Molecular profiling of *Mycobacterium tuberculosis* identifies tuberculosinyl nucleoside products of the virulence-associated enzyme Rv3378c

Emilie Layre^{a,1}, Ho Jun Lee^{b,1}, David C. Young^a, Amanda Jezek Martinot^c, Jeffrey Buter^d, Adriaan J. Minnaard^d, John W. Annand^a, Sarah M. Fortune^e, Barry B. Snider^f, Isamu Matsunaga^{g,2}, Eric J. Rubin^c, Tom Alber^{b,3}, and D. Branch Moody^{a,3,4}

^aDivision of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; ^bDepartment of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720; ^cDepartment of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115; ^dStratingh Institute for Chemistry, University of Groningen, 9747 AG, Groningen, The Netherlands; ^eDepartment of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115; ^fDepartment of Chemistry MS 015, Brandeis University, Waltham, MA 02453-2728; and ^gLaboratory of Cell Regulation, Department of Viral Oncology, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan

Edited by David W. Russell, University of Texas Southwestern Medical Center, Dallas, TX, and approved January 15, 2014 (received for review August 22, 2013)

To identify lipids with roles in tuberculosis disease, we systematically compared the lipid content of virulent Mycobacterium tuberculosis with the attenuated vaccine strain Mycobacterium bovis bacillus Calmette-Guérin. Comparative lipidomics analysis identified more than 1,000 molecular differences, including a previously unknown, Mycobacterium tuberculosis-specific lipid that is composed of a diterpene unit linked to adenosine. We established the complete structure of the natural product as 1-tuberculosinyladenosine (1-TbAd) using mass spectrometry and NMR spectroscopy. A screen for 1-TbAd mutants, complementation studies, and gene transfer identified Rv3378c as necessary for 1-TbAd biosynthesis. Whereas Rv3378c was previously thought to function as a phosphatase, these studies establish its role as a tuberculosinyl transferase and suggest a revised biosynthetic pathway for the sequential action of Rv3377c-Rv3378c. In agreement with this model, recombinant Rv3378c protein produced 1-TbAd, and its crystal structure revealed a cis-prenyl transferase fold with hydrophobic residues for isoprenoid binding and a second binding pocket suitable for the nucleoside substrate. The dual-substrate pocket distinquishes Rv3378c from classical *cis*-prenvl transferases, providing a unique model for the prenylation of diverse metabolites. Terpene nucleosides are rare in nature, and 1-TbAd is known only in Mycobacterium tuberculosis. Thus, this intersection of nucleoside and terpene pathways likely arose late in the evolution of the Mycobacterium tuberculosis complex; 1-TbAd serves as an abundant chemical marker of Mycobacterium tuberculosis, and the extracellular export of this amphipathic molecule likely accounts for the known virulence-promoting effects of the Rv3378c enzyme.

TbAd | terpenyl transferase

With a mortality rate exceeding 1.5 million deaths annually, *Mycobacterium tuberculosis* remains one of the world's most important pathogens (1). M. tuberculosis succeeds as a pathogen because of productive infection of the endosomal network of phagocytes. Its residence within the phagosome protects it from immune responses during its decades long infection cycle. However, intracellular survival depends on active inhibition of pH-dependent killing mechanisms, which occurs for M. tuberculosis but not species with low disease-causing potential (2). Intracellular survival is also enhanced by an unusually hydrophobic and multilayered protective cell envelope. Despite study of this pathogen for more than a century, the spectrum of natural lipids within M. tuberculosis membranes is not yet fully defined. For example, the products of many genes annotated as lipid synthases remain unknown (3), and mass spectrometry detects hundreds of ions that do not correspond to known lipids in the MycoMass and LipidDB databases (4, 5).

To broadly compare the lipid profiles of virulent and avirulent mycobacteria, we took advantage of a recently validated metabolomics platform (4). This high performance liquid chromatography-mass spectrometry (HPLC-MS) system uses methods of extraction, chromatography, and databases that are specialized for mycobacteria. After extraction of total bacterial lipids into organic solvents, HPLC-MS enables massively parallel detection of thousands of ions corresponding to diverse lipids that range from apolar polyketides to polar phosphoglycolipids. Software-based (XCMS) ion finding algorithms report reproducibly detected ions as molecular features. Each feature is a 3D data point with linked mass, retention time, and intensity values from one detected molecule or isotope. All features with equivalent mass and retention time from two bacterial lipid extracts are aligned, allowing pairwise comparisons of MS signal intensity to enumerate molecules that are overproduced in one strain with a false-positive rate below 1% (4).

Significance

Whereas most mycobacteria do not cause disease, *Mycobacterium tuberculosis* kills more than one million people each year. To better understand why *Mycobacterium tuberculosis* is virulent and to discover chemical markers of this pathogen, we compare its lipid profile with that of the attenuated but related mycobacterium, *Mycobacterium bovis* Bacillus Calmette–Guérin. This strategy identified a previously unknown *Mycobacterium tuberculosis*-specific lipid, 1-tuberculosinyladenosine, which is produced by the Rv3378c enzyme. The crystal structure of Rv3378c provides information supporting drug design to inhibit prenyl transfer. Discovery of 1-tuberculosinyladenosine provides insight into how *Mycobacterium tuberculosis* resists killing in macrophages and a new target for diagnosing tuberculosis disease.

Author contributions: E.L., H.J.L., I.M., E.J.R., T.A., and D.B.M. designed research; E.L., H.J.L., D.C.Y., A. Jezek Martinot, J.B., and J.W.A. performed research; A. Jezek Martinot, J.B., A. J. Minnaard, S.M.F., B.B.S., and E.J.R. contributed new reagents/analytic tools; E.L., H.J.L., D.C.Y., A. Jezek Martinot, A. J. Minnaard, J.W.A., B.B.S., E.J.R., T.A., and D.B.M. analyzed data; and E.L., H.J.L., B.B.S., T.A., and D.B.M. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Data deposition: The coordinates and structure factors have been deposited in the Protein Data Bank, www.pdb.org (PDB ID codes 4CMV, 4CMW, and 4CMX).

