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Abstract The emergence of Cloud Computing as a
model of service provisioning in distributed systems
instigated researchers to explore its pros and cons on
executing different large scale scientific applications,
i.e., Workflows. One of the most challenging problems
in clouds is to execute workflows while minimizing
the execution time as well as cost incurred by using a
set of heterogeneous resources over the cloud simulta-
neously. In this paper, we present, Budget and Dead-
line Constrained Heuristic based upon Heterogeneous
Earliest Finish Time (HEFT) to schedule workflow
tasks over the available cloud resources. The pro-
posed heuristic presents a beneficial trade-off between
execution time and execution cost under given con-
straints. The proposed heuristic is evaluated for differ-
ent synthetic workflow applications by a simulation
process and comparison is done with state-of-art algo-
rithm i.e. BHEFT. The simulation results show that
our proposed scheduling heuristic can significantly
decrease the execution cost while producing makespan
as good as the best known scheduling heuristic under
the same deadline and budget constraints.

A. Verma (�) · S. Kaushal
University Institute of Engineering and Technology, Panjab
University, Chandigarh, India
e-mail: amandeepverma@pu.ac.in

S. Kaushal
e-mail: sakshi@pu.ac.in

Keywords Workflow · Bi-criteria scheduling ·
HEFT · Cloud computing

1 Introduction

Cloud Computing is recently a booming area in dis-
tributing computing that delivers dynamically scalable
services on demand over the Internet through virtu-
alization of hardware and software [1]. It is based
on a market-oriented business paradigm where users
can consume these services based upon Service Level
Agreement (SLA) and charged on a pay-as-you-go
basis like conventional utilities [2]. The main advan-
tages of clouds are its scalability and flexibility where
user can lease and release resources/services as per
the need [3]. Moreover, the cloud provider offers
two resource provisioning plans, namely short-term
on demand and long term reservation plans. The
on-demand plan uses the dynamically provisioning
of the resources at the moment when the resources
are needed to fit the fluctuated and unpredictable
demands. With the reservation plan, the user a priori
reserves the resources in advance [4]. Amazon EC2
[5] and Go Grid [6], cloud providers offer services
with both plans.

Scheduling of workflows requires massive com-
putation and communication costs. These workflows,
especially those related to scientific areas such as
astronomy and biology, present a strong case for the
usage of the cloud for their execution. Workflow
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scheduling is a process of mapping inter-dependent
tasks on the available resources such that workflow
application is able to complete its execution within
the user’s specified Quality of Service (QoS) con-
straints such as deadline and budget [7]. Initially, in
case of grid workflows, the scheduling algorithms
attempt to minimise the execution time without con-
sidering the cost of accessing resources. But, in case of
cloud computing, service provider provides resources
of different capabilities at different prices. Normally,
faster resources are more expensive than the slower
one. Thus, different scheduling plans of same work-
flow using different resources may result in different
makespan and different monetary cost. Therefore,
workflow scheduling problem in cloud, requires both
time and cost constraints to be satisfied as speci-
fied by the user [8]. Time constraints ensure that
the workflow is executed within the given deadline
and the cost ensures that the budget specified by the
user is not overshot. A good heuristic tries to bal-
ance both these values and still obtain a near optimal
solution [9].

Minimizing makespan and minimizing execution
cost are two conflicting objectives. In this paper, a
novel, Budget and Deadline Constrained Heuristic is
proposed to schedule workflow applications to cloud
services that minimize the execution cost and the total
execution time (i.e. sum of processing time and data
transmission time) for running the workflow under
the given budget and deadline constraint simultane-
ously. Our proposed heuristic includes a service level
scheduling phase and a task level scheduling phase. In
service level scheduling phase, the scheduler selects
the suitable services from the available set of services
based upon QoS constraints as specified in SLA. In
the task level scheduling phase, the scheduler assigns
the workflow tasks to the service from the suitable
set such that the overall execution time and execution
cost of running whole workflow are minimized simul-
taneously depending upon the spare budget and spare
deadline of each workflow task. The proposed heuris-
tic, namely, Budget and Deadline Constraint Hetero-
geneous Earliest Finish Time (BDHEFT), is based
upon HEFT algorithm, which minimizes the over-
all execution time of a workflow without considering
the monetary cost and budget constraints while mak-

ing the scheduling decisions. The proposed heuristic
presents a beneficial trade-off between execution time
and execution cost under given constraints.

