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A comprehensive survey on machine learning approaches for 
dynamic spectrum access in cognitive radio networks
Amandeep Kaur and Krishan Kumar

Department of Electronics and Communication Engineering, National Institute of Technology, Hamirpur, India

ABSTRACT
Due to exponential growth in demand for radio spectrum for wireless 
communication networking, the radio spectrum has become over- 
crowded. The fixed spectrum allocation policy of the radio spectrum 
leads to inefficient utilisation of the available spectrum, which diverted 
the attention of researchers towards different intelligent techniques to 
access the spectrum dynamically and efficiently. The concept of Cognitive 
Radio (CR) has been considered as a promising technology to solve the 
problem of spectrum scarcity through the utilisation of various unutilised 
spectrum bands. In a future network deployment, multiple radio access 
networks may coexist having different characteristics. Hence, it becomes 
a challenge for CR networks to select the optimal network out of available 
networks. For efficient realisation, CRs requires intelligent spectrum man-
agement techniques for Dynamic Spectrum Management (DSM). Till now, 
there does not exist a literature survey that addresses the spectrum 
management with machine learning techniques in an intelligent manner. 
Hence, this paper presents the detailed classification and comprehensive 
survey of various machine learning techniques for intelligent spectrum 
management with their paradigms of optimisation for cognitive radio 
networks. The paper also provides new directions and open issues for 
the research community to work further in CR networks.
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Introduction

The exponential growth in the demand for extra spectrum resources become more prominent to 
support numerous wireless services leads to the advent of new technologies for high-speed data 
networks (X. Zheng et al., 2008). According to Cisco, global mobile data traffic will increase sevenfold 
between 2017 to 2022 (Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 
2017–2022, 2018).

But radio spectrum is an inherently limited resource in which frequency bands are exclusively 
assigned to the licenced users called Primary User’s (PUs) for a long term basis which leads to 
spectrum scarcity in a particular spectrum band. In contrast, a survey of spectrum utilisation being 
conducted by the Federal Communication Commission (FCC) has indicated that many portions of 
the radio spectrum are not in use, called spectrum holes, for a significant amount of time which leads 
to under-utilisation of the assigned spectrum. To overcome this problem, FCC reforms the spectrum 
allocation policy and allows unlicensed users, also known as secondary users/Cognitive Radios (CRs) 
to borrow unused radio spectrum from licenced users through Dynamic Spectrum Access (DSA) 
(FCC, 2003).
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The CR as an intelligent radio that can be reprogrammed and reconfigured dynamically. Such 
intelligent radio automatically detects available channels in the wireless spectrum, changes accord-
ingly its transmission and reception parameters to switch between available vacant spectrum bands 
dynamically. This process is known as Dynamic Spectrum Access which can be realised only with CR 
networks (Akyildiz et al., 2008).

Figure 1 presents a system model showing the available spectrum holes of various networks such 
as Television, GSM, Satellite, and Wi-Fi. CR requires a spectrum hole for its application which requires 
intelligent techniques to access the spectrum dynamically. The intelligent spectrum management 
includes spectrum sensing, spectrum decision, spectrum sharing, and spectrum mobility.

Figure 2 shows the currently fixed spectrum allocation policy decided by governmental agencies. 
Due to this fixed spectrum allocation policy, some frequency bands are highly utilised and some are 
lightly utilised. It is observed from Figure 2 that networks 1 and 2 are lightly utilised whereas 
networks 3 and 4 are highly utilised. It is shown that there exist large numbers of spectrum holes 
of heterogeneous networks that can be utilised with dynamic spectrum allocation policy. Figure 3 
shows a dynamic spectrum allocation policy where CR access the unused spectrum. Thus, the 
demand for extra spectrum bands for wireless applications can be solved with flexible usage of 

Figure 1. System model showing spectrum holes of various networks available for CRs having multiple requirements.

Figure 2. The fixed spectrum allocation policy.

2 A. KAUR AND K. KUMAR



available spectrum holes. As an intelligent wireless network, CR shares the spectrum with PUs in an 
opportunistic manner to avoid interference among multiple spectrum users with its learning abilities 
to adapt and act in a dynamic environment (Xu et al., 2014).

To address the problem of spectrum scarcity, each CR:(Akyildiz et al., 2008).

● Determine the presence of spectrum holes called spectrum sensing.
● Determine available channels including spectrum selection, routing protocol, and reconfigura-

tion called spectrum decision.
● Allocation of resources and serve its users without causing interference to PUs called spectrum 

sharing.
● Vacate the channel on the arrival of PUs called spectrum mobility.

The most important issue is how to access the spectrum dynamically without interference with PUs. 
This requires CR which is intelligent by nature and having learning capability to learn from past 
experiences, which is an essential part of intelligence. Haykin envisioned CR as an intelligent wireless 
communication system that is based on the methodology of understanding by building to achieve 
two goals: highly reliable communication and efficient utilisation of radio resources (Khozeimeh & 
Haykin, 2012). To perform these tasks, CRs must be equipped with intelligence like a human (Zafari et 
al., 2019). The implementation of such capabilities requires functional architecture like the brain to 
access the spectrum efficiently i.e. Cognitive Engine (CE) (Dong et al., 2012). The CE acts as a brain of 
CR to perform various cognitive functions intelligently and provides learning capabilities to imple-
ment the cognitive cycle by making use of machine learning algorithms. The CR technology is based 
on Software Defined Radio (SDR), which allows the radio to reconfigure through software, based on 
the interaction with the surrounding environment in which it operates. However, in recent years 
machine learning algorithms in CR networks gains a lot of attention from researchers (Kotsiantis, 
2007) (Thilina et al., 2013). A look at a recent literature survey on CR networks reveals that various 
leaning techniques are proposed that have been applied to numerous CR applications (Yau et al., 
2012)(A. He et al., 2010). Some authors presented machine learning techniques, particularly focused 
on spectrum sensing and decision making in CR networks (Abbas et al., 2015).

Further, CR has to work under unknown environments where complete Channel State Information 
(CSI) is not present or only partial CSI is available but it has to estimate the behaviour from other CRs 

Figure 3. The dynamic spectrum allocation policy.

JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE 3



present in network to coordinate its actions. Another author surveyed machine learning techniques for 
decision making and feature classification in different environmental conditions. In general, learning 
becomes an indispensable part of CR if the input-output relation of the system is not known, or as in 
the case of CR networks, due to channel uncertainty. Thus, learning becomes a necessary tool to 
estimate that channel characteristics to reduce error probability (Zafari et al., 2019). In CR’s, several 
parameters need to be adjusted simultaneously such as availability of spectrum (Tripathi et al., 2011), 
transmit power (G. Yang et al., 2015), adaptive coding and modulation schemes (Zafari et al., 2019), 
antenna selection, rate control (Hanif et al., 2011), spectrum handoff (Thakur et al., 2017), etc., and it is 
not possible to identify and adjust all these parameters simultaneously. Thus, learning techniques can 
be applied to perform specific CR tasks with efficiency and accuracy.

An overview of an existing literature survey is presented in Table 1. The survey reveals that 
most of the authors have shown their interest in the specific issue of spectrum management. 
Most of the authors provide different types of solutions to address the spectrum scarcity 
problem. Some of the authors specifically discuss a problem related to spectrum management 
whereas no work has been presented with machine learning techniques for dynamic spectrum 
management which includes spectrum sensing, spectrum decision, spectrum sharing, and 
spectrum mobility. In this survey, spectrum management with intelligent techniques, consider-
ing learning as an important parameter has been discussed. In particular, we provide an in-depth 
discussion on different types of intelligent techniques such as Artificial Neural Network, 
Metaheuristic Algorithms, Support Vector Machine, Bayesian Learning, Game Theory, and 
Hidden Markov Models. The pros and cons of each technique in the context of spectrum 
management have also been discussed. We firstly present a spectrum management framework. 
Then we introduced various intelligent techniques used in CR networks as well as a survey of 
state-of-the-art achievements of these techniques for dynamic spectrum management in CR 
networks. The major contributions of this paper are summarised as follows:

Table 1. Comparison with an existing literature survey.

Reference Focused area Description

Our paper Spectrum 
management

This paper discussed complete spectrum management with intelligent 
techniques, its strengths, limitations, and evaluations based on the 
requirement of CR networks.

(Akyildiz et al., 2006) Cross-layer design 
issues

The author briefly investigates next-generation CR wireless networks for 
DSM and addresses its cross-layer design issues.

(A. He et al., 2010) AI in CR networks This paper reviewed several artificial intelligence techniques that have 
been applied to numerous CR applications but not specifically to spectrum 
management.