¹E.L. and H.J.L. contributed equally to this work.

²Present address: Okatani Hospital, 1-25-1 Kyobate-cho, Nara 630-8141, Japan.

⁴To whom correspondence should be addressed. E-mail: bmoody@rics.bwh.harvard.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. 1073/pnas.1315883111/-/DCSupplemental.

³T.A. and D.B.M. contributed equally to this work.

Fig. 1. Comparative lipidomic analysis of *M. tuberculosis* and BCG reveals a natural product constitutively produced and exported by *M. tuberculosis*. (A) Detected molecular features are shown as a scatterplot of intensity derived from *M. tuberculosis* H37Rv and BCG lipid extracts. Each feature corresponds to a detected ion and contains retention time and *m/z* values, which are detailed in *SI Appendix*, Dataset S1; 1,845 features out of 7,852 total features showed intensity ratios that deviate significantly from 1 (corrected *P* value, <0.05). The mass spectrum corresponds to the four *M. tuberculosis* specific features of substance A. (*B*) lon chromatograms extracted at *m/z* (S40.3545) and retention time of substance A were used for the analysis of lipid extracts of reference strains. (*C*) lon chromatograms from lipidomic analysis of filtered conditioned medium were extracted at the *m/z* of substance A or control compounds that are secreted (carboxymycobactin) and cell wall-associated lipids (trehalose monomycolate, mycobactin).

This comparative lipidomics system allowed an unbiased, organism-wide analysis of lipids from M. tuberculosis and the attenuated vaccine strain, Mycobacterium bovis Bacillus Calmette-Guérin (BCG). BCG was chosen because of its worldwide use as a vaccine and its genetic similarity to M. tuberculosis (6). We reasoned that any features that are specifically detected in M. tuberculosis might be clinically useful as markers to distinguish tuberculosis-causing bacteria from vaccines. Furthermore, given the differing potential for productive infection by the two strains, any M. tuberculosis-specific compounds would be candidate virulence factors. Comparative genomics of M. tuberculosis and BCG successfully identified "regions of deletion" (RD) that encode genes that were subsequently proven to promote productive *M. tuberculosis* infection (7), including the 6-kDa early secreted antigenic target (ESAT-6) secretion system-1 (ESX-1) (8, 9). We reasoned that a metabolite-based screen might identify new virulence factors because not all functions of RD genes are known. Also, biologically important metabolites could emerge from complex biosynthetic pathways that cannot be predicted from single-gene analysis.

Comparison of *M. tuberculosis* and BCG lipid profiles revealed more than 1,000 differences, among which we identified a previously unknown *M. tuberculosis*-specific diterpene-linked adenosine and showed that it is produced by the enzyme Rv3378c. Previously, Rv3378c was thought to generate free tuberculosinol and isotuberculosinol (10–12). This discovery revises the enzymatic function of Rv3378c, which acts as a virulence factor to inhibit phagolysosome fusion (13). Whereas current models of prenyl transferase function emphasize iterative lengthening of prenyl pyrophosphates using one binding pocket, the crystal structure of Rv3378c identifies two pockets in the catalytic site, establishing a mechanism for heterologous prenyl transfer to nonprenyl metabolites.

Results

Comparative Lipidomics of *M. tuberculosis* and *M. bovis* Bacillus **Calmette–Guérin.** Using HPLC-MS for comparative analysis of lipid extracts of *M. tuberculosis* H37Rv and BCG (Pasteur strain), we detected 7,852 molecular features (Fig. 1 and *SI Appendix*, Dataset S1). By aligning datasets and seeking features that significantly differed in intensity (corrected *P* value <0.05), we identified 1,845 features that were overdetected in one bacterium or the other (Fig. 1*A*). Among these features, we focused on molecules selectively detected in *M. tuberculosis* that showed the highest fold-change ratios and intensity. We identified four molecular features corresponding to a singly charged molecular ion at m/z 540.357 (C₃₀H₄₅N₅O₄) and its isotopes (Fig. 1*A*), but this chemical formula did not match entries in the MycoMass (4) or other public databases. We named the unknown molecule substance A.

Substance A Is an Abundant Natural Product of *M. tuberculosis*. The molecular ion of substance A was one of the most intense ions in the M. tuberculosis lipidome (Fig. 1A), suggesting that it was produced in abundance. Identification of an apparently abundant molecule in a widely studied pathogen was unexpected, leading to questions about whether substance A was truly a natural product. However, this compound was absent in media, solvent blanks, and BCG lipid extracts but was reproducibly detected in three reference strains of M. tuberculosis (Fig. 1B). As observed with cellassociated compounds (Fig. 1A), culture filtrate (Fig. 1C) yielded bright ion at m/z 540.357 whose intensity was higher than that of the abundantly secreted siderophore, carboxymycobactin. Its release into the extracellular space likely results from transmembrane transport, rather than budding of intact cell wall fragments, because cell wall-embedded lipids, trehalose monomycolate and mycobactin, were not detected in filtered supernatants (Fig. 1C). We detected substance A in M. tuberculosis during exponential or stationary phase and several types of media or when subject to acid stress (SI Appendix, Fig. S1 A and B). Thus, substance A is a natural product that is constitutively produced in many conditions and accumulates within and outside M. tuberculosis.

M. tuberculosis often compartmentalizes lipid biosynthesis so that lipids are assembled after transport across the plasma membrane. Sulfoglycolipids and phthiocerol dimycocerosates become undetectable when MmpL transporters are interrupted, even when biosynthetic genes are intact (14–16). Because ESX-1 is a transport system lacking in BCG, lack of export of an ESX-1–dependent lipid synthase might account for the loss of substance A. However, ESX-1–deficient *M. tuberculosis* lacking either the *espA* gene (*Rv3616c*) or the entire RD1 locus (17), which are both necessary for ESX-1 function, produces substance A at normal

1-tuberculosinyladenosine (1-TbAd)

Fig. 2. Identification of 1-TbAd. The structure of substance A purified from *M. tuberculosis* lipid extract was characterized using CID-MS and NMR (800 MHz) analyses yielding key collision products and resonances detailed in *SI Appendix*, Figs. S2–S9.