The remaining paper is organized as follows:
Section 2 presents the related work in the area of work-
flow scheduling. The problem description is presented
in Section 3. The proposed heuristic, BDHEFT, is dis-
cussed with the help of an example in Section 4. The
proposed BDHEFT algorithm is evaluated in Section 5
and Section 6 concludes the paper.

2 Related Work

Scheduling of workflows is an NP—complete prob-
lem [10]. Many heuristic algorithms such as Minimum
Completion Time, Sufferage, Min-min, and Max-min
are used as candidates for best-effort based schedul-
ing strategies [11]. List scheduling has been very
popular method for workflow task scheduling. In list
scheduling, the priority is assigned to the workflow
tasks and a task with higher priority is scheduled
before a task with lower priority. There are differ-
ent list based heuristic algorithms in literature like
Dynamic Critical Path(DCP) [12], Dynamic Level
Scheduling (DLS) [13], Critical Path on Processor
(CPOP) [14], Heterogeneous Earliest Finish Time
(HEFT) [14] etc. From all of these, HEFT outper-
forms in terms of makespan. But all of these heuristics
just try to minimize the makespan without consid-
ering the monetary cost of executing the workflow
tasks. So these methods are mainly suitable for grid
environment.

There are also many scheduling heuristics in liter-
ature that are derived from list scheduling algorithms
for workflow scheduling. Zheng and Sakellariou [15]
proposed two scheduling heuristics LOSS and GAIN
(based upon HEFT) for grid workflows that either
tried to optimized time or cost, to meet the user’s spec-
ified budget. So at a time, only one of the objectives,
i.e., either time or cost is optimized. Cost and deadline
constrained workflow scheduling in IaaS clouds was
discussed in [16]. But, the resource model considered
in the proposed algorithms consists of homogeneous
resources. Saeid et al. [17] proposed two workflow
scheduling algorithms for cloud environment: one-
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phase algorithm, IC-PCP and two-phase algorithm,
IC-PCPD2. Both algorithms have a polynomial time
complexity for scheduling large workflows and mini-
mized the cost of workflow execution under deadline
constrained. The authors considered different types
of pricing models for simulation. Chopra and Singh
[18] proposed HEFT based hybrid workflow schedul-
ing algorithm for cost optimization within deadline in
hybrid cloud. The authors used the concept of sub-
deadline for rescheduling and allocation of resources
in public cloud and optimized one of the objective, i.e.,
execution cost within assigned deadline. Similarly, the
authors in [19] proposed a set of algorithms to sched-
ule the deadline constrained bag of tasks applications
on hybrid clouds to minimize the execution cost (again
only one of the objectives is minimized). Also this
work is only suitable for application consisting of
number of independent tasks. In our previous work,
we had proposed deadline and budget constrained
heuristic based Genetic Algorithms to schedule work-
flow tasks over the cloud resources that minimize
either computation cost or makesapn at a time [20–
22]. The major key issue with all these heuristics and
meta-heuristic techniques is that majority of them are
mono-objective optimization techniques.

Only few works in the past considered bi-objective
(time and cost mainly) criteria to schedule work-
flow tasks in distributed environment. In [23], the
authors proposed Multi-Objective Evolutionary Algo-
rithms (MOEAs) to solve multi-objective scheduling
optimization problems in grid. An MOEA approach
produces Pareto optimal set of solutions, which is
the set consisted of all non-dominated solutions. In
[24], the authors considered three conflicting objec-
tives like execution time (makespan), total cost and
reliability and proposed a multi-objective scheduling
algorithm, using R-NSGA-II approach based on evo-
lutionary computing paradigm that generates multiple
scheduling solutions near the Pareto optimal front with
small computation overhead. A multi-objective list
scheduling (MOLS) algorithm [25] was proposed to
find a dominant solution by using Pareto relation for
heterogeneous environment. There are also bi-criteria
scheduling heuristics derived from list scheduling
algorithms for workflow scheduling. To achieve a
trade-off between execution time and reliability, bi-