(Bkassiny et al., 2013) Feature classification & 
decision making

Machine learning techniques in CR networks for feature classification 
(spectrum sensing) and decision-making under the non-Markovian 
environment.

(Thilina et al., 2013) Spectrum sensing Unsupervised (K-means clustering, Gaussian mixture model) and 
Supervised (Support vector machine, weighted K-nearest neighbour) 
learning-based techniques implemented for cooperative spectrum sensing.

(Abbas et al., 2015) Spectrum sensing & 
decision making

The paper provides a survey on artificial intelligence and machine learning 
techniques to address spectrum sensing and decision-making issues

(Qadir, 2016) Routing The authors targeted cognitive routing as an issue.
(Azhar et al., 2011) AI in wireless networks Here, the artificial intelligence framework of neural networks in wireless 

networks has been presented including CR networks.
(Ramzan et al., 2017) Multiple objectives 

optimisation
This paper focused on the optimisation problem with multiple objectives.
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● This paper presents a comprehensive survey of various intelligent techniques and presents 
their applications in CR networks. The target of this paper is to provide a focused survey of 
these techniques and evaluates its performance in spectrum management as major CR tasks 
which include spectrum sensing, spectrum decision, spectrum sharing, and spectrum mobility.

● This paper presented state-of-the-art achievements in applying intelligent techniques to CR 
networks along with their strength and limitations to provide an overview of active research in 
the area of CR networks.

● The paper discusses research issues and challenges that are still an open issue and need the 
attention of researchers.

The rest of the paper is organised as follows: Section 2 provides the spectrum management frame-
work for CR networks. The taxonomy of various intelligent techniques is presented in Section 3. The 
evaluation of intelligent techniques along with their strengths and limitations are presented in 
Section 4. Section 5 presents research issues, challenges, and future directions in the area of 
spectrum management. Finally, the concluding remarks are given in Section 6.

Spectrum management framework

To address the critical challenges associated with the co-existence of PUs and CRs in CR networks, 
CRs are required with the following functions in spectrum management:

● Interference Management: The important role of CR is to resolve the interference issues with 
PUs which can be resolved in two manners:

(a) Proactive: In this, the CR switches its communication before the arrival of PUs.
(b) Reactive: CR switches its communication after the arrival of PUs.

● Quality of service (QoS) Awareness: In heterogeneous networks, the selection of an appro-
priate spectrum band is necessary to provide QoS aware communication

CR technologies provide intelligent spectrum management capabilities that could meet the ever- 
increasing demand of spectrum, thus empowers radio with etiquette to avoid interference. The 
complete spectrum management framework is presented in Figure 4. It shows that CR spectrum 
management framework has four main steps:

Figure 4. The complete spectrum management framework.
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(a) Spectrum Sensing: The first step of spectrum management starts with spectrum sensing on 
the arrival of CR. Spectrum sensing provides the ability to detect the spectrum holes (in terms 
of the frequency band, location, duration of availability) and PU activity by periodically 
sensing the spectrum and use it without interference with PUs (Noorshams et al., 2010).

(b) Spectrum Decision: Spectrum decision includes spectrum analysis and decision making. It 
deals with the selection of appropriate spectrum bands according to the required QoS. The 
spectrum hole is characterised, with various parameters such as multipath environment, 
operating frequency, interference, link delay (Pourpeighambar et al., 2017) and number of 
PUs using the spectrum, being considered (X Liu et al., 2013). After spectrum analysis, the 
decision has been made to access the spectrum hole. Various optimisation techniques can be 
applied to obtain optimal decisions depending upon the radio environment whether it has to 
optimise single objective or multiple objectives (Ramzan et al., 2017).

(c) Spectrum Sharing: The main function of spectrum sharing is to avoid collision among the CRs 
as multiple users trying to access the spectrum while maintaining QoS. Spectrum sharing 
deals with coordination among CRs to access the shared channels, resource allocation, and 
spectrum access (Kour et al., 2018)(Akyildiz et al., 2008). The spectrum allocation includes the 
assignment of spectrum band in a cooperative (Bayrakdar, 2020). or non-cooperative manner 
using handshaking protocols of transmitter and receiver (X Liu et al., 2013). The spectrum 
access includes collision avoidance among CRs in the access phase

(d) Spectrum Mobility: Spectrum mobility deals with spectrum handoff and connection manage-
ment. CRs are usually regarded as visitors which often need to switch from one spectrum hole 
to another on the arrival of PUs in a dynamic environment (Christian et al., 2012). Spectrum 
mobility utilises a reactive and proactive approach for the detection of PUs whereas connec-
tion management ensures that CR continuously transmits its data in a new spectrum hole 
(Thakur et al., 2017).

Intelligent techniques in cognitive radio networks

A CR as an intelligent wireless device, which is aware of its environment, capable of learning and 
adapt from its surrounding environment and learning considered to be an indispensable component 
of an intelligent system which is considered to be a basic tool of CRs for dynamically access the 
available spectrum without interfering with PUs. CR must have the capability to learn from current 
observations and past experiences. However, CR has to work under different radio environments in 
which CR might have full or partial CSI or sometimes under a completely unknown environment. 
However, not being idealistic, due to fluctuations in the wireless channel, channel estimation errors, 
and quantisation errors, it is not possible to obtain perfect CSI. Thus, CR might apply an intelligent 
algorithm to estimate its actions concerning other CRs for spectrum management. Various techni-
ques in CR networks are shown in Figure 5.

Intelligence with artificial neural networks

Artificial Neural Networks (ANN) provides Artificial intelligence (AI) which aims to incorporate 
intelligence in machines so that machines can perform like an expert. Also, machine learning, 
a subclass of AI, gained a lot of attention from the researchers in CR networks. Learning can be 
classified as supervised, unsupervised, and reinforcement learning (Jiang et al., 2017)(Duda et al., 
2001). Supervised learning learns from the training set and requires prior information about the 
environment. On the other hand, unsupervised learning does not require any training set and it 
performs self-adapting actions without any prior knowledge about the environment.

Reinforcement learning or learning with critic, the learning agents learn by observing actions of 
other agents, and its performance is influenced by learning regime and operating environment 
(Duda et al., 2001)(Dandurand & Shultz, 2009). However, it is a particular point of interest here that 
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how these intelligent algorithms have been applied to access the spectrum dynamically. In this 
section, we present various ANN techniques that can be applied to CR networks.

Artificial Neural Network (ANN)
Artificial Neural Network (ANN or simply NN) consists of several interconnected neurons, 

identical to the human brain, which is made up of real biological neurons. The first artificial 
neuron was introduced in 1943 by the neurophysiologist W. McCulloch and logician Walter Pits. 
ANN composed of a large number of artificial neurons which are interconnected to each other 
that mimics the behaviour and natural processing of biological neuron .i.e., learning and 
organisation (Tsagkaris et al., 2008). The human brain can perform fast due to its special ability 
of parallel data processing and NN tries to mimic the behaviour of solving narrowly defined 
problems. As stated earlier, NN consist of a pool of neurons, and these neurons are configured 
in the form of layers and connected to other nodes with links defined by the weight wjk , which 
determines the effect of the signal of a neuron j on a neuron k. In NN, three types of layers are 
present, which are distinguished as the input layer, hidden layer, and output layer. The input 
layer consists of neurons, which receive data whereas output layers consist of neurons, which 
send data out from the NN layer and the hidden layer consists of neurons whose input, and 
output remain in NN. Each neuron within NN uses some activation function to process the 
input signals sk it receives from (a) neighbours belonging to different layers (b) external 
sources. The type of activation function used depends on the problem to be addressed.

● Types of NN and Machine Learning

In this section, we describe different NN models.

Supervised NNs
In supervised NNs, the input and output are known and its objective is to discover the 
relationship between two. The two main NN models are as Feed Forward NNs (FFNNs) and 
Recurrent NNs (RNNs). FFNNs are further classified as: Single layer FFNNs (SL-FFNNs) and 
Multilayer FFNNs (ML-FFNNs).

Figure 5. Intelligent techniques in CR networks.
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(a) Feed Forward NNs

In FFNNs, neurons feed their values in the forward direction. It is of two types describes as:

(i) Single-layer FFNN (SL-FFNNs): It consists of single-layer of neurons. Due to its single-layer 
network, learning and training mechanism is easy but it has limited utility, as it is not able 
to solve real-world complex problems.