BIOCHEMISTRY

Fig. 3. *M. tuberculosis* biosynthesis of substance A requires Rv3378c. (A) The screening of 4,196 transposon mutants of *M. tuberculosis* H37Rv using a rapid 3-min HPLC-MS method yielded 30 strains with reduced 1-TbAd signal. (*B*) Rescreening with the 40-min HPLC-MS method confirmed absence of 1-TbAd signal in two mutants. (C) Both mutants were found to have spontaneous, non-transposon-induced mutations in *Rv3378c* and were subject to complementation of *Rv3377c-Rv3378c* and reanalysis for 1-TbAd production.

levels (*SI Appendix*, Fig. S1*C*). After ruling out a major known species-specific difference in transport, we devised a screen to detect genes responsible for substance A biosynthesis.

Substance A Is a 1-Tuberculosinyladenosine. Collision-induced mass spectrometry (CID-MS) identified the structural components of substance A as adenine ($[M+H]^+$, $C_5H_6N_5$, m/z 136.0618), adenosine ($[M+H]^+$, $C_{10}H_{14}N_5O_4$, m/z 268.1040), and a polyunsaturated C20 hydrocarbon ($[M+H]^+$, $C_{20}H_{33}$, m/z 273.2576) (Fig. 2 and *SI Appendix*, Figs. S2–S4). A common C20 diterpene is geranylgeraniol, and *M. tuberculosis* produces two C20 lipids containing bicyclic halimane skeletons: tuberculosinol and isotuberculosinol (18–20). Initially, CID-MS spectra could not distinguish among these three candidate diterpenes (*SI Appendix*, Figs. S3 and S4), but multistage CID-MS studies isolated the diterpene unit of substance A (m/z 273.3) and yielded collision patterns that matched tuberculosinol more closely than geranylgeraniol (*SI Appendix*, Fig. S4).

After purification of the natural product, we carried out NMR spectroscopy analyses using ¹H 1D, 2D COSY, HMQC, and NOESY spectra (*SI Appendix*, Figs. S5–S9), which unequivocally established the structure of substance A as 1-tuberculosinyladenosine (1-TbAd) (Fig. 2). The NMR signals of the diterpene moiety matched those of tuberculosinol (10, 19–21) except for the expected difference in the side-chain protons and carbons. The spectral data of the adenosine analogs (22–24). The allylic methylene group absorbs downfield as a doublet at δ 4.92 (J = 6.6 Hz). A NOESY cross peak between the adenine H-2 at δ 8.53 and the alkene hydrogen and allylic methylene and methyl groups at δ 5.46, 4.92, and 1.89, respectively, confirm that the tuberculosinyl group is attached to the adenine at position 1. Thus, *M. tuberculosis* produces a previously unknown type of diterpene nucleoside.

Rv3378c Produces 1-TbAd. To identify the genes necessary for 1-TbAd production, an existing library of random transposon insertional mutants (25) was screened in high throughput (4,196 mutants) for 1-TbAd production using a simplified 3-min HPLC-MS method (Fig. 3*A*). Thirty mutants showing low or absent signals were rescreened using the original, high-resolution lipidomic separation method (Fig. 1). Reporting only mutants with complete signal loss of 1-TbAd signal in both assays, we identified two 1-TbAd-null mutants carrying transposons in Rv1796 (mutant 1) and Rv2867c (mutant 2) (Fig. 3*B*). The concurrently performed biochemical studies described above identified the highly

characteristic tuberculosinyl moiety as a component of 1-TbAd, and the *Rv3377c-Rv3378c* locus was known to encode enzymes needed for tuberculosinol and isotuberculosinol production (10, 11, 18–21). Sequencing identified spontaneous mutations in *Rv3378c* in both mutants (10, 18–21). Mutant 1 encoded a predicted Asp→Gly substitution at residue 34, and mutant 2 encoded a Pro→Ser substitution at residue 231. We generated complementation constructs to separately test whether the point mutations in *Rv3378c* or the transposon insertions were responsible for 1-TbAd loss. Transfer of Rv1796 and Rv2867c failed to restore 1-TbAd production (*SI Appendix*, Fig. S10), but transfer of *Rv3377c-Rv3378c* reconstituted 1-TbAd production in both mutants (Fig. 3*C*). Thus, *Rv3377c-Rv3378c* genes are necessary for 1-TbAd biosynthesis in *M. tuberculosis*.

The Biosynthetic Pathway of 1-TbAd. Furthermore, the known role of Rv3377c and Rv3378c enzymes in tuberculosinol production potentially provided a mechanism to connect *Rv3377c* and *Rv3378c* genes with the production of a nucleoside-modified tuberculosinol. Rv3377c is a terpene cyclase, which acts on geranylgeranyl pyrophosphate (GGPP) to generate tuberculosinyl pyrophosphate (TbPP). Rv3378c was thought to be a phosphatase, which converts TbPP to free tuberculosinol (10, 21). Extending current models (Fig. 4*A*), 1-TbAd might result from downstream action of an unknown enzyme on free tuberculosinol to transfer it to adenosine. Polyprenol synthase genes and the *Rv3377c-Rv3378c* locus are coordinately regulated and encoded at adjacent sites on the chromosome (26). Therefore, we searched *M. tuberculosis* databases for genes located near this locus that might plausibly function as adenosine transferases. We failed to find candidates and

Fig. 4. Rv3378c acts as a tuberculosinyl transferase. (A) Rv3377c and Rv3378c are currently thought to produce tuberculosinol and isotuberculosinol. (*B*) The existence of 1-TbAd might be explained by a revised function of the Rv3378c enzyme, which acts as a tuberculosinyl transferase. (C and D) lon chromato-grams and mass spectra (*Insets*) (C) and CID-MS (D) of the 1-TbAd standard and reaction products of enzymatic assays performed using recombinant Rv3378c protein.

noted that no transposon insertion that blocked 1-TbAd production mapped to genes adjacent to this locus.