objective dynamic level scheduling algorithm (BDLS)
[26] was proposed that can be used for producing
task assignment where the execution time is weighted
against the failure reliability. In [27], the authors con-
sidered the time and cost and used the concept of
Pareto dominance to execute large programs in the
cloud to reduce the monetary cost without consider-
ing the budget and deadline constraints of user. Benyi
et al. [28] proposed a fuzzy logic based Pliant system
to migrate virtual machines and thus found a trade-off
between energy consumption of IaaS datacenter and
execution time. This work only considered the virtual
machine scheduling. So, it cannot be directly appli-
cable for workflow scheduling in clouds. From the
review of literature, it has been found that majority of
these multi-objective heuristics are only suitable for
utility gird model.

Recently, Zheng and Sakellariou [29] proposed
budget and deadline constrained, BHEFT, which is the
extension of HEFT algorithm that gives Budget and
Deadline Constrained (BDC) plan to check whether
a workflow request should be accepted or not while
considering the confirmed resource reservations from
the other users. During creation of a BDC plan, the
authors considered the spare budget for each task of
workflow while selecting the resource. However, this
heuristic is only applicable to the heterogeneous com-
puting systems like utility grids, where the number of
resources is fixed and if a user reserved a resource,
then no one other user is able to execute its tasks on
that resources for time. But, there are significant dif-
ferences between clouds and utility grids. Firstly, the
majority of current commercial cloud providers allow
a user to launch a new instance of a resource even
if that resource is reserved by some another user [5],
while in case of utility grids, there are fixed resources
with restricted available time slots. Secondly, cur-
rent commercial clouds use the pay-as you-go pricing
model where the users are charged based upon the
number of time intervals that they have used. To
address all these gaps, we introduced in this paper,
a novel heuristic that generates a BDC schedule plan
by considering the spare deadline along with spare
budget while selecting the suitable resource for each
workflow’s task. To the best of our knowledge, this
is the first multi-objective heuristic that extends a



498 A. Vermas, S. Kaushal

list based heuristic for workflow scheduling in cloud
environment. The proposed work gives a BDC sched-
ule plan which has significant reduced execution cost
as compared to the BDC plan created by state-of-
art scheduling heuristic under the same deadline and
budget constraints.

3 System Model and Assumptions

3.1 Application Model and Cloud Model

A workflow application is modelled by a Directed
Acyclic Graph (DAG), defined by a tuple G(T , E),
where T is the set of n tasks {t1, t2, ......, tn}, and E is
a set of e edges, representing the dependencies. Each
ti ε T , represents a task in the application and each
edge (ti ..........tj ) ε E represents a precedence con-
straint, such that the execution of tj ε T cannot be
started before ti ε T finishes its execution [20]. If
(ti , tj ) ε T , then ti is the parent of tj , and tj is the child
of ti . A task with no parent is known as an entry task
and a task with no children is known as exit task. The
task size (zi) is expressed in Million of Instructions
(MI).

Our cloud model consists of a service provider
which offers, m, computational resources, R =
{r1, r2, .., rm} at different processing power and differ-
ent prices. It is assumed that any resource from the set,
R is able to execute all the tasks of a workflow. The
processing power of a resource, rp ε R, is expressed
as Million of Instruction per Second (MIPS) and is
denoted by PPrp . The pricing model is based upon
pay-as-you-go basis similar to the current commercial
clouds i.e. the user are charged based upon the number
of time interval that they have used the resources, even
if they have not completely used the last time internal.

