1 of H0. The test is constructed such that H0

is rejected whenever τ ∗ > t1−α , where t1−α is the (1 − α) quantile of the N(0,1)

distribution.
This test is unbiased (at least approximately so), but it has smaller power than the

corresponding test with the unrounded data. The power functions of these two tests
are given by

π(μ) = P
(
τ > t1−α |μ)

,

π∗(μ) = P
(
τ ∗ > t1−α |μ)

.

We compute π(μ) for μ > μ0. For simplicity of notation we denote t1−α by t

π(μ) = P

(
μ̂ − μ0

σ̂μ̂

> t

∣∣∣μ
)

= P

(
μ̂ − μ

σ̂μ̂

+ μ − μ0

σ̂μ̂

> t

∣∣∣μ
)

.

1Econometricians often call such a test still a t -test, although it is actually an asymptotic Gauss-test.
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Fig. 5 Two power functions for the same test with rounded and unrounded data

For sufficiently large n, σ̂μ̂ can be replaced with σμ̂ = σx/
√

n and (μ̂ − μ)/σ̂μ̂ ∼
N(0,1). Thus for large n,

π(μ) ≈ 1 − �

(
t − μ − μ0

σx

√
n

)
. (24)

Similarly,

π∗(μ) ≈ 1 − �

(
t − μ − μ0

σx∗

√
n

)
. (25)

But since, by Sheppard’s correction, σx∗ > σx , obviously

π∗(μ) < π(μ) under H1 : μ > μ0.

So the test with rounded data has smaller power than the test with unrounded data
and is thus less efficient. Figure 5 shows the power functions π and π∗ as functions
of μ − μ0. π and π∗ have been computed according to (24) and (25) with n = 100,
α =5%, h = 10, σ 2

x = 47.5.
A discussion of the t-test with rounded data for small sample size is given in

Eisenhart (1947). Tricker (1990a, 1990b) studied the performance of the t-, double
t-, χ2-, and F -tests for rounded Gaussian variables, however, without adjusting the
variances in the last two tests. A comparison of the confidence intervals for μ and σ 2

based on the t- and χ2-pivotals, respectively, and on the likelihood ratio test can be
found in Lee and Vardeman (2001, 2002); see also Vardeman and Lee (2005).
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9 ML estimation when h is large

The approximation of the moments of the rounded data for large rounding intervals h

is often rather poor. For this reason, it is sometimes better to estimate the parameters
of the data using the Maximum Likelihood (ML) method. The disadvantage of ML is
that it needs a parametric distribution for X in order to work.

Thus let ϕ(x, θ) be the density of X with unknown parameter vector θ . The
discrete distribution p(x∗| θ) of X∗ is given by (3). Given a sample of data x∗

i ,
i = 1, . . . , n, the log-likelihood is

l = l(θ) =
∑

i

logp
(
x∗
i | θ)

, (26)

which has to be maximized in order to obtain the ML estimate θ̂ML.
There is a link from the ML approach to Sheppard’s correction. Suppose one wants

to find the maximum of l by Newton’s method. Start with the naive estimate θ0 as an
initial parameter estimate, where θ0 is computed as the ML estimate of θ from the
distribution of X, but with X replaced by X∗. An improved estimate is given by

θ1 = θ0 −
(

∂2l

∂θ0∂θ
0

)−1
∂l

∂θ0
. (27)

This procedure may be repeated with θ1 in place of θ0, and so on. But θ1 is often
good enough, in particular if h is small.

The derivatives in (27) are not always easy to compute. But for small h, follow-
ing Lindley (1950), approximations to these derivatives can be found easily using a
Taylor series expansion of ϕ(x) at x∗:

ϕ(x) = ϕ
(
x∗) + ϕ′(x∗)(x − x∗) + 1

2
ϕ′′(x∗)(x − x∗)2 + · · · .

Then, omitting terms of higher order in h, (3) yields

p
(
x∗) ≈ hϕ

(
x∗) + h3

24
ϕ′′(x∗).

Taking logarithms, we obtain (again omitting terms of higher order in h)

logp
(
x∗) ≈ logh + logϕ

(
x∗) + log

(
1 + h2

24

ϕ′′(x∗)
ϕ(x∗)

)

≈ logh + logϕ
(
x∗) + h2

24

ϕ′′(x∗)
ϕ(x∗)

,

and this expression can be substituted into (26). We then obtain approximate expres-
sions for the derivatives in (27):

∂l

∂θ0
≈ h2

24

∑

i

∂

∂θ0

ϕ′′(x∗
i )

ϕ(x∗
i )

, (28)
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∂2l

∂θ0∂θ
0

≈
∑

i

∂2

∂θ0∂θ
0

logϕ
(
x∗
i

)
. (29)

In obtaining (28), we made use of the fact that

∂

∂θ0

∑
logϕ

(
x∗
i

) = 0. (30)

Indeed, the initial estimate θ0 is found by solving the likelihood score equation (30)
of the original model with the rounded data x∗

i in place of the original data xi . In (29)
terms of order h2 were omitted.