(ii) Multilayer FFNN (ML-FFNNs): It consists multiple layers (hidden layers) between input and 
output layer. These hidden layers solve complex problems using the activation function. As 
stated earlier, some activation function is required to process the information, and the 
selection of activation function depends on the problem to be solved. Table 2 shows various 
types of activation functions to address different problems.

Various type of ML-FFNNs using different activation functions leads to slight variation in the 
network. (Tumuluru et al., 2010), designed a multilayer spectrum predictor using a neural network, 
which does not require prior knowledge of traffic characteristics of PUs. CR may predict channel 
status based on sensing history which further saves sensing energy. (Liu et al., 2015) proposed ML- 
FFNN based dynamic Chinese restaurant game for spectrum sensing, which considered CR as 
customers to learn the table state (available spectrum hole) in the restaurant (network).

Some important examples of ML-FFNNs include Radial Basis Neural Networks and Convolutional 
Neural Networks which are described below:

● Radial Basis Neural Networks (RBNN): RBNN composed of three layers: input layer, hidden layer, 
and output layer. The hidden layer consists of neurons using a Gaussian transfer function gives 
the output as

Yj ¼
X

j

wj exp
�

r
x �

r
μ

�
�
�
�

�
�
�
�

2
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0

B
B
B
@
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C
C
A

(1) 

In Gaussian transfer function, x! is input, ~μj and σj represents centre vector and width of jth neuron 
in hidden layer respectively, which need to be calculated for each neuron, ||.|| denotes Euclidean 
distance. However, an initial value of the centre vector and width affects the prediction ability of the 
network. An unsupervised learning technique i.e. K-means clustering (K-RBF) algorithm can be used 
to obtain the values of centre vector and width of the hidden neurons associated to construct and 
train RBNN in a more accurate way. The output of the transfer function weighted and summed as 
shown in Equation (1).

Zhang (S. Zhang et al., 2013) proposed K-RBF for spectrum sensing based on previous information 
of the PU spectrum which reduced prediction error to one-third as compared to RBF. Researchers 
proposed a design of CE based on the RBF and Genetic Algorithm (GA) for multi-objective optimisa-
tion. RBF has strong learning capability while GA is good at multi-objective optimisation (Y. Yang 
et al., 2012).

Table 2. Types of the activation function.

Sr. No. Activation Function Equation Application

1. Log Sigmoid Function FkðskÞ ¼ 1
1þe� sk

Logistic regression problem
2. Hyperbolic tangent FkðskÞ ¼ esk � e� sk

eskþe� sk
Multi-layer NN

3. Linear FkðskÞ ¼ sk Linear regression problem
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● Convolutional Neural Networks (Conv-Nets or CNN): CNN is another variant of ML-FFNN that has 
been used effectively in the areas of image recognition and classification. CNN exploits spatially 
local correlation by enforcing local connectivity with adjacent layer neurons, which does not 
take entire data from preceding layers. LeNet was the very first CNN which become an 
important tool for machine learning. Key operations of CNN include convolution, non- 
linearity (ReLU), pooling (or sub-sampling), and classification (Fully connected layer). For 
example, when an image is passed to CNN, features are extracted from the image using 
convolution preserves the spatial relationship between pixels of an image by utilising a small 
square of input data. Another operation i.e. ReLU has been performed after convolution, which 
introduces non-linearity in CNN. ReLU stands for Rectifier Linear Unit, which is an element-wise 
non-linear operation (applied per pixel) and replaces negative pixels in feature map by zero. 
Pooling operation can be done after convolution+ReLU operation, which can be done in 
different ways such as sum, average, max, etc. This operation reduces the dimensionality of 
each feature map by only retaining important information. Finally, the classification process is 
done. The output extracted from previous operations extract high-level features that are used 
for feature classification of the input image. The term” Fully connected” means every neuron of 
the preceding stage is connected to every neuron of the succeeding stage that classifies and 
forms various classes based on the training dataset. Further, CNN can be trained using gradient 
descent and backpropagation (Lecun et al., 1998). Backpropagation calculates the gradients of 
error concerning all weights in the network and updates weights and parameter values using 
gradient descent to minimise an output error.

Lee (Lee et al., (2019) cooperatively implemented the CNN spectrum sensing technique, in which 
optimal strategy is used for combining sensing results of individual CRs obtained using CNN. Sensing 
based on deep neural networks is used to learn from a large set of data through a backpropagation 
algorithm. Deep sensing provides optimised combining strategy based on spectral and spatial 
correlations of channel i.e. based on the location of CRs and PUs characteristics. Selim et al. (2018) 
presented the CNN spectrum monitoring framework for radar bands in spectrum sharing scenarios. 
The main idea behind this framework is to detect the presence of radio signals in the radio spectrum 
even when this signal is overlapped by other signals due to simultaneous transmission.

(b) Recurrent Neural Network (RNN)

The idea behind RNN is to make use of sequential information, with the output being dependent on 
previous computations. Here, the neurons are connected in a cyclic manner, which allows exhibiting 
dynamic temporal behaviours shown in Figure 6. Unlike FFNNs, RNN does not propagate information 
directly to the next connected layer but use their internal memory to process the input.

RNN are called recurrent because they perform the same operations for every element in the 
input sequence.

Figure 6. Recurrent neural network.
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Let Xt ,Ot andHtbe the input, output, and state of the hidden layer(s) on time t. In simple 
mathematical form, RNN can be expressed as 

Ot ¼ FðHt; θÞ (2) 

Ht ¼ FðHt� 1; Xt; θÞ (3) 

where the parameter θ defines weight and bias for the network. Equation (2) states that outputOtat 
a particular time t depends upon the state of the hidden layer Ht and θ. Further, Ht depends upon its 
previous statesHt� 1 and inputXtat a time t as stated in Equation (3). To train RNN, the backpropaga-
tion algorithm through time approach is used which ‘unfold’ RNN in time and converted into FFNNs 
consisting of identical copies of RNN. RNN consist of a large number of layers as compare to ML- 
FFNNs and also training process is based on the passage of information through these layers and 
propagation of unsuitable information through the network leads to the accumulation of large error 
which leads to inaccurate results. Usually, the gradient descent method is used for backpropagation 
training.

Deep Recurrent Neural Network (DRNN): DRNN (Tang & Li 2017) consists of multiple hidden layers 
that enable the prediction of the spectrum of multiple time slots in CR networks since existing 
methodology only predicts the spectrum of a single slot. Here, the channel state is divided into slots 
and forming time series of channel state. Due to multiple hidden layers in DRNN, it is difficult to train 
using a gradient descent method, which leads to slow convergence and gradient disappearance. To 
avoid these problems, Extended Kalman Filter (EKF) for estimation of weights is used which over-
comes the problem of slow convergence and vanishes gradients in a gradient descent method.

Unsupervised NNs
As the name indicates unsupervised NNs only know the input and the main objective is to discover 
patterns in features of input data. The system learns using certain test dataset and allows a lower- 
dimensional representation of input data.

(a) Unsupervised ML-FFNNs (Auto-encoders)

Auto-encoders are the type of FFNNs specially designed for dimensionality reduction. In 
other words, auto-encoders provide the same output as the input. In auto-encoders, encoder 
function learns from input to representation and decoder function back from representation 
to input i.e. reconstruction. Denoising auto-encoders (Bengio et al., 2013) are the extension 
of basic auto-encoders, which attempts to address, identify function risk by introducing 
noise. Random noise is added to the input in the form of percentage and then this noisy 
data is fed in auto-encoder, which finds correlations within the input data to find correct 
data instead of noise added data. In Sparse auto-encoders, a sparsity constraint on the 
hidden layer is applied for extracting interesting features from unlabelled data even if 
numbers of hidden layers are large. Authors proposed a novel modulation classification 
method using denoising sparse auto-encoder as a classifier to improve spectrum sensing, 
i.e. to avoid interference with PUs (Zhu & Fujii, 2016). Moreover, the denoising process 
improves the performance of noise suppression by training the network with a corrupted 
database. Further, Variational Auto-Encoders (VAE) emerged as a powerful unsupervised 
learning framework for generating complicated data. They can learn a low dimensional 
representation of high dimensional data (Doersch, 2016). Contractive Auto-encoders (CAE) 
make use of explicit regulariser which learns a function even in slight variations of input 
values. CAE adding a well-chosen penalty term to cost function which enables an auto- 
encoder to perform better (Rifai & Muller, 2011).
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(b) Unsupervised Recurrent NNs (URNN)

URNN is a complex type of NNs, which are inspired by ideas from statistical physics which model 
system as an energy function. RNNs are computationally powerful and learn from the temporal 
behaviour of given training data. Compared to the FFNN, RNN is more powerful in representing 
complex dynamics and having a compact size. Two main types of URNNs are Hopfield Network and 
Boltzmann Machine, which are described next.