Therefore, we considered a revised biosynthetic model in which Rv3378c protein is not a simple phosphatase, as currently believed, but instead acts with combined phosphatase and tuberculosinyl transferase functions, using adenosine as the nucleophilic substrate (Fig. 4B). This model is mechanistically simple and might explain the lack of an apparent stand-alone transferase gene. Also, whereas current models predict that tuberculosinol is the end product of this pathway, we did not detect tuberculosinol in lipidomics experiments (Fig. 1A and SI Appendix, Dataset S1). The revised model posits that 1-TbAd is the end product of Rv3378c pathway, explaining why it accumulates to high levels as one of the brightest ions in the lipidome (Fig. 1A). After chemical synthesis of TbPP (SI Appendix, Fig. S11), we tested TbPP and GGPP as substrates for the recombinant Rv3378c protein (18). Rv3378c catalyzed the condensation of adenosine and TbPP to generate 1-TbAd but produced little or no product from GGPP. Free tuberculosinol was not detected in these assays (Fig. 4 C and D). Thus, Rv3378c shows tuberculosinyl transferase activity, which rules in the revised biosynthetic pathway (Fig. 4B).

Rv3377c-Rv3378c Is Sufficient for 1-TbAd Biosynthesis in Cells. To test the sufficiency of this locus for 1-TbAd production in cells, we transferred the *Rv3377c-Rv3378c* locus to *Mycobacterium smegmatis*. In all three clones tested, expression of *Rv3377c-Rv3378c* transferred production of a molecule with the mass, retention time, and CID-MS spectrum of 1-TbAd (Fig. 5 and *SI Appendix*, Fig. S12). Thus, no other *M. tuberculosis*-specific cofactor or transporter is needed for 1-TbAd production. *Rv3377c-Rv3378c* is sufficient to synthesize 1-TbAd from ubiquitous cellular precursors present in most bacteria, likely GGPP and adenosine.

Crystal Structure of Rv3378c. To understand whether the active site of Rv3378c is compatible with the revised function as a tuberculosinyl transferase, we determined its crystal structure. Lacking structures with high sequence similarity, single-wavelength anomalous dispersion phasing was used to calculate the initial electrondensity map. The model was refined against native data to 2.2-Å resolution (SI Appendix, Table S1). As expected from gel-filtration studies, Rv3378c formed a homodimer (Fig. 6A). Although structural similarity was not predicted by sequence comparisons, Rv3378c adopts the fold seen in (Z)-prenyl or *cis*-prenyl transferases (27), including M. tuberculosis (Z)-farnesyl diphosphate synthase (Rv1086) and decaprenyl pyrophosphate synthase (Rv2361c), as well as *Escherichia coli* undecaprenyl pyrophosphate synthase (UPP) (28, 29) (Fig. 6B). These enzymes condense an allyl pyrophosphate and the five-carbon isopentyl pyrophosphate building block to produce linear isoprenoids (28, 29).

Structural Insight into Prenyl Unit Binding. In considering competing models that Rv3378c might simply hydrolyze the TbPP or

Fig. 5. The expression of *Rv3377c-Rv3378c* is sufficient for production of 1-TbAd in *M. smegmatis*. Extracted ion chromatograms and mass spectra (*Insets*) of 1-TbAd (*m*/*z* 540.3545) for the HPLC-MS analysis of lipid extracts from *M. tuberculosis* (*Left*), *M. smegmatis* parental (*Center*), or each of three *M. smegmatis Rv3377c-Rv3378c* knock-in (*Right*) strains.

Fig. 6. Rv3378c adopts a (Z)-prenyl transferase fold. (A) Structure of the Rv3378c dimer is compared with conventional (Z)-prenyl transferases. (B) Superposition of the active site of Rv3378c and other (Z)-prenyl transferases with the pyrophosphate bound to Rv2361c (stick) shows conserved key residues for substrate binding and catalysis (Rv3378c, blue; Rv2361c, yellow; Rv1086, gray; E. coli UPP synthase, magenta for carbon atoms). (C) The monomeric subunits of Rv3378c and Rv2361c were superimposed and Rv2361c substrates (sphere) (carbon, yellow/gray; oxygen, red; phosphate, orange) are modeled in the active site of Rv3378c. The conserved residue, Asp34, is shown as a stick model, and the magnesium ion is shown as a magenta sphere. (D) Proposed model of Rv3378c shows two substrate pockets with hydrophobic residues lining the predicted prenyl binding pocket and D34 positioned adjacent to the predicted adenosine binding pocket. (B-D) The flexible P-loop of Rv3378c (residues 80-95) is colored in red, with the dotted line for disordered region (residues 84-90). (E) The translucent surface of Rv3378c was modeled with substrates (spheres) using the same view as D.

carry out the newly proposed role in adenosine transfer (Fig. 5 A and B), we superimposed Rv3378c with the pseudosubstrate and product complexes of Rv2361c (29) to model an enzyme–substrate (ES) complex. In contrast to other (Z)-prenyl transferases, Rv3378c has a unique C-terminal helical segment (from residue 251 to end), which contributes to domain swapping. An extra N-terminal helical segment (residues 6–24) packs via hydrophobic interactions with adjacent helices (Fig. 6A and *SI Appendix*, Fig. S13).