Each task can be executed on different resources.
The execution time, ET(i,p), of a task ti on a resource,
rp is calculated by the following equation:

ET(i,p) = zi

PPrp

(1)

and the execution cost EC(i,p) is given by:

EC(i,p) = μp ∗ ET(i,p) (2)

whereμp is the price unit of using resource rp for each
time interval. Moreover, all the computation resources
of a service provider are assumed to be in same

physical region, so data storage cost and data trans-
mission costs are assumed to be zero and the average
bandwidth between these resources is assumed to be
roughly equal. Only, time to transmit data between
two dependent tasks (ct), which are mapped to differ-
ent resources, is considered during experiment. Most
of the commercial clouds (like Amazon) transfer the
internal data at free of cost, so the data transfer cost is
assumed to be zero in our model. Even, the data stor-
age or storage cost have no effect on our scheduling
heuristic, so we do not consider them in the model.

3.2 Workflow Scheduling Model

The different entities in our workflow scheduling
model are: User, Scheduler and Resource Provider
(RP). RP has a set of computational resources with
different capabilities. The information related to set
of available resources like their processing power and
prices is publicly published. The RP responds to the
queries from the scheduler about the availability of
requested resources. The user submits a workflow
application along with budget, B and deadline, D to
the scheduler. The scheduler decides how to execute
workflow tasks over available resources. The whole
steps are summarized in Fig. 1.

In the following section, the proposed heuristic,
namely, BDHEFT, which used this system model, is
presented.

4 Proposed Heuristic

The proposed heuristic, BDHEFT, is based upon
HEFT [11], which is a well known DAG scheduling
heuristic. It is an extension of HEFT and consid-
ers budget and deadline constraints while scheduling
tasks over available resources. In BDHEFT, each task
is assigned a priority using upward rank as defined in
HEFT and is given by (3).

rank(ti) = wi + max
tj ε succ(ti )

{dij + rank(tj )} (3)

where wi is the average execution time of the task on
the different computing resources; succ(ti) includes
all the children tasks of ti ; dij is the average data
transmission time from a task ti to tj .

Let EST (ti , rp) and EFT (ti, rp) denote, the earli-
est execution start time and the earliest finish time of



Cost-Time Efficient Scheduling Plan for Executing Workflows 499

                         Resource Pool 

User 
Scheduler 

Resource Provider 
1. Submit Workflow Application 

5. Final Output 

2.Query Available Resources 

3. Resources List 

4.Assign Workflow Task 

Fig. 1 Workflow scheduling model

a task ti on a resource rp, respectively. For the entry
task, we have:

EST (tentry, rp) = avail(rp) (4)

For the other tasks in DAG, we compute EST and EFT
recursively as follows:

EST (ti , rp) = max

{
avail(rp)

max
tj ε pred(ti )

{AFT (tj ) + ctij }
(5)

EST (ti , rp) = ET(i,p) + EST (ti, rp) (6)

where pred(ti) is the set of immediate predecessor
tasks of task ti , and avail(rp) is the time when the
resource rp is ready for task execution. The inner
max block in the EST equation returns the ready time.
The actual start and finish time of task ti on ser-
vice rp, is denoted by (AST ti, rp) and AFT (ti, rp),
respectively, may be different from its earliest start
time (EST ti, rp) and finish time (EFT ti, rp). The
makespan is equal to the maximum of actual finish
time of the exit tasks texit .

M = max{AFT (texit )} (7)

The makespan is also referred to as the running time
for the entire DAG.

The BDHEFT heuristic includes two phases: a ser-
vice level scheduling phase and a task level scheduling
phase.In service level scheduling phase, the tasks are
selected in descending order according to their rank

using (3). For each selected task, the set of best pos-
sible resources is constructed using the six variables:
Spare Workflow Budget (SWB), Spare Workflow Dead-
line (SWD), Current Task Budget (CTB), Current Task
Deadline (CTD), Budget Adjustment Factor (BAF)
and Deadline Adjustment Factor (DAF). From these
variables, SWB, CTB and BAF are same as defined in
[29] and SWD, CTD, andDAF are proposed by us. For
a task ti , the value of these variables is given by (8) to
(13), as follows:

SWBi = B −
∑i−1

k=0
ci −

∑n−1

j=1
c̄j (8)

SWDi = D −
i−1∑
k=0

ei −
n−1∑
j=i

ēj (9)