● Hopfield NNs: Hopfield NNs is a dynamic auto-associative model, which can store information in 
a dynamically stable structure. Each Hopfield network has some energy function (Lyapunov 
function) associated with it, which always tries to converges to a local minimum of the function. 
Hopfield NNs is biologically plausible, as its working is similar to the human retina. Hasegawa 
(Hasegawa et al., 2014) proposed an optimisation algorithm for decision making on radio 
resources in centralised and decentralised CR networks. In a decentralised network, the energy 
minimisation dynamics of Hopfield NNs are considered.

● Boltzmann Machine(BM): BM is a stochastic RNN, like the Hopfield network, in which the 
network unit finds a global minimum of the energy function. BM is designed for discrete 
variables having the disadvantage of being slow. Another problem with BM is it stops learning 
correctly when the machine statics grows exponentially with the size of the machine and with 
the magnitude of connection strength. Other variants of BM are Restricted Boltzmann Machine 
(RBM) and Deep Boltzmann Machine (DBM).

(i) Restricted Boltzmann Machine (RBM): As the name indicates, a restriction is imposed with 
neurons that they have symmetric connection between different groups of nodes but no 
connections between the same group of nodes which allows more efficient training algo-
rithms than BM. MohanaPriya and Shalinie (2017) presented a secure routing protocol for CR 
networks. The RBM algorithm self learns the routing procedure between source and destina-
tion node. Further, it provides energy-efficient routing to prevent flooding attacks.

(ii) Deep Boltzmann Machine (DBM): DBM (Salakhutdinov & Hinton, 2009) have the potential to 
learn complex internal state representations, which is useful in speech recognition problem. It 
also develops high-level representations to tune its model for a specific task from unlabelled 
data as well as from limited labelled data.

Unsupervised competitive NNs
Unsupervised competitive learning is a form of unsupervised training where output neurons are said 
to compete for input patterns. It employs a winner-take-all strategy since only winning neuron is 
updated. Two major techniques of unsupervised competitive learning are

a. Self-Organising Maps/Kohenon Maps

Self-Organising Maps (SOM) are the special class of ANN, which is inspired by the cortex of the 
human brain. SOM makes use of competitive learning in which neurons compete with each other to 
win and then the winner neuron displaced to feature space to form clusters. The competition is 
induced by inserting negative feedback between neurons, which forces neurons to organise them-
selves. For obvious reason, such a network is called self-organising maps. SOM was introduced by 
Kohenon used to assist CRs to choose among various configurations to operate by considering bit 
rate predictions (Tsagkaris et al., 2012). Khozeimeh and Haykin (2012) proposed a self-organising 
dynamic spectrum management technique for CR networks in which CRs continuously senses the 
environment, extract PUs and neighbouring CRs activity patterns, and store to obtain knowledge 
that significantly reduces the probability of collision.
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b. Adaptive Resonance Theory

Adaptive Resonance Theory (ART) is another class of unsupervised competitive NNs that is designed 
for object identification and recognition based on matching between observer expectations and 
sensory information. This ART matching criterion is set by vigilance parameter, ƿ (threshold of 
recognition). High vigilance permits weight updation of winning recognition neuron while low 
vigilance inhibits weight updation of recognition neuron and search procedure is carried out 
(Carpenter et al. 2016). Another variant of ART is ART 1 and ART 2. ART 1 is the simplest type of 
ART which accepts an only arbitrary sequence of binary input patterns whereas ART 2 supports 
analog inputs patterns as well as binary input patterns (Carpenter & Grossberg, 1987).

In CR networks, a channel sensing algorithm based on ART-2 is proposed for cognitive wireless 
mesh networks in which the spectrum is divided into disjoint sub-bands and sensing is performed in 
each sub-band. This sensed information is further fused in a fusion centre, which is defined as 
a pattern classification problem. In this algorithm, only pattern phase information is considered 
which leads to wrong pattern classification (Zhu et al., 2008). Further modified ART-2 is described 
which considers amplitude as well as phase information.

Reinforcement learning and NNs
Reinforcement Learning (RL) is another AI approach that enables an agent (decision maker) to 
observe its state, choose an action in a particular state to obtain rewards. The transition from one 
state to another depends on several factors such as previous state, action taken, and next state. The 
main goal is to estimate the reward function for each state-action pair accumulates knowledge and 
maximise reward function. To apply the RL model (single-agent approach), identified by state, action, 
and reward. In the multi-agent approach, the set of agents is enabled to learn about each other 
information to maximise its reward function. Unlike supervised NNs, it does not have any prior 
knowledge about its input and output. It learns online from the environment and builds the knowl-
edge to achieve its objectives.

RL in the context of CR networks which provides intelligence in terms of dynamic channel 
selection, spectrum sensing, routing, spectrum allocation (Y. Wang et al., 2019), power control 
mechanism (K.L.A. Yau et al., 2014). Further, enhanced RL techniques in CR networks have also 
been presented. The authors in (Saleem et al. 2015) addressed routing issues by clustering mechan-
isms using the RL approach. Further, routing based clustering improves network stability and 
scalability. Moreover, spectrum aware cluster-based routing is presented which overcomes the 
challenges of multihop routing.

In RL, an agent maps the situation (channel state) to maximise its reward function on a long term 
basis. The agent learns continuously and the environment responds to the state through its action by 
state transition after each epoch. The agent uses optimal policy to decide each time while taking the 
next step which maximises its rewards. To obtain an optimal policy, the Dynamic Programming 
approach can be used when perfect information about the system is available. The system is 
modelled using Markov property which makes the RL model equivalent to Markov decision 
Process (MDP). On the other hand, when perfect system information is not available, but the 
sequence of past state, action, and rewards are available then the Monte-Carlo method can be 
applied to obtain an optimal policy. Another approach named Temporal Difference (TD) learning 
approach does not form the system model and obtain its optimal policy based on prediction. 
Q-Learning (Q-L) and SARSA are the most widely used TD learning techniques (Sutton & Barto, 
1998). These schemes are implemented for resource allocation in CR networks and it is observed that 
SARSA converges slower than Q-L as shown in Figure 7. This is due to the reason that Q-L follows 
a greedy approach for action selection according to off-policy whereas SARSA selects its action 
corresponding to the current policy obtained.

Lo et al., (2010) proposed RL based cooperative spectrum sensing model in which CR learns to 
find an optimal set of cooperative neighbours which reduces sensing delays. Further, RL based 
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optimum solution is provided which improves spectrum sensing under the shadowing effect. The 
reward function depends on reporting time delay i.e., the time duration between CRs request of 
cooperation to neighbouring node and arrival to sensing outcome. The authors in (Li, 2009) 
proposed Q-Learning to address resource allocation problems in a multi-agent environment. 
Koushik (Koushik et al. 2018) discussed RL based spectrum handoff and issues related to RL during 
handoff. In this paper, the authors presented hardware implementation of RL and Transfer Learning 
(TL) schemes to update its Q-value table greedily and shown that RL takes longer time to converge 
than TL which has expert node to transfer its knowledge in form of Q-table.

Combinational NNs
(a) Neuro-Fuzzy NNs

Fuzzy logic is an attractive technique, particularly where it is difficult to express the mathematical 
model of real-world problems. In fuzzy Sets, elements are assigned a certain degree of belonging-
ness. The numbers in the range [0,1] are used to represent the degree of belongings. Fuzzy logic 
becomes a useful scheme to represent uncertain data. The fuzzy logic controller consists of three 
main components as shown in Figure 8.

(i) Fuzzy Interface: Converts real-world values to suitable fuzzy sets.
(ii) Interference Engine: Interference engine uses a knowledge base to decide output for a specific 

combination of input fuzzified variables and maps into output variables.
(iii) Defuzzy Interface: Converts output fuzzy sets to real-world values.

Figure 7. Comparison between the performance of Q-L and SARSA schemes.

Figure 8. Illustration of fuzzy logic in CR networks.
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The authors (Salgado et al., 2016) proposed a fuzzy algorithm is proposed for decision making and 
particularly for backup channels for spectrum mobility. This proposed algorithm based on multiple 
criteria decision-making techniques considers four parameters: availability probability of channel, 
estimated channel time availability, the signal to interference plus noise ratio of the channel, and 
bandwidth of the channel. Normalised weights (describes a relative degree of importance) are 
assigned according to the importance of each criterion for the selection of a backup channel. The 
pre-selection of back up channels decreases delay during spectrum mobility.