Substituting (28) and (29) into (27) yields a first step approximation to the ML
estimator of θ :

θ1 ≈ θ0 − h2

24

(∑

i

∂2

∂θ0∂θ
0

logϕ
(
x∗
i

))−1(∑

i

∂

∂θ0

ϕ′′(x∗
i )

ϕ(x∗
i )

)
. (31)

The difference θ1 − θ0 in (31) can be regarded as an analogue to Sheppard’s correc-
tion stemming from ML estimation theory rather than from moment considerations.
Note, however, that unlike Sheppard’s correction, this correction depends on the dis-
tribution involved.

In the case of estimating θ = (μ,σ 2) from a normal distribution N(μ,σ 2), we
find with some algebra from (28) and (29) that

∂l

∂θ0
≈ − h2

12s4
x∗

∑

i

⎛

⎝
x∗
i − x̄∗

(x∗
i −x̄∗)2

s2
x∗

− 1
2

⎞

⎠ = − h2n

12s4
x∗

(
0
1
2

)
,

∂2l

∂θ0∂θ
0

≈ − 1

s4
x∗

∑

i

⎛

⎝
s2
x∗ x∗

i − x̄∗

x∗
i − x̄∗ (x∗

i −x̄∗)2

s2
x∗

− 1
2

⎞

⎠ = − n

s4
x∗

(
s2
x∗ 0
0 1

2

)
.

Then (31) yields

(
μ1

σ 2
1

)
≈

(
x̄∗
s2
x∗

)
− h2

12

(
0
1

)
,

and this is just Sheppard’s correction for μ and σ 2.
Fryer and Pethybridge (1972) extend this result to higher orders of h and to the

multivariate case and apply it to the estimation of a normal linear regression, see also
Don (1981). Johnson et al. (2004) derive Sheppard’s correction in a similar way for
unequal rounding intervals and apply their method to data from a Beta distribution.
For extensions to other distributions, see Tallis (1967). Alternatively, one can derive
Sheppard’s correction from the first step of an EM algorithm to solve the ML equa-
tions for μ and σ 2 of a normal distribution, see Dempster and Rubin (1983). McNeil
(1966) finds correction terms by using a method of moments for the rounded data
instead of ML.
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Apart from providing a new justification for Sheppard’s correction in the case of
a Gaussian distribution and for Sheppard-like corrections in other distributions, ML
is a general procedure to estimate unknown parameters with rounded data without
the need to take refuge in Sheppard’s correction. One may even have unequal round-
ing intervals. Gjeddebaek (1949) estimates the normal distribution by ML. Kulldorff
(1961) and Tricker (1984a) consider the ML estimation of the exponential, Tallis and
Young (1962) of the log-normal and the truncated normal, and Tricker (1992) of the
Gamma distribution. As the two parameters (shape α and scale θ ) of the Gamma
distribution can be estimated from first and second moments, Sheppard’s correction
can also be applied when rounded data are used. But for h > 1, the bias (and also
the variance) of the Sheppard corrected moment estimators of α and θ turn out to
be much larger than for the ML estimators when α is small, i.e., when the Gamma
distribution is very skew. Similarly, the exponential distribution with rounded data is
better estimated by ML rather than just by using the mean.

There are several numerical methods for carrying out ML like Newton–Raphson,
Fisher Scoring, EM, etc. For a comparison see Schader and Schmid (1984).

In the context of a linear regression model, Liu et al. (2007) apply an approximate
(so-called two-stage) ML approach and compare it with Sheppard’s correction. ML
estimation of stochastic processes, in particular ARMA processes, has been studied
by Zhang et al. (2010).

It is worth repeating: as long as there is a parametric model of X, ML can be
employed to estimate the distribution consistently with the rounded data, and that is
possible even if the rounding intervals are not of equal size, thus bypassing Shep-
pard’s correction.

If, however, the model is of a non-parametric nature, corresponding methods, like
kernel density or spline methods, suitably modified can be applied to the rounded
data, see Braun et al. (2005), Lambert and Eilers (2009). For example, in the latter
case, the idea is, roughly speaking, to estimate the probabilities on a very fine grid,
which is supposed to mimic the domain of the continuous variable, using the ob-
served frequencies on the coarse grid by applying a P-spline approach in a Bayesian
framework. But unlike non-parametric models with unrounded data, these methods
will not lead to consistent estimates in general, see also Hall (1982).

10 Asymmetric rounding

Sometimes rounded data show a marked preference for particular numbers, e.g.,
a preference for even over odd lattice points. A typical example is illustrated in
Fig. 6, where a frequency distribution of historical height measurements is shown
(Wu 1994). The measurements ending with one half inch, of which there were only
very few, were deleted. The remaining measurements show a slight but marked pre-
ponderance of even values.

There are several ways to address such a problem. One possibility is to introduce
a mixture of rounding procedures, see Wright and Bray (2003), Wang and Heitjan
(2008). One might also think of describing the rounding procedure by a rounding
probability function, see Rietveld (2002), Schneeweiss and Komlos (2009). Here we
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Fig. 6 Height distribution of
black female voters in
Pittsburgh, born 1887–1955

follow another suggestion: asymmetric rounding, see Komlos (1999). This means
that the rounding intervals about x∗ and x∗ + h are not equal. An example would be
if even numbers were preferred and values (0.75 to 1.25) were rounded to 1 while
values (1.25 to 2.75) were rounded to 2. Asymmetric rounding has no implications
for the expected value, but it does have an influence on the variance.