BAFi =
{

ci/
∑n−1

k=1 c̄k, SWBi ≥ 0
0, SWBi < 0

(10)

DAFi =
{

ei/
∑n−1

k=i ēk, SWDi ≥ 0
0, SWDi < 0

(11)

CT Bi = c̄i + SWBi ∗ BAFi (12)

CT Di = ēi + SWDi ∗ DAFi (13)

where B and D are given budget and deadline respec-
tively, ck and ek are the execution cost and execution
time of allocated task k, c̄j and ēj are the average exe-
cution cost and average execution time of un-allocated
task j over different resources, n is the total number
of tasks in the workflow. It is clear from the above
equations that SWBi and SWDi are the values that are
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used to predict the expected spared budget and spared
deadline when planning task ti . BAFi and DAFi are
used to adjust the amount of spare budget and spare
deadline for the whole workflow given to the current
task.

Based on the allocated deadline and budget to a task
ti , a set BSi is constructed by considering possible
resources for a task ti , by:

BSi = {Si,p| � Si,p, ECi,p ≤ CT Bi and ETi,p ≤ CT Di}
(14)

where Si,p is a set p of resources for a task i, from
the given m resources such that ECi,p of task i over
resource p must be less than or equal to current task
budget and ETi,p of task i over resource p must be
less than or equal to current task deadline.

In the task level scheduling phase, the best possi-
ble resource for a task is selected using the following
rules:

1. if BSi �= ø, then the best resource is chosen from
this set that minimizes the following expression:

α∗EFTi,j +(1−α)∗EC(i,j) f or all jεBSi (15)

where EFTi,j is the earliest finish time and ECi,j

is the execution cost of a task i over all possi-
ble j resources in BSi respectively and α is the
cost-time balance factor in a range of [0,1] which
represents the user preference for execution time
and execution cost.

2. if BSi = ø and SWB >= 0, then the resource
from all the available resources that minimize the
above equation is chosen.

3. if BSi = ø and SWB < 0 and SWD < 0, the
cheapest resource is selected from all the available
ones.

The algorithm terminates when all tasks according to
their rank are considered. The Fig. 2 outlines the pro-
posed heuristic, BDHEFT and its working with an
illustrative example is examined in Section 4.1.

4.1 An Example

An example workflow with 9 tasks as shown in Fig. 3a
is considered to illustrate the working of BDHEFT.
Each edge is representing the amount of data to be
transferred (in MB) between the dependent tasks. The
Fig. 3b shows the execution time of these tasks on
three different available resources along with their

Input: DAG G with Budget B and Deadline D

Output : Workflow Schedule Plan

1. Compute rank using equation (3) for all the tasks.

2.  Sort all the tasks in a list in descending order of rank.

3. for i=0 to n do 

(i) Select ith task from the list.

(ii) Compute SWB and SWD for a task using 

equations (8) and (9).

(iii) Compute CTB and CTD for a task ti using 

equations (10) and (11).

(iv) Construct the possible resources set BSi using 

equation (14).

(v) for each resource in BSi, for task ti, do 

              Compute EFT of mapping task ti .

       end for 

(vi) Select a resource for a task ti using the defined 

selection rules.

end for

Fig. 2 The BDHEFT Heuristic

ranks computed using (3). The price for running a
task on different resources is shown in Fig. 3c. It is
assumed the bandwidth between all the resources is
20 Mbps and all resources are able to execute all types
of workflow tasks.

Assume a deadline of 200 time units and budget
of 100 price units. Table 1 summarizes the values
of different variables and the steps executed using
BDHEFT. The workflow tasks are sorted in order of
their rank. The value of α is chosen as 0.5 i.e. there is
50:50 preference of user for both time and cost. The
values for different variables computed for each task
clearly shows how BDHEFT selects the resource that
must be within deadline and budget constraint. Like,
for task 1, the possible set of resources consists of
two resources: r0, and r2. So, BDHEFT will choose a
resource that minimizes the expression (15). For task
2, 5, and 3, their corresponding BS is null, so for task 2,
rule 3 is applied and for task 3 and 5, rule 2 is applied.
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4.2 Time Complexity