The authors (Matinmikko et al., 2009) proposed a fuzzy-based cooperative spectrum sensing 
technique. In this technique, spectrum sensing decision from the individual node is considered as 
input, fuses to form output based on combined sensing result. Spectrum sensing performance has 
been characterised based on the probability of false alarm and probability of detection in a fading 
environment.

However, fuzzy logic represents uncertain data, but it is difficult to design the degree of belong-
ingness set. So Fuzzy logic combined with neural networks and forms the neuro-fuzzy combinational 
model. Neuro-fuzzy based spectrum mobility technique due to its capability to deal with uncertain 
environmental conditions as well as in the heterogeneous environment. This technique considers 
interference, bit error rate, and signal strength to find the quality of the channel in terms of fuzzy 
patterns. Based on generated fuzzy patterns, neural .networks trained to estimate channel gain, not 
only for spectrum mobility but also for spectrum assignment in a heterogeneous network 
(Maheshwari & Singh, 2015).

b. Wavelets NNs

Wavelet NNs replaces standard activation function (like a sigmoid function) by wavelet activa-
tion function. A wavelet is a small function that grows and decays in a finite amount of time. 
Unlike Fourier transform, wavelet NN can distinguish between stationary and non-stationary 
signals.

However, wavelet NNs uses wavelet function (called mother wavelet) to derive daughter wavelet 
function ψλ;tðuÞthrough linear translation factor, t and scale/dilation factor, λ as shown in Figure 9. 
The daughter wavelet is expressed as 

ψλ;tðuÞ ¼ ψ
t � u

λ

� �

(4) 

An author in (Eltholth, 2016) proposed a spectrum predictor model, which is based on a discrete 
wavelet transform nature that produces a time-frequency representation of the analysed signal. The 

Figure 9. A daughter wavelet neuron.
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analysed time series is broken into sub-series, which represents the previous occupancy status of 
a certain set of sub-channels. Thus, design an accurate wavelet NNs based spectrum predictor model 
with less complexity.

Wavelet approach for wideband spectrum sensing is sub-divided into small bands and charac-
terised by frequency irregularities. Wavelet transform and multiscale wavelet approach have been 
used to detect local irregularities that carry information about power spectral density and structure 
irregularities of sub-bands that identify spectrum holes (Tian & Giannakis, 2006).

Other NNs
(a) Quantum NNs

Quantum NNs (QNNs) is based on quantum mechanics exploiting quantum information processing 
to improve classical ANN. In classical ANN, much of the power is required due to its massively parallel, 
distributed information processing and non-linear transformation operation performed by nodes. 
On the other hand, QNN makes use of powerful quantum parallelism, which provides quantum 
computing to process huge data sets. The author (Liu, 2016) presented QNN based spectrum sensing 
algorithm in which quantum neuron with multiple energy levels is considered as the excitation 
function of hidden layer neurons. Further, the improved version has been presented to increase 
convergence speed and stability. Table 3 summarises DSM with ANN in CR networks.

Intelligence with support vector machine

Support Vector Machine (SVM) is supervised machine learning algorithms used for classification and 
regression analysis. It is based on statistical learning theory with structural risk minimisation (Awe 
et al., 2013). It is initially preferred for the classification of complex problems. For a given training set, 
the input training vector belongs to one or another class of two groups. These two groups are 
separated by an optimal hyperplane that has the largest distance to the nearest training set of any 
class (maximal margin classifier) that achieves good separation. It is easier to train SVM when the 
classes are linearly separable. In non-separable classification, non-linear SVM is obtained by introdu-
cing a kernel function. The function is said to be valid kernel if it satisfies Mercer’s Theorem 
(Hofmann, 2006), which provides necessary and sufficient characterisation of a function as a kernel 
function. A kernel represents a similarity measure in the form of a similarity matrix (Gram Matrix) 
between its input objects. The gram matrix fuses all the necessary information for learning algo-
rithms merged in the form of the inner product. For more details, refer (Burges, 1998). SVM to 
develop a real-time approach to sense PU as shown in Figure 10. The input composite signal includes 
signal and noise, which is independent of each other in the time domain. The sampled data is 
classified as PU or not based on testing and training of the SVM classification model.

For linear classification, a kernel function is proposed to map input low dimensional vector into 
high dimensional features space (Zhang & Zhai, 2011). Y. Wang (Wang et al., 2014) proposed 
a spectrum mobility prediction scheme that considers time-varying and space varying characteristics 
of mobile CRs simultaneously. The joint feature extraction pattern is proposed which executes 
spectrum mobility prediction through the classification of SVM with fast convergence speed. The 
authors in Huang et al., (2009) presented an SVM based learning engine that is divided into three 
parts as environmental awareness, knowledge actuation, and decision making. The learning engine 
acquires knowledge about the environment through learning that puts intelligence in CRs. Table 4 
summarises DSM with SVM in CR networks.
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Intelligence with metaheuristic algorithms

a. Genetic algorithm (GA)
GAs are stochastic search algorithms, which effectively solve machine learning and image processing 
problems (Jedlicka & Ryba, 2016). The main advantage of using GA is parallelism, which speeds up its 
simulation results. The computation in GA starts with the collection of chromosomes, which has 
certain characteristics. The algorithm can be implemented using the following steps as shown in 
Figure 11 (Siddique & Azam, 2010).

(1) Initialise the population of chromosomes.
(2) Evaluate the fitness level of each chromosome to rank them.
(3) Construction of the new population until the production of next-generation completes using 

the following steps:
(i) Selection: The best chromosome is selected from the currently available population 

based on its fitness level.
(ii) Crossover: With crossover probability, selected chromosome reproduces to generate 

a new individual.
(iii) Mutation: Newly generated individuals will be mutated at a definite point in the 

chromosome.
(4) The above steps are repeated until the desired results are obtained.

In CR networks, the GA uses biological behaviour representing each channel by a chromosome. Each 
gene of the chromosome represents specific parameters. In the spectrum decision process, it is all about 
the fair distribution and utilisation of available resources, and for fair resource distribution, optimal 
distribution is required. According to L.Doyle, ‘An optimization process can be defined as the process 
involved in selecting the best choice from the list of available choices to reach some kind of goal or at 
least as near as possible to goal’ (Doyle, 2009). In CR networks, spectrum allocation also involves an 
optimisation task to assign spectrum holes to CR found during the spectrum sensing process.

The spectrum allocation scheme for CR networks using GA in which each gene of chromosome 
represents different parameters (data rate, frequency, bandwidth, error rate, and modulation/coding 
scheme) which is associated with specific weight (Siddique & Azam, 2010). The weight for each gene 
represented in binary form. Like the weight for each gene in the chromosome fitness point for each 
gene is assigned. Once the fitness of each gene in the chromosome is calculated, the next step is the 
construction of a new population, which involves selection, crossover, and mutation process. The 
whole process is repeated until the optimum solution among the available solution set is achieved. 
The authors in (Morabit et al., 2015) presented spectrum decisions based on GA to provide a new 
spectrum band as requested by CR in the network. GA defines radio in terms of genes and 
chromosomes and considers user quality of service (QoS) as an input to the GA procedure. 
Further, chromosome population size is defined by available spectrum resource size and chromo-
some genes define the efficiency of spectrum allocation.

b. Ant colony optimisation (ACO)
ACO considered as computational technique proposed by Dorigo which is based on the searching 
behaviour of Ants (Dorigo et al. 1997). Although real arts are blind, the search their food source via 
the shortest path by play on the information through a substance called pheromones. The ants on its 
transmission route release this liquid substance, which is accumulated on the shortest route and 
soon ants, start to follow the smallest route. The behaviour of real ant has inspired the ant system, 
which resolves many complex problems successfully. The characteristics of the ACO algorithm i.e. 
parallel computation, self-organisation, and positive feedback that can help CR to achieve self- 
adaption and learning capability to achieve global optimisation (Q. He et al., 2013) (Bayrakdar & 
Çalhan, 2018). Different steps in the ACO algorithm are as follows:
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(1) Ant probability distribution rule: In the ant system, artificial ants release the solution through 
moving among vertex follow the principle as:

pk
ijðtÞ ¼

½τijðtÞ�
α
½ηijðtÞ�

β

P

s2C
½τijðtÞ�

α
½ηijðtÞ�

βif j 2 C

8
><

>:
(5) 

where pk
ijðtÞ is state transition probability of ant moving from vertex i to j at the time t. C is a set of 

vertex and s is unselected vertex in the traversing process. τijðtÞ and ηijðtÞ are pheromone intensity 

Figure 10. A diagram showing the basic idea of SVM for spectrum sensing.