Rv3378c shares functional motifs with the (Z)-prenyl transferases, including residues for substrate binding and catalysis: Asp34, Arg37, and Arg38 (Fig. 6B). (Z)-prenyl transferases bind the allyl pyrophosphate substrate through a characteristic DGNG/ RRW amino acid sequence motif starting two residues before the N terminus of an α -helix (α 3). The aspartate chelates a magnesium ion, whereas the glycine, the helix terminus, and the arginine(s) engage the pyrophosphate (Fig. 6 B and C) (27, 28, 30). In Rv3378c, Asp34 sits in the expected position to carry out its essential catalytic function providing a specific mechanism that likely explains why mutant 1, which contains an Asp34 \rightarrow Gly alteration, does not produce 1-TbAd. As predicted by prior studies showing the role of aspartate in prenyl transfer (27, 28, 30) and the conserved location of Asp34 vis-à-vis the prenyl binding site (Fig. 6 A and B), mutation to asparagine or alanine abolished the prenyl transferase function of Rv3378c (SI Appendix, Fig. S14). In Rv2361c, the isoprenoid binding site is a hydrophobic pocket located between the β -sheet and the $\alpha 2$ (residues 89-110) and $\alpha 3$ (residues 129-152) helices (29). Rv3378c contains all of these features (Fig. 6C), including the 34-DGTRRW-39 motif and a deep pocket adjacent to helices $\alpha 4$ (residues 51–68) and $\alpha 5$ (residues 96-103). Hydrophobic residues (L56, L63, L100, and L101) line the pocket created by helices $\alpha 4$ and $\alpha 5$, and other hydrophobic residues (F33, I78, F158) further contribute to the hydrophobic character of the pocket. This binding pocket is predicted to position the pyrophosphate group of TbPP, which can interact with Arg37 and Arg38 from the DGTRRW motif and Tyr51 from the N terminus of helix $\alpha 4$ (Fig. 6D).

A Second Pocket at the Catalytic Site. The binding mode of the nucleophilic adenosine substrate is harder to model, because the binding site is likely to be completed by the closure of the P-loop over the active site when native substrate is present. The P-loop is disordered in the unliganded structure, but it becomes ordered in a nonphysiological complex with mellitic acid (SI Appendix, Fig. S13). This structure suggests a specific mechanism by which substrate binding provides polar interactions with the P-loop to exclude water from the active site. Other considerations provide pertinent clues about the adenosine binding mode. As contrasted with Rv2361c, Rv1086, and UPP synthase, Rv3378c has a second pocket that can accommodate adenosine (Fig. 6 D and E). Superimposing N1 of the adenine on the isopentenyl pyrophosphate (IPP) nucleophile in complex with Rv2361c (29) guides the positioning of the adenosine substrate in the active site of Rv3378c. In Rv2361c, the pyrophosphate of IPP interacts with Arg244 and Arg250 (29). Corresponding to the fact that adenosine lacks the pyrophosphate, Rv3378c lacks this conserved pair of arginines, which are replaced with glycine and serine. These features distinguish Rv3378c from known (Z)-prenyl transferases and are consistent with adenosine binding and transfer.

Discussion

Overall, structural, genetic, and biochemical data strongly suggest a revised function of Rv3378c as a tuberculosinyl transferase that produces 1-TbAd, an abundant amphiphile that is exported outside M. tuberculosis. This result establishes the efficacy of unbiased lipidomic screens to identify previously unknown compounds. A C35 terpene cyclase activity is found in nonpathogenic mycobacteria (31, 32), but Rv3377c orthologs are only known within M. tuberculosis complex. Higher-order terpene-nucleosides are rare in nature, and we have not identified a precedent for 1-linked prenyl adenosines. Plant and marine sponges produce terpene-purine derivatives, such as cytokinins and agelasines, which regulate growth or show antimicrobial effects (33). However, these natural products contain adenine rather than adenosine, and the terpene moiety is carried at the N6 position of the adenine in the cytokinins and N7 or N9 in the agelasines. Furthermore, among microbes studied to date, we have only detected 1-TbAd in members of the M. tuberculosis complex, suggesting that 1-TbAd production is limited to pathogenic mycobacteria. Orthologs of Rv3377c or RV3378c are limited to the *M. tuberculosis* complex. Although *M. bovis* and BCG strains encode orthologous genes, strains examined to date encodes a frameshift mutation in Rv3377c (11), and the Pasteur strain used here encodes a second coding point mutation in Rv3378c. Thus, both genetic and biochemical evidence suggest that 1-TbAd is a specific marker of *M. tuberculosis*, supporting the development of 1-TbAd or 1-TbAd-specific immune responses as candidate targets for diagnostic tests for tuberculosis.

The lack of 1-TbAd in BCG might represent evidence that changes in *Rv3377c-Rv3378c* might contribute to the vaccine strain's attenuation. More direct evidence for a role of this

2982 | www.pnas.org/cgi/doi/10.1073/pnas.1315883111

locus in virulence comes from transposon studies showing that Rv3377c and Rv3378c play nonredundant roles in phagosome-lysosome fusion and survival in macrophages (13). This key finding initiated an intensive search for the actual functions of these virulence-associated genes. Rv3377c is a terpene cyclase (18-20). Rv3378c has few orthologs in nature, and its biochemical function was not apparent from predictive folding algorithms. Based on in vitro studies, Rv3378c is currently thought to function as a TbPP pyrophosphatase that yields free tuberculosinol (10). Tuberculosinol coupled to beads blocks phagosomal acidification (21). However, end products of biosynthetic pathways typically accumulate, and to our knowledge, the extent of accumulation of free tuberculosinol as a natural product in intact M. tuberculosis remains unknown. We did not detect free tuberculosinol or isotuberculosinol in lipidomics analysis of M. tuberculosis or among in vitro products of Rv3378c. This result does not rule out biosynthesis of free tuberculosinol, but it is notable that 1-TbAd is not only detected but substantially accumulates within and outside M. tuberculosis. Furthermore, we prove that the action of Rv3378c is a combined phosphatase and tuberculosinol transferase through in vitro study of purified proteins, gene transfer to M. tuberculosis and M. smegmatis, and a structural analysis of Rv3378c. Based on parallel lines of genetic, biochemical, and structural evidence, we propose that Rv3378c should be known as "tuberculosinyl adenosine transferase."