To find out the time complexity of BDHEFT algo-
rithm, suppose that the scheduler receives a Workflow,
G(T , E) as an input with n tasks and e dependen-
cies. As G is directed graph, so maximum number
of dependencies is ((n − 1)(n − 2))/2 ≈ O(n2).
The first step of the algorithm is to find the rank of
all the tasks which requires processing of all work-
flow tasks and edges, so its time complexity equals
O(n + e) ≈ O(n2). Similarly, the step 3, consists
of two nested loops. The outer loop is for n tasks
and inner loop is for all the possible m resources.
Therefore time complexity of scheduling all tasks is
O(n.m). If we assume that the number of possible
resources is at most equal to n, then the time complex-
ity of step 3 becomes O(n2) which gives the overall
time complexity of BDHEFT algorithm equals O(n2).

5 Performance Evaluation

In this section, the simulation of the proposed heuris-
tic, BDHEFT is presented. To evaluate the proposed
workflow scheduling algorithm, we used five syn-
thetic workflows based on realistic workflows from
diverse scientific applications, which are:

• Montage: Astronomy
• Genome: Biology
• CyberShake: Earthquake
• LIGO: Gravitational physics
• SIPHT: Biology

The detailed characterization for each workflow
including their structure, data and computational
requirements can be found in [30]. The Directed
Acyclic Graph in XML (DAX) format for all
these workflows are available at website (http://
confluenece.peagasus.isi.edu/display.peagasus/
WorkflowGenerator). Figure 4 shows the approximate
structure of each workflow.

5.1 Experiment Setup

For simulation, we assume a cloud environment con-
sisting of a service provider, which offers 20 different
computation resources with different processing speed
and hence with different prices. For this study, we
have used the CloudSim [31] simulator. The existing

CloudSim simulator allows modelling and simulating
cloud environment by dealing only with single work-
load. It is not suitable for workflow scheduling as mul-
tiple tasks need to be scheduled together. So, the core
framework of CloudSim simulator is extended to han-
dle workflow scheduling. One of the crucial changes
is to read DAX files (http://confluenece.peagasus.
isi.edu/display.peagasus/WorkflowGenerator) of the
workflow structures and to extract the required param-
eters like run time, input file size, output file size
and task dependencies. The processor speeds of dif-
ferent resources are selected randomly in the range
of 1000–10000 MIPS such that fastest resource is
roughly ten times faster than the slowest one as well
as ten times more expensive. The average bandwidth
between these resources is set equal to 20 Mbps. We
are using the pricing model similar to Amazon. The
reasonable values for deadline D, and Budget B are
generated as:

Deadline D = LBD + k1 * (UBD-LBD), where
LBD = MHEFT (makespan of HEFT), UBD =
5 ∗MHEFT and k1 is a deadline ratio in range from
0 to 1.
Budget B = LCB + k2 * (UCB–LCB ), where LCB

is the lowest cost obtained by mapping each task
to the cheapest service and UCB is the highest cost
obtained conversely and k2 is a budget ratio in range
from 0 to 1.

5.2 Performance Metrics

The performance metrics chosen for the comparison
are Normalized Schedule Cost (NSC) and Normalized
Schedule Length (NSL).

The NSC of a schedule is calculated as:

NSC = T otal Cost

Cc

(16)

where Cc is the execution cost of the same workflow
by executing all the tasks on the cheapest resource,
according their precedence constraints.