Table 4. Summarises DSM with SVM in CR networks.

Type 
of 
SVM Authors Brief Description

Application 
Area Other Related Applications

- Dandan (2011) 
Awe and 
Lambotharan 
(2015)

● SVM based spectrum sensing 
technique

(1) Presented SVM to develop real time 
approach to sense PU.

(2) The sampled data is classified as PU or 
not based on testing and training of 
SVM classification model.

(3) For linear classification, kernel func-
tion is proposed to map input low 
dimensional vector into high dimen-
sional features space.
.

● Formulated multi-class SVM 
Algorithms for solving multi-class 
spectrum sensing problems.

(1) The performance of the detector has 
been judged based on receiver oper-
ating characteristics curves and classi-
fication accuracy.

(2) Robust to joint spatiotemporal detec-
tion of spectrum hole.

Spectrum 
Sensing

Eigen vector and support vector 
machine based learning approach for 
spectrum sensing in multi antenna CR 
networks is proposed (Awe et al., 
2013)

- Wang et al. 
(2014)

● SVM based spectrum mobility predic-
tion scheme

(1) Considers time-varying and space 
varying characteristics of mobile CRs 
simultaneously.

(2) The joint feature vector extraction pat-
tern is proposed which executes 
spectrum mobility prediction through 
the classification of SVM with fast 
convergence speed.

Spectrum 
Mobility
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and heuristic visibility (cost) of a direct route between the node i and j. The parameters α and β 
controls the importance of pheromone and heuristic information respectively.

2. Local optimisation procedure: To avoid residual pheromone submerging heuristic information, 
pheromone will keep updated after one ant finishes a path searching with follows the principle 
as:

τijðt þ 1Þ ¼ ð1 � ρÞ:τijðtÞ þ ρ:τ0 (6) 

where τ0 is the initial pheromone value and ρis the evaporation coefficient of pheromone.

3. Global optimisation procedure: When all ants complete the cycle, the pheromones will be 
globally updated as:

τij  ð1 � αÞ:τij þ α:
1

Gmax
(7) 

where α is constant and Gmax is the maximum objective function.

4. Stopping procedure

The procedure is stopped after completing a predetermined number of cycles to achieve the globally 
best solution.

The author in (Jhajj, 2017) discussed the ACO technique to find the optimal sensing time of CR. As 
CR has a fixed time frame for its sensing the environment and transmission of data, an optimal 
sensing time is required that will maximise throughput with minimum interference with PUs. This 
optimal sensing time can be found by ACO which implements the above steps to find an optimised 
solution. The ACO has been proposed for reconfiguration decision making in CR networks (Q. He 
et al., 2013). Reconfiguration means configure terminals and network devices to intelligently adapt 
to environmental conditions, which is a challenging task. ACO deals with complex environmental 
conditions as well as target multi-objective optimisation through parallel computation. Moreover, 
ACO learns from the environment and reconfigure spectrum decision through self-organisation 
process. Three types of reconfiguration schemes have been considered i.e. parameter variation 

Figure 11. Illustration of genetic algorithm for CR networks.
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reconfiguration scheme, radio resource management reconfiguration scheme and network access 
reconfiguration scheme and showed the improved performance in the heterogeneous network.

A dynamic channel assignment as an optimisation problem to maximise the reward of CRs is 
formulated in (He & Zhang, 2012). The algorithm also considers interference with PUs and SINR 
constraints of CRs to maximise the spectrum utilisation. Table 5 summarises DSM with metaheuristic 
algorithms in CR networks.

Intelligence with Bayesian learning

Bayesian learning signifies the importance of prior distribution which represents knowledge of 
unknown parameters in uncertain environmental conditions. It is assumed that no prior information 
is available about the spectrum but some prior information is available about the status of the 
channel which should be explored through learning. Bayesian inference is an approach where Bayes’ 
rule is used for driving posterior distribution from the prior distribution which further considered as 
prior for another posterior distribution and so on. In CR networks, CRs can compute the prior 
distribution of a system parameterθ, denoted by PðθÞ, which represents the spectrum occupancy 
status of PUs. Though spectrum sensing, data observed in n time slots X ¼ ½x1; x2; ::::::::xn�. The 
likelihood functions of the parameter θ,PðX=θÞ, for observed data, conditional on parameter θ. After 
acquiring prior probability distribution and the likelihood function, Bayesian inference can be used 
to derive posterior density function, Pðθ=XÞwhich is conditioned on data X. Bayes’ Theorem can be 
simply expressed as 

Pðθ=XÞ ¼ PðX=θÞ:PðθÞ=PðXÞ (8) 

In CR networks, Likelihood function denotes the probability of busy/idle previous states for a busy/ 
idle current state. In Baye’s theorem, the posterior distribution combines the information in both the 
prior distribution function and the likelihood function, which represents stronger information and 
narrower possible values for θ. The Bayesian network has 2 types of models, Bayesian Parametric (BP) 
Model, and Bayesian Non-Parametric (BNP) Model. BP model has a finite set of parameters θ to 
compute prior distribution and In the BNP model, it does not mean a lack of parameters but an 
infinite-dimensional set of parameters is assumed to compute prior distribution. Recently BNP model 
applications in CR networks get a lot of attention of researchers because it provides flexibility to 
model to learn in an unknown environment.

A Bayesian approach based spectrum sensing in CR networks is presented in (Jacob et al., 2014). 
The authors presented Bayesian inferences over single and multiple sensing frames to calculate the 
posterior distributions of unknown parameters, which forms the basis of Bayesian learning (Manco- 
vásquez et al., 2014). In Bayesian inference over multiple frames, learning from past samples has 
been done using threshold-based approximation and Kullback Leibler based approximation. Further, 
A Bayesian approach based decision-making engine in CR networks is proposed in (Huang et al., 
2010). CE learns from an environment and form rules to reconfigure transmission parameters 
(modulation, code rate) which ensures QoS of CRs. The reconfiguration can be achieved with 
parameter learning, structure learning, and inference algorithms that form rules to adapt to envir-
onmental conditions . Table 6 summarises DSM with a Bayesian approach in CR networks.

Intelligence with Hidden Markov Model

Hidden Markov Model (HMM) represented as a stochastic process that can be modelled as a Markov 
chain, whose actual states are hidden, to analyse the temporal or dynamic behaviour of PU activity 
pattern. In HMMs, several hidden states represent the probability of distribution over a sequence of 
observations. The HMM gets its name from two properties in which it assumes:

1) Observations at the time tgenerated by some process whose state St is hidden from the 
observer.
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2) State of hidden process St satisfy Markov’s property which states that for a given St� 1, the 
current state St is independent of all states before ðt � 1Þi.e. For a given St, the output Yt is 
independent of all other time indices states and observations.

HMM has found remarkable applications in CR networks since many environmental parameters 
are partially observed or act as hidden states. Various authors proposed HMM-based spectrum 
sensing schemes (Saad et al.,2016), (Ghosh et al. ,2009). HMM-based spectrum prediction for 
industrial applications that accurately predict through multiple slots is proposed in (Saad et 
al.,2016). Large numbers of hidden layers are considered which interpret as different PUs activity 
levels and formulate the prediction problem as a maximum likelihood classification approach. Akbar 
et al., 2007 presented a Markov based channel prediction algorithm and considers channel state 
occupancy of PUs as Poisson distributed. Pham et al. (2014) presented the HMM based spectrum 
handoff model in CR networks. The proposed approach infers the efficiency of HMM in correcting the 
sensing sequence and prediction of channel status. Further, the proposed algorithm applied to the 
spectrum mobility function in CR networks. An HMM based channel selection framework that 
minimizes the delay incurred during channel selection is proposed in (Senthilkumar & Geetha 
Priya, 2016). The proposed approach achieves a significant reduction in data loss and an increase 
in transmission speed, by obtaining the best-matched channel for the users. Table 7 summarises 
DSM with HMM in CR networks.

Intelligence with game theory

Game theory technique accounts for multi-agent decision making, in which the decision of each 
player for action is based on the history of actions performed by other players. This involves the 
learning process by each player, which may ultimately lead to a stable state. Every game involves 
a set of players, actions, and payoff functions (or utility function). A player gets more rewards if it has 
a higher payoff function. Mathematically, a game can be represented as: 

G ¼ ðN;A; PÞ (9) 

where N represents a set of players, A represents a set of actions, and P represents payoff 
functions. In CR networks, the players in the games are CRs, which take actions based on observa-
tions of its environment in which it operates. As time progresses, CR learns from past actions and 
from observing the action of other CRs and modify its actions accordingly. Several types of game 
theory approach in CR networks are shown in Figure 12.