The structures of enzymes that transfer prenyl pyrophosphates to substrates other than linear isoprenoids have not been determined previously. Like other (Z)-prenyl transferases, Rv3378c contains a characteristic allyl pyrophosphate-binding site, catalytic aspartate, and flexible P-loop in position to close over the active site. The canonical TbPP binding pocket structure is sufficiently conserved that it may be sensitive to available drugs or analogs that target other (Z)-prenyl transferases. However, the nucleophile binding site lacks conserved features that mediate recognition of pyrophosphate moiety of isoprene building blocks seen in previously characterized (Z)-prenyl transferases. Instead, Rv3378c active site contains a second pocket in which the adenosine can be positioned for nucleophilic attack on C1 of TbPP. We observed this reaction in vitro and found that Rv3378c does not act on GGPP and specifically produces the 1-linked form of 1-TbAd, defining two aspects of the substrate specificity. Whereas most prenyl transferases have one identifiable pocket, this revised two-pocket model suggests a broader paradigm for the prenylation of metabolites catalyzed by members of the (Z)prenyl transferase family. Whereas current models emphasize iterative elongation through the repeated use of one pocket, the dual-substrate pocket of Rv3378c provides a general model for prenylation of nonprenyl substrates. Product specificity is determined by a conventional allyl pyrophosphate binding site and a second pocket tailored to bind and activate each target nucleophile.

The larger 1-TbAd biosynthetic pathway starts with two evolutionarily conserved systems, which produce geranylgeranyl py-rophosphate and adenosine. These pathways operate separately in most organisms, but *M. tuberculosis* joins these two pathways to generate a terpene nucleoside. The appearance of TbAd after transfer of Rv3377c and Rv3378c genes to M. smegmatis proves that additional *M. tuberculosis*-specific genes, such as transporters, are not required for 1-TbAd biosynthesis. More generally, these data represent an experimental demonstration that transfer of two genes is sufficient to reconstitute a complex metabolite, which likely requires more than 20 genes for its complete biosynthesis. Combining this observation with data suggesting that the ancestral Rv3377c and Rv3378c genes were acquired by horizontal gene transfer (26), a scenario emerges by which evolutionarily ancient terpene and nucleotide biosynthetic pathways were joined together by transfer of two genes late in the evolution of the *M. tuberculosis* complex (26).

Rv3378c gene likely carries out its known effects in promoting *M. tuberculosis* infectivity via the production of 1-TbAd. Within minutes of phagocytosis, *M. tuberculosis* inhibits host defenses, including phagosome acidification and phagolysosome fusion

(34, 35). The *Rv3377c-Rv3378c* locus is required for optimal phagosome maturation arrest (13). The discovery of extracellular 1-TbAd provides specific insight into mechanisms by which an enzyme that is thought to be localized in the cytosol affects events outside the bacterium (13). To our knowledge, neither Rv3378c nor free tuberculosinol has been detected in culture filtrates (18). In contrast, 1-TbAd is an amphiphile that is released into the extracellular space using an export mechanism that is independent of ESX-1.

Future studies will be needed to understand the particular mechanisms by which 1-TbAd contributes to the effects of Rv3377c-Rv3378c on phagosome maturation. Adenosine is almost exclusively found inside cells, and terpene chains catalyze the transfer of pyrophosphate across the mycobacterial envelope for the bio-synthesis of arabinogalactan (36). By analogy, prenylation might promote the transit of the nucleoside to the phagosomal space, where the adenosine could engage host receptors. Alternatively, tuberculosinol or isotuberculosinol might be the active moiety (12, 21), whose solubility or transport is influenced by adenosine. The cellular mechanism leading to altered mycobacterial survival might include changed integrity of the phagosomal membrane, intraphagosomal proton capture, or escape of 1-TbAd across the phagosomal membrane and into the host, where it might signal global changes in macrophage function.

Methods

Bacteria were cultured and extracted by chloroform/methanol mixtures or ethyl acetate, respectively, as described (4, 37). Lipid extracts were analyzed