We can determine the moments of X∗ in the same way as for the symmetric case
(Sect. 3). Let us assume that all values of X in the interval [2ih − rh,2ih + rh],
0 ≤ r ≤ 1, are rounded to x∗ = 2ih while all values of X in the interval [(2i + 1)h −
(1 − r)h, (2i + 1)h + (1 − r)h] are rounded to x∗ + h = (2i + 1)h , i ∈ Z. Again we
assume without loss of generality that a = 0. First note that

p(2ih) := P
(
X∗ = 2ih

) =
∫ rh

−rh

ϕ(2ih + u)du,

p
(
(2i + 1)h

) := P
(
X∗ = (2i + 1)h

) =
∫ (1−r)h

−(1−r)h

ϕ
(
(2i + 1)h + u

)
du.

Then the kth moment of X∗ is

EX∗k =
∑

i

(2ih)k
∫ rh

−rh

ϕ(2ih + u)du

+
∑

i

[
(2i + 1)h

]k
∫ (1−r)h

−(1−r)h

ϕ
(
(2i + 1)h + u

)
du.

Using the Euler–Maclaurin approximation, we obtain

EX∗k ≈ 1

2

∫ ∞

−∞

[∫ r

−r

(x − vh)k dv +
∫ 1−r

−(1−r)

(x − vh)k dv

]
ϕ(x)dx.

Setting k = 1, we obtain for the mean of X∗:

EX∗ ≈ r

∫ ∞

−∞
xϕ(x)dx + (1 − r)

∫ ∞

−∞
xϕ(x)dx = EX. (32)

Thus the means of X∗ and X are approximately equal.
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For k = 2, we obtain:

EX∗2 ≈ rEX2 + r3

3
h2 + (1 − r)EX2 + (1 − r)3

3
h2

= EX2 + 1

3

(
1 − 3r + 3r2)h2.

Together with (32) this implies

VX∗ ≈ VX + h2

3

(
1 − 3r + 3r2) =: VX + f (r)h2. (33)

The function f (r) has a minimum at r = 1
2 , which corresponds to symmetric round-

ing, and at this point f ( 1
2 ) = 1

12 , which is Sheppard’s correction. Thus the term
f (r)h2 is a generalization of Sheppard’s correction to the case of asymmetric round-
ing. The function f (r) reaches its maximum for r = 0 and r = 1, which means that
X∗ = 2ih or X∗ = (2i + 1)h, respectively, has a rounding interval of width zero.

In the example of Fig. 6, we find VX∗ = 6.050, which has to be corrected accord-
ing to (33). The value of r can be found approximately through the equation

r ≈
∑

i

P
(
X∗ = 2ih

)
,

which can be derived using the Euler–Maclaurin formula again. So we estimate r by
the proportion of the frequencies at even values. We find r ≈ 0.564 and thus f (r)h2 =
0.088 with h = 1, so that VX ≈ 5.962. The difference to the uncorrected variance is
not very large in this example, but this is due to the relatively small value of h.

Multivariate moments are treated in the same way, see also Sect. 3.3. We find, e.g.,
for the second mixed moment of X∗ and Y :

E
(
X∗Y

) ≈ E(XY).

Similar relations hold if both X and Y are or if only Y is (asymmetrically)
rounded. As a consequence, the previous equations (16) and (17) for the covariances
of rounded and unrounded variables, hold also true in the case of asymmetric round-
ing.

As in Sect. 4, we can use these results to study the distortion of the slope parameter
in a linear regression due to asymmetric rounding. When only X is rounded, we have,
see also (18),

β ≈ Cov(X,Y )

VX
≈ Cov(X∗, Y )

VX∗ − f (r)h2
= β∗

(
1 − f (r)

h2

VX∗

)−1

.

11 Conclusion

Rounding of data has the inevitable consequence that their statistical moments, in par-
ticular the variance (and consequently also regression parameters), computed from



Symmetric and asymmetric rounding: a review and some new results 269

such data are somewhat distorted in comparison to the moments of the unrounded
data. This survey explores the magnitude of this distortion and when and how it can
be approximated by simple expressions depending on the length of the rounding in-
terval. Sheppard’s correction for the variance is the best known approximation in this
context. We study cases where it is appropriate and, indeed, where it is exact and
other cases where it is completely misleading.

We also consider estimating and testing moments (and regression parameters) on
the basis of a random sample of rounded data. Clearly, rounding implies a loss of
efficiency, even though the bias may often be negligible (after appropriate correc-
tion). When rounding is so coarse that the approximation formulas fail, maximum
likelihood must be employed to obtain consistent estimates.

Sheppard’s correction is generalized to the case of asymmetric rounding. The cor-
rection turns out to be a function of the asymmetry portion r . Asymmetric rounding
can be extended to more general rounding procedures, which, however, is a subject
for further research.
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