● Game-Theoretic Approaches:

Two types of game-theoretic approaches are cooperative and non-cooperative games. In coopera-
tive games, a group of players can make binding commitments and act jointly whereas, in non- 
cooperative games, the individual player acts selfishly. In cooperative games, cooperation among 
the players strengthens the position of the player in a game. Here the group of players forms 
a coalition act as a single entity.

In non-cooperative, each user takes care of its benefit and selects optimal actions to maximise its 
payoff function. The author in (Yu, 2013) presented cooperative games for spectrum sensing and 
sharing and found that the applicability of various games depends on several factors. A non- 
cooperative game can be classified based on information i.e. either complete information or an 
incomplete information game. In the complete information games, each player observes other 
players’ information i.e. payoff and their action. On the other hand, with incomplete information, 
the game can be modelled as Bayesian game for decision making in which outcome can be 
estimated based on Bayesian analysis (Wang et al., 2010). Several types of games have been adapted 
to model various situations in CR networks. For example, in repeated games, each stage is usually 
repeated. Let us considerN the set of CRs in the network and aðkÞdenotes the action taken by a player 
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at kththe stage of the game. In each stage k, players tend to maximise their payoff function, while 
considering the history of action collected in hðkÞ ¼ ðað1Þ; að2Þ; ::::::::; aðkÞÞ. In other words, players 

map their actions from history aðkÞi ¼ fiðhðk� 1ÞÞ. In CR networks, their action is the selection of channel 
available and mapping of action depends on the history of PUs activity as well as activity pattern of 
other CRs. In dynamic/repeated games, players came across a similar game number of times. The 
cooperation among the players in repeated games can be introduced to get long term benefits. The 
repeated games are applied for spectrum sharing scenarios where multiple CRs exists in (Li et al., 
2010). In this context, repeated games apply punishments to achieve a desirable outcome. When the 
PUs activity is considered as stationary with an unknown environment then Stochastic games, also 
known as Markov games, are introduced to model the network. The authors in (W. Wang et al., 2018) 
addressed the routing problem using stochastic games. Stochastic routing game is decomposed into 
several stages and at each stage stochastic learning is proposed to learn equilibrium strategy of 
channel selection.

The Stackelberg game can be modelled for implementing spectrum sharing where PUs can 
involve CRs as cooperative relays (H. Wang et al., 2010). In auction games, PUs act as auctioneer, 
selling idle spectrum bands to CRs which are allowed to select the appropriate bidding strategy for 
each channel to maximise their utility function. The concept of auction games has been applied to 

Table 7. Presents DSM with HMM in CR networks.

Type of 
HMM Authors Brief Summary Application Area Other Related Applications

- Saad et al. (2016) ● HMM-based Spectrum Prediction for 
industrial applications.Addressing the 
prediction problem as a sequence of 
the classification problem.

● Large numbers of hidden layers which 
formulate the problem as maximum 
likelihood (ML) classification.

Spectrum 
Decision

Dynamic spectrum 
allocation using HMM is 
presented (Akbar & 
Tranter, 2007). 
Channel status predictor 
using HMM and/or 
Multilayer perceptron 
(MLP) (Tumuluru et al., 
2012).

- Ghosh et al. 
(2009)

● HMM in Spectrum SensingHMM pre-
dicts a busy or idle status of sub-band 
by its PU

● Validate the existence of Markov chain 
by collecting real-time measurements 
in paging spectrum (928–948 MHz)

● Likelihood method to determine true 
states, the complexity arises due to 
this method is then reduced using 
Viterbi coding

Spectrum Sensing

- Tran and Do 
(2014)

● The HMM-based Spectrum Mobility 
modelThe proposed approach infers 
the efficiency of HMM in correcting 
the sensing sequence and prediction 
of channel status.

● Further, the proposed algorithm 
applied to the spectrum mobility 
function in CR Networks.

Spectrum 
Mobility

- Senthilkumar and 
Geetha Priya 
(2016)

● Channel selection framework based 
on HMM.Minimised channel selection 
delay

● Further enhanced its performance 
with an optimum routing algorithm 
along with HMM.

● The proposed approach achieves 
a significant reduction in data loss 
and an increase in transmission speed, 
by obtaining the best-matched chan-
nel for the users.

Spectrum 
Sensing, 
channel 
allocation

JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE 27



spectrum sharing in CR networks (Khaledi & Abouzeid, 2013), as well as in spectrum sensing (Sendrei 
et al., 2015). Table 8 summarises DSM with game theory in CR networks.

Intelligent techniques evaluation: strength, limitations, and challenges

Intelligent techniques having many advantages but their implementation still facing some chal-
lenges. The intelligent techniques applications in CR networks, strengths, limitations, and imple-
mentation challenges are summarised in Table 9.

(a) Supervised NNs: Basically, supervised NNs accomplished its task under supervision which 
requires complete knowledge about the environment in which it has to operate. However, in 
the context of CR networks, CRs may not have complete knowledge about the radio environ-
ment in which it has to access the spectrum. NNs provides a high level of feature classification 
but also required data labelling. It requires training under different environmental conditions 
and outcome depends on the selection of initial parameters. Therefore, the selection of data 
for training must be task-oriented and free from noise. Also, with the increase of network size, 
the training process slows down which may lead to slower convergence. To improve its 
efficiency, multiple hidden layers are introduced which requires large training data which 
further slows down its training process.

(b) Unsupervised NNs: A major challenge CRs can face a lack of knowledge of the surrounding 
radio environment. Even in this situation, CRs are expected to adopt changes in the environ-
ment so that they may not collide with PUs. CRs must be able to extract knowledge about PU 
activities which makes unsupervised NNs an appealing approach in CR networks. In unsu-
pervised NNs, learning is based on a correlation among input data, and no information about 
the correct output is available. So unsupervised NNs are used indirectly for spectrum 

Users &

networks

Game Type Players Strategy Action taken

Cooperative 
Games

Repeated 
Games 

Non-
Cooperative 

Games

o Group of players make bidding 
commitment and take action jointly.

o Players forms coalition act as single 
entity.

o Individual player selects optimal action 
to maximize its payoff function.

Stackelberg 
Games 

Auction 
Games 

Game Components

History of PUs 
and CRs activity

Selection of 
channel

o Each stage is usually repeated and in 
each stage players tends to maximize 
its payoff function.

o Players maps its actions from history of 
PUs and CRs activity.

PU

PU Transmission

CR Transmission

o PU select proper set of CRs which act 
as cooperative relays.

o In return leases portion of access time  
to CRs for its transmission.selected CRs to act as 

cooperative relays

Bidder/Seller Tenderer/BuyerBidding cost, 
payoff

o PU act as an auctioneer and sells idle 
spectrum band to CRs

o CRs has to select appropriate bidding 
strategy for each spectrum band to 
maximize its utility function.

Figure 12. Various game theory approaches in CR networks.
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management in CR networks like modulation classification, optimisation algorithm for spec-
trum decision, and routing algorithms.

(c) Unsupervised Competitive NNs: As the name indicates, it is a form of unsupervised learning 
where output and input neuron compete and employs winner take all strategy. SOM is one of 
the members of this class that make use of competitive learning in which neurons compete 
with each other to win and winner neuron displaced to feature space to form clusters. The 
authors in (Khozeimeh & Haykin, 2012) presented SOM based DSM for cognitive ad-hoc 
networks. In this proposed scheme, PU and CR activities patterns are extracted and stored 
in memory which significantly reduces the probability of collision. SOM seems to be more 
realistic as it does not require prior knowledge about the radio environment. Further, the 
application of SOM with a different type of input pattern does not require redesigning the 
existing learning mechanism. SOM can be easily interpreted and understood. Moreover, it 
requires sufficient data to form meaningful clusters. Another member of this category is ART 
which designed for object identification, recognition, and pattern classification problem. It 
has stable and self-regulating control structure but it does not always guarantee stability and 
it has to empirically fix its vigilance parameter. This technique is not suitable directly for DSM 
in CR networks.