The NSL of a schedule is calculated as:

NSL = T otal Execution T ime

Mc

(17)

where Mc is the execution time of the same work-
flow by executing all the tasks on the fastest resource,
according their precedence constraints.

http://confluenece.peagasus.isi.edu/display.peagasus/WorkflowGenerator
http://confluenece.peagasus.isi.edu/display.peagasus/WorkflowGenerator
http://confluenece.peagasus.isi.edu/display.peagasus/WorkflowGenerator
http://confluenece.peagasus.isi.edu/display.peagasus/WorkflowGenerator
http://confluenece.peagasus.isi.edu/display.peagasus/WorkflowGenerator
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Estimated execution time of tasks over   

 available resources, along with their rank 

Price unit of different services 

Tasks R0 R1 R2 Rank 
T1 22 42 10 140.07 

T2 26 34 12 137 

T3 28 40 14 104.53 

T4 24 34 11 101 

T5 30 40 14 104.6 

T6 22 38 10 62 

T7 26 44 12 64 

T8 30 50 20 67.2 

T9 24 36 14 24.67 

Service Price 

R0 0.40 

R1 0.29 

R2 0.92 

t1 t2

t3 t4 t5

t6 t7 t8

t9

16 36 30 19

22 36
20 

40 

38 

35 23 

30 

25 

(a)

(b)

(c)

A Sample Workflow 

Fig. 3 An example of BDHEFT Heuristic

5.3 Experiment Results

For comparison purpose, we adapted a state-of-art
workflow scheduling algorithm for fixed heteroge-
neous computing resources with reserved time slots
to the cloud environment. This algorithm is called
BHEFT [29]. We have compared BDHEFT algo-
rithm and BHEFT algorithm (without considering
the resource reservations) on the basis of makespan
and monetary cost. For the purpose of performance
comparison of two algorithms, an average value of

NSC and NSL is captured through 50 runs of simu-
lations. The comparison is further enhance by choos-
ing three different values of cost-time balance factor
(α), i.e., α = 0.3, 0.5, and 0.7. The different vari-
ants of BDHEFT corresponding to the values of α

are represented by BDHEFT (0.3), BDHEFT (0.5)
and BDHEFT (0.7) as shown in Figs. 4 and 5.
Figures 4 and 5 shows the average NSC and average
NSL, respectively, of scheduling different workflows
with BDHEFT and BHEFT for three different values
of deadline ration (k1), i.e., k1 = 0.2, 06, and 1.0

Table 1 An example to illustrate the working of BDHEFT using the workflow in Fig. 3a

Taskk SWBk CTBk SWDk CTDk BSk Selected resource Start time Finish time Cost

1 −1.41 10.06 −35.66 24.67 r0,r2 r0 0 22 8.8

2 −0.15 10.43 −32.99 24 – r1 0 34 9.86

5 0.42 12.22 −42.99 28 – r2 41.6 55.6 12.88

3 0.98 12.05 −44.99 27.33 – r0 22 50 11.2

4 1.67 10.15 −15.66 23 r2 r2 55.6 66.6 10.12

8 1.41 15.42 −3.66 33.33 r0 r0 96.6 126.6 12

7 4.38 12.96 −0.33 27.33 r0,r2 r2 66.6 78.6 11.04

6 4.74 11.89 15 30.62 r0,r2 r2 78.6 88.6 9.2

9 5.21 16.18 28.33 53 r0,r1,r2 r0 126.6 150.6 9.6

Total Time Taken = 150.6 and total cost = 95.7, given deadline, D = 200 units and budget, B= 100 units
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Fig. 4 Structure of various
workflows [30]

(a) Montage  (b)  Genomics    (c) Cybershake

(d) (e)SIPHT LIGO

and three different values of budget ration (k2), i.e.,
k2 = 0.2, 0.6, and 1.0, in total 9 combinations.

The variation in average NSC and average NSL for
three different variants of BDHEFT, i.e., BDHEFT
(0.3), BDHEFT (0.5) and BDHEFT (0.7) is due to the

fact that when the user sets α = 0.3, then the user
gives more preference to minimize the total execution
cost as compared to minimize the total execution time
(according to expression (15)), for complete work-
flow. As the value of α increase, the user preference

SIPHT,100 nodes

LIGO,100 nodes

(a) Montage,100 nodes Genomics,100 nodes

CyberShake,100 nodes(c)

(e)

(d)

(b)

Fig. 5 Average NSC of different workflows
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Genomics,100 nodes

Cybershake ,100 nodes

 SIPHT,100 nodes

 Montage,100 nodes

LIGO,100 nodes

(a)
(b)

(c)
(d)

(e)