- Dye C, Glaziou P, Floyd K, Raviglione M (2013) Prospects for tuberculosis elimination. Annu Rev Public Health 34:271–286.
- Sturgill-Koszycki S, et al. (1994) Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263(5147):678–681.
- Camus JC, Pryor MJ, Médigue C, Cole ST (2002) Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. *Microbiology* 148(Pt 10):2967–2973.
- Layre E, et al. (2011) A comparative lipidomics platform for chemotaxonomic analysis of Mycobacterium tuberculosis. Chem Biol 18(12):1537–1549.
- Sartain MJ, Dick DL, Rithner CD, Crick DC, Belisle JT (2011) Lipidomic analyses of Mycobacterium tuberculosis based on accurate mass measurements and the novel "Mtb LipidDB" J Lipid Res 52(5):861–872.
- Behr MA, et al. (1999) Comparative genomics of BCG vaccines by whole-genome DNA microarray. *Science* 284(5419):1520–1523.
- Mahairas GG, Sabo PJ, Hickey MJ, Singh DC, Stover CK (1996) Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol 178(5):1274–1282.
- Brodin P, Rosenkrands I, Andersen P, Cole ST, Brosch R (2004) ESAT-6 proteins: Protective antigens and virulence factors? *Trends Microbiol* 12(11):500–508.
- 9. Fortune SM, et al. (2005) Mutually dependent secretion of proteins required for mycobacterial virulence. *Proc Natl Acad Sci USA* 102(30):10676–10681.
- Nakano C, et al. (2011) Characterization of the Rv3378c gene product, a new diterpene synthase for producing tuberculosinol and (13R, S)-isotuberculosinol (nosyberkol), from the Mycobacterium tuberculosis H37Rv genome. *Biosci Biotechnol Biochem* 75(1):75–81.
- Mann FM, et al. (2009) Characterization and inhibition of a class II diterpene cyclase from Mycobacterium tuberculosis: Implications for tuberculosis. J Biol Chem 284(35): 23574–23579.
- Mann FM, et al. (2009) Edaxadiene: A new bioactive diterpene from Mycobacterium tuberculosis. J Am Chem Soc 131(48):17526–17527.
- 13. Pethe K, et al. (2004) Isolation of Mycobacterium tuberculosis mutants defective in the arrest of phagosome maturation. *Proc Natl Acad Sci USA* 101(37):13642–13647.
- Domenech P, et al. (2004) The role of MmpL8 in sulfatide biogenesis and virulence of Mycobacterium tuberculosis. J Biol Chem 279(20):21257–21265.
- Jain M, Cox JS (2005) Interaction between polyketide synthase and transporter suggests coupled synthesis and export of virulence lipid in M. tuberculosis. *PLoS Pathog* 1(1):e2.
- Converse SE, et al. (2003) MmpL8 is required for sulfolipid-1 biosynthesis and Mycobacterium tuberculosis virulence. Proc Natl Acad Sci USA 100(10):6121–6126.
- Garces A, et al. (2010) EspA acts as a critical mediator of ESX1-dependent virulence in Mycobacterium tuberculosis by affecting bacterial cell wall integrity. *PLoS Pathog* 6(6):e1000957.
- Prach L, Kirby J, Keasling JD, Alber T (2010) Diterpene production in Mycobacterium tuberculosis. FEBS J 277(17):3588–3595.
- Nakano C, Okamura T, Sato T, Dairi T, Hoshino T (2005) Mycobacterium tuberculosis H37Rv3377c encodes the diterpene cyclase for producing the halimane skeleton. *Chem Commun (Camb)* (8):1016–1018.
- Nakano C, Hoshino T (2009) Characterization of the Rv3377c gene product, a type-B diterpene cyclase, from the Mycobacterium tuberculosis H37 genome. *ChemBioChem* 10(12):2060–2071.

using an Agilent 6520 Accurate-Mass Q-Tof and a 1200 series HPLC system with a Varian MonoChrom Diol column (4, 37) with data output from XCMS and MultiplotPreprocess and Multiplot modules of GenePattern (Broad Institute) (38). Rv3378c and GroES/GroEL chaperones were coexpressed in BL21-CodonPlus (Stratagene) cells and purified on a precharged Ni Sepharose Fast Flow column (Ni-NTA HisTrap FF, GE Healthcare). Purified Rv3378c (10 mg/mL) was crystallized by vapor diffusion, and 2.20-Å-resolution data were collected on the Advanced Light Source. The structure of Rv3378c was solved by single-wavelength anomalous diffraction phasing of a mercury derivative using Phenix AutoSol. Enzymatic assays were performed by incubating 56 µg of diterpene in presence of 33 µg of adenosine (Sigma) and 80 μg of purified Rv3378c in 1 mL of pH 7.4 Tris HCl buffer 4 h at 37 °C under magnetic agitation. M. tuberculosis transposon mutants from a random library (25) were grown in 96-well format and heat-killed, followed by lipid extraction by 70:30 methanol:isopropanol. Lipids were analyzed by HPLC-MS to monitor 1-TbAd production; 1-TbAd-null strains were confirmed regrowing the bacteria and using a full lipidomic analysis method. 1-TbAd was purified from mycobacterial cell-associated lipid extract using normal and reversed-phase chromatography. Structures were solved using CID-MS and NMR spectroscopy using a Bruker Avance 800.

ACKNOWLEDGMENTS. We thank Lisa Prach for advice. This work was supported by Mark and Lisa Schwartz and the Burroughs Wellcome Fund Program in Translational Medicine, National Institutes of Health (NIH) National Institute of Allergy and Infectious Disease Grants R01 AI049363, R01 AI049313, and P01 AI095208, the Dutch Science Foundation (Netherlands Organization for Scientific Research), and the Canadian Institutes of Health Research (H.J.L.). The 800-MHz spectrometer in the Landsman Research Facility, Brandeis University, was purchased under the NIH National Center for Research Resources High-End Instrumentation Program (Grant 1S10RR017269-01).