(d) Reinforcement Learning: Reinforcement Learning is distinct from supervised and unsuper-
vised learning as it focuses on online learning rather than offline learning. RL learns from 
positive and negative reinforcement (or rewards) to set its training examples. RL seems to be 
one of the promising intelligent techniques to solve the spectrum management problem in 
CR networks. RL is used in spectrum sensing, spectrum decision (in the multi-agent environ-
ment and with multiple objectives), spectrum sharing, and spectrum mobility. One of the 
major drawbacks of the RL technique is slow convergence. The authors presented hardware 
implementation of RL and Transfer learning for spectrum handoff in (Koushik et al., 2018) and 
found that RL takes a long time to adjust its learning parameters as compare to Transfer 
learning

(e) Combinational NNs: Combinational NNs have neuro-fuzzy NNs and wavelet NNs in this 
category. Fuzzy logic is an attractive technique that uses human-understandable fuzzy logic 
instead of using complicated mathematical modelling. The main advantage of fuzzy logic is 
that it is faster to train and also it requires less computational resources. With fuzzy logic, the 
solution can be obtained when the system has incomplete environmental knowledge. Some 
disadvantages of fuzzy logic are difficult to create its model as with increasing dimensions 
may lead to inefficient results. Further, it is difficult to estimate its membership function 
according to user requirement and it requires more tuning.

(f) Support Vector Machine: SVM comes under the supervised learning category which is used 
for object classification, pattern recognition, and regression analysis problem. SVM technique 
provides superior performance in many applications due to its generalisation ability and 
robustness against noise. SVM maps input vector from low dimensional feature to high 
dimensional features which make them linearly separable. For non-linear mapping, a kernel 
function is used. In CR networks, SVM is used as a classifier for signal classification. The 
sampled data is classified as PU or not based on the training of SVM. Unlike ANN, it is not 
suffered from overfitting problem and provides good performance in small problems. But in 
complex problems, it provides poor performance and may require a high training set which 
increases its computation complexity and storage requirements. Also, SVM requires large 
labelled data for training and complete knowledge of the radio environment which may 
divert the focus of researchers.

(g) Metaheuristic Algorithms: These algorithms solve multi-objective optimisation problems 
through parallel computation. GA provides multi-objective optimisation based on a fitness 
function but it may not always converge to the global optimum in case of large performance 
metrics. The performance of GA highly depends on fitness function which may be based on 
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prior knowledge. Wrong prior knowledge may lead to the generation of bad chromosomes. 
Thus, the selection of better genes (each gene represents bandwidth, modulation scheme, 
data rate, etc.) to generate the next genes are very critical. Further, GA is considered a very 
slow process since fitness function is calculated through selection, crossover, and mutation 
process. GA improves its convergence speed either by combining with RBNNs or by increas-
ing the number of genes. In ACO, parallel computation, self-organisation, and positive feed-
back can help CR to achieve self-adaption and learning capability to achieve global 
optimisation. ACO algorithm involves local optimum value based on which global optimum 
value is obtained. ACO can easily adapt environmental changes but its performance is poor 
for local searches.

(h) Bayesian Approach: Bayesian approach relies on a probabilistic model which signifies the 
importance of prior distribution to derive posterior distribution using Baye’s theorem. The 
Bayesian approach requires prior knowledge about the radio environment. Incorrect informa-
tion may lead to skew inferences. It has high computational complexity due to high dimen-
sional integrals. Bayesian learning can combine with other techniques such as HMM for 
channel quality prediction in CR networks. Dynamic Bayesian games are used for decision 
making. Further, the Non-Parametric Bayesian model-based Dirichlet process mixture model 
for unsupervised classification techniques can be used.

(i) Hidden Markov Model: HMM is a stochastic model based on the Markov model which is highly 
relevant to the CR network applications as environmental parameters that are partially 
observed and act as hidden states. The selection of appropriate models for training is 
a very important task in HMM. Due to the presence of multiple hidden layers, it is difficult 
to decode the sequence. HMMs have been extensively used in CR networks for spectrum 
sensing, channel selection, and spectrum mobility. One of the major drawbacks while using 
HMM is that it requires a training sequence. But its training process is quite complex. It can be 
combined with other techniques such as GA to improve its training efficiency.

(j) Game Theory: Game Theory is a mathematical model which provides a solution for self- 
centred multi-agent systems where the decision of individual agent affects other players 
decision. Particularly in CR networks, each CR act as a player and their action may include the 
selection of parameters according to user requirements. The goal of game theory is to provide 
the best outcome (optimal solution) while considering the interest of all players. Game-theory 
has been applied in several applications in CR networks such as spectrum sensing, decision 
making, spectrum access, etc. One of the major drawback while using game theory is to make 
a model which requires statistical information about the radio environment. As the environ-
ment is dynamic, which leads to the shift optimal solution before the convergence. It is 
difficult to structure a game that always provides an optimal solution. Another drawback is 
a limited number of players. As players increases, it may decrease its convergence speed 
which is another important factor need to be considered. Further, the game theory requires 
complete knowledge of the environment and also need labelled data for training. Incomplete 
or imperfect information can lead to uncertainty. Table 9 presents the evaluation of various 
intelligent techniques along with their strengths and limitations.

Research issues, challenges, and future directions

The intelligent techniques provide a promising solution towards the realisation of the DSM but there 
are certain research issues and challenges in DSM that need to be addressed carefully. New radio 
capabilities breed new demands for spectrum access, which presents an open challenge in CR 
networks. Some of these research issues, challenges, and future directions are summarised below:

● Wideband and higher frequencies: With the increasing demand for wireless traffic and applica-
tions, not only the higher spectrum efficiency but also more bandwidth resources are required 
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which presents a major challenge in CR networks. As the number of users increases in current 
wireless systems, scalability becomes an extremely important issue. For such purpose, novel 
brain empowered/intelligent techniques need to be designed together with reconfiguration 
capability to achieve the best performance.

● Interference management: Due to coexistence among heterogeneous networks provide a new 
challenge in DSM. First and foremost, consideration is how well the devices are coexisting 
together. There is also a need to develop adaption in modulation schemes as well as other 
parameters, which enables devices to avoid interference. Moreover, cooperation between 
different networks and among CRs further mitigate the effect of interference. The amount of 
cooperation between heterogeneous networks and among CRs is also an additional challenge 
that needs to be addressed.

● Privacy and security: The deployment of new spectrum access technologies and their realisation 
raises new security challenges that have not been studied previously. Furthermore, regulators 
and policymakers have to consider what data from spectrum usage can be collected to access 
spectrum utilisation without trespassing on the user’s privacy. There is a need to ensure the 
correct implementation of the deployed system and when they are not, enforcement proce-
dures will be needed to solve the DSM problem.

● Intelligent techniques based on green CR networks: The recent exponential growth of wireless 
technologies used in daily life needs to consider issues related to health and the environment. 
Hence, the designing of the future CRs need to be energy efficient to cut carbon emission. 
There exist limited work for DSM with consideration of green communication. Thus, there is 
a need to design DSM techniques considering green communication.

● Massive MIMO with intelligence: Massive MIMO uses a large number of antennas to provide an 
extra degree of freedom and diversity to improve its performance. To use this extra degree of 
freedom efficiently, intelligence needs to be incorporated to improve the perception capability 
and reconfigurability of CRs.

● Regulatory and policy reform challenges: Beyond technical issues, there are also policy reform 
challenges in DSM. Future deployed systems may employ spectrum dynamically in which PUs 
can sell their spectrum to CRs temporarily. Thus, the service level agreements for spectrum 
sharing need to be reconsidered. Furthermore, strategies need to be designed for dynamic 
spectrum auctions and markets.

● Multi-objective optimisation: In CR networks, multi objectives are conflicting with each other 
such as minimisation of power consumption, maximisation of throughput, minimisation of BER, 
etc. The optimisation of multiple objectives is a challenging task that needs to be addressed 
carefully.

Other challenges include lack of incentives for spectrum sharing, authorisations constraints, and 
hardware, software, and protocols related issues need to be considered which require interdisciplin-
ary collaboration among researchers of diverse backgrounds to address these challenges.

Conclusion

The paper has provided a comprehensive review and the classification of intelligent techniques for 
DSM in CR networks. For efficient realisation, CRs are combined with intelligent techniques so that 
dynamic and intelligent spectrum management can be done. The intelligent spectrum management 
schemes are surveyed in the context of spectrum sensing, spectrum decision, spectrum sharing, and 
spectrum mobility. The main emphasis of the work is to elaborate on the role of intelligent 
techniques in CR to enhance its learning capability. We have presented state-of-art achievements 
in applying intelligent techniques for DSM along with their strength and limitations. It provides an 
overview of active research in the area of dynamic spectrum management in CR networks.
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Unluckily, available techniques for spectrum management still lack the ample reflection of various 
network parameters in real-world scenarios which are quite complex to model, so some model-free 
schemes would become increasingly important. In future work, eliciting and encouraging coopera-
tive behaviour through rewards and mechanism design will become important and looks promising 
to be an important area of further research.
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