Fig. 6 Average NSL of different workflows

for minimizing the execution cost is decreasing and
the value of NSC increases and NSL decreases respec-
tively. At a fixed budget ratio, i.e., k2, the deadline
is relaxed by increasing the value of deadline ratio,
i.e., k1 from 0.2 to 1.0. As a result, the scheduler
is able to choose the cheaper resources or slowest
resources for assigning workflow tasks. Thus, the NSC

of created schedule plan is reduced and the NSL of
same plan is increased under the same budget ratio
as shown in Figs. 5 and 6, respectively. Similarly, by
fixing the deadline ratio, i.e., k1, and by varying the
value of budget ratio, i.e., k2 = 0.2, 0.6, and 1.0, the
budget is relaxed for each of these values. Now, the
scheduler is able to choose the expensive resources or

Table 2 Comparative results of BDHEFT vs. BHEFT

BDHEFT(0.3) over BDHEFT(0.5) over BDHEFT(0.7) over Average of BDHEFT(0.3),

BHEFT BHEFT BHEFT BDHEFT(0.5), and BDHEFT(0.7)

over BHEFT

Cost Makespan Cost Makespan Cost Makespan Cost Makespan

Montage (100 nodes) −20 % +21 % −16 % +12 % −7 % +3.4 % −14.33 % +12.1 %

Genome (100 nodes) −26 % +11.5 % −16 % + 7 % −12 % 0 % −18 % +6.3 %

CyberShake (100 nodes) −20 % +22 % −13 % +11 % −10 % 0 % −14.3 % +11 %

SIPHT (100 nodes) −32 % +8.1 % −24 % +3.8 % −11 % +2.7 % −22.33 % +4.9 %

LIGO (100 nodes) −34 % +9 % −32 % +4 % −27 % 0% −31 % +4.3 %
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fastest resources for assigning workflow tasks. Thus
tend to increase the NSC and decrease the NSL of
created schedule plan under the same deadline ratio
as shown in Figs. 5 and 6, respectively, for different
types of workflows under study. Table 2 shows the
overall comparison of execution cost and makespan
of schedule plan created by BDHEFT (0.3), BDHEFT
(0.5) and BDHEFT (0.7) over schedule plan created
by BHEFT. The last column of Table 2 shows the
average comparison of execution cost and makespan
of schedule plan created by BDHEFT (0.3), BDHEFT
(0.5) and BDHEFT (0.7) over the schedule plan cre-
ated by BHEFT. We can see the average cost of all the
variants of BDHEFT is reduced by 14.33 % for Mon-
tage with about 12.1 % more makespan, by 18 % for
Genome with about 6.3 % more makespan, by 14.3 %
for CyberShake with about 11 % more makespan, by
22.33 % for SIPHT with 4.9 % more makespan and
by 31 % for LIGO with 4.3 % more makespan as in
comparison with the cost and makespan of BHEFT.
The overall results shows that all variants of BDHEFT
algorithm outperform BHEFT algorithm significantly
by reducing the execution cost of schedule while mak-
ing the makespan as good as given by BHEFT under
the same deadline and budget constraint and using
same pricing model in all cases.

This work can be applicable to handle real scientific
workflow applications in real IaaS cloud environment
like creating instances over Amazon EC2 of different
capacities at different costs.

6 Conclusion and Future Work

In this paper, we devise a new workflow schedul-
ing algorithm, namely, BDHEFT, for cloud environ-
ment. The BDHEFT algorithm is an extension of
HEFT algorithm. The proposed algorithm is eval-
uated with synthetic workflows that are based on
realistic workflows with different structures and dif-
ferent sizes. The comparison of proposed algorithm
is done with BHEFT heuristic, under same deadline
and budget constraint and pricing. The simulation
results show that our proposed algorithm outperforms
BHEFT algorithm in terms of monetary cost while
producing the makespan as good as produced by
BHEFT algorithm. In future, we intend to improve our
work by embedding the results of BDHEFT into meta-
heuristic multi-objective optimization techniques and

try to find the near optimal schedule plan for real cloud
environment.
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