- Hoshino T, Nakano C, Ootsuka T, Shinohara Y, Hara T (2011) Substrate specificity of Rv3378c, an enzyme from Mycobacterium tuberculosis, and the inhibitory activity of the bicyclic diterpenoids against macrophage phagocytosis. Org Biomol Chem 9(7): 2156–2165.
- Ottria R, Casati S, Baldoli E, Maier JA, Ciuffreda P (2010) N⁶-Alkyladenosines: Synthesis and evaluation of in vitro anticancer activity. *Bioorg Med Chem* 18(23):8396–8402.
- Casati S, Manzocchi A, Ottria R, Ciuffreda P (2010) 1H, 13C and 15N NMR assignments for N6-isopentenyladenosine/inosine analogues. *Magn Reson Chem* 48(9):745–748.
- Casati S, Manzocchi A, Ottria R, Ciuffreda P (2011) 1H, 13C and 15N NMR spectral assignments of adenosine derivatives with different amino substituents at C6-position. Magn Reson Chem 49(5):279–283.
- Sassetti CM, Boyd DH, Rubin EJ (2001) Comprehensive identification of conditionally essential genes in mycobacteria. Proc Natl Acad Sci USA 98(22):12712–12717.
- Mann FM, Xu M, Davenport EK, Peters RJ (2012) Functional characterization and evolution of the isotuberculosinol operon in Mycobacterium tuberculosis and related Mycobacteria. Front Microbiol 3:368.
- Kurokawa H, Koyama T (2010) (2010) Prenyltransferase. Comprehensive Natural Products II: Chemistry and Biology, eds Mander L, Liu H-W (Oxford, Oxford, UK), 557–583.
- Chang SY, Ko TP, Chen AP, Wang AH, Liang PH (2004) Substrate binding mode and reaction mechanism of undecaprenyl pyrophosphate synthase deduced from crystallographic studies. *Protein Sci* 13(4):971–978.
- 29. Wang W, et al. (2008) The structural basis of chain length control in Rv1086. J Mol Biol 381(1):129–140.
- Guo RT, et al. (2005) Crystal structures of undecaprenyl pyrophosphate synthase in complex with magnesium, isopentenyl pyrophosphate, and farnesyl thiopyrophosphate: Roles of the metal ion and conserved residues in catalysis. J Biol Chem 280(21): 20762–20774.
- Sato T, Kigawa A, Takagi R, Adachi T, Hoshino T (2008) Biosynthesis of a novel cyclic C35-terpene via the cyclisation of a Z-type C35-polyprenyl diphosphate obtained from a nonpathogenic Mycobacterium species. Org Biomol Chem 6(20):3788–3794.
- Sato T, Takagi R, Orito Y, Ono E, Hoshino T (2010) Novel compounds of octahydroheptaprenyl mycolic acyl ester and monocyclic C35-terpene, heptaprenylcycline B, from non-pathogenic mycobacterium species. *Biosci Biotechnol Biochem* 74(1): 147–151.
- Vik A, et al. (2007) Antimicrobial and cytotoxic activity of agelasine and agelasimine analogs. Bioorg Med Chem 15(12):4016–4037.
- Yates RM, Hermetter A, Russell DG (2005) The kinetics of phagosome maturation as a function of phagosome/lysosome fusion and acquisition of hydrolytic activity. *Traffic* 6(5):413–420.
- 35. Rohde K, Yates RM, Purdy GE, Russell DG (2007) Mycobacterium tuberculosis and the environment within the phagosome. *Immunol Rev* 219:37–54.
- Alderwick LJ, et al. (2011) Biochemical characterization of the Mycobacterium tuberculosis phosphoribosyl-1-pyrophosphate synthetase. *Glycobiology* 21(4):410–425.
- Madigan CA, et al. (2012) Lipidomic discovery of deoxysiderophores reveals a revised mycobactin biosynthesis pathway in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 109(4):1257–1262.
- 38. Reich M, et al. (2006) GenePattern 2.0. Nat Genet 38(5):500-501.

Supporting Information Appendix

Molecular profiling of *M. tuberculosis* identifies tuberculosinyl nucleoside products of the virulence-associated enzyme Rv3378c

Emilie Layre, Ho Jun Lee, David C. Young, Amanda Jezek Martinot, Jeffrey Buter,

Adriaan J. Minnaard, John W. Annand, Sarah M. Fortune, Barry B. Snider, Isamu

Matsunaga, Eric J. Rubin, Tom Alber, D. Branch Moody

correspondence to: bmoody@rics.bwh.harvard.edu

Supporting Materials and Methods

Bacterial culture. Mycobacteria were cultured in triplicate in Tween-free Middlebrook 7H9 broth supplemented with 10% Oleic acid Albumin Dextrose Catalase (Becton Dickinson) in 50 mL polystyrene tubes (Corning) shaking at 100 rpm at 37 °C, and a fourth culture was treated with TWEEN to disperse bacteria just before taking the OD_{600} measurement. Cultures were harvested when the TWEEN culture replicate reached a 0.6 OD (+/-0.1). Stationary phase cultures of mycobacteria were cultured similarly but harvested at an OD of 2. Acid stressed cultures were grown in 4.5 pH citrate buffer.

Mycobacterial lipid extraction. HPLC-MS grade solvents (Fisher) and clean borosilicate glassware (Fisher), amber vials (Supelco) and Teflon-lined caps (Fisher) were used. Bacterial cultures were centrifuged (4,000 rpm, 10 min) to clarify culture supernatants, which were passed twice through a 0.22 µm filter to remove intact membrane fragments (1). Cell pellets were washed twice in 10 mL Optima water, resuspended in 1 mL of CH₃OH, transferred to a 50 mL amber glass bottle and contacted with 25 mL CHCl₃/CH₃OH (2:1, v:v) overnight to sterilize bacteria. CHCl₃/CH₃OH suspensions were transferred in 50 mL conical glass tubes and rotated at 20 °C for at least 1 hr. After centrifugation, lipid extracts were decanted, and bacteria pellets subjected to 2 additional extractions using CHCl₃:CH₃OH (1:1, v:v) and CHCl₃: CH₃OH (1:2, v:v) with pooling of extracts and evaporation with GeneVac EZ-2 (SP Scientific) using the low boiling point mixture setting. Dried lipids were resuspended in CHCl₃:CH₃OH (1:1, v:v) and dried under nitrogen in preweighed vials and then reweighed in triplicate on microbalance (Mettler Toledo, XP205). Then extracts were redissolved in CHCl₃:CH₃OH (1:1, v:v) at 1 mg/mL.

HPLC-ESI-QTof based Lipidomics. Using an Agilent Technologies 6520 Accurate-Mass Q-Tof and a 1200 series HPLC system with a Varian Monochrom diol column (3

μm x 150 mm x 2 mm) and a Varian Monochrom diol guard column (3 μm x 4.6 mm), normal phase lipidomics was carried out as described (2). Total lipid extracts were resuspended at 0.5 mg/mL in solvent A (hexanes:isopropanol, 70:30 [v: v], 0.02% [m/v] formic acid, 0.01% [m/v] ammonium hydroxide), filtered or centrifuged at 1,500 rpm for 5 min to remove trace non-lipidic materials prior to transfer to a glass autosampler vial (Agilent). Ten μg of lipid was injected, and the column (20°C) was eluted at 0.15 ml/min with a binary gradient from 0% to 100% solvent B (isopropanol:methanol, 70:30 [v/v], 0.02% [m/v] formic acid, 0.01% [m/v] ammonium hydroxide): 0–10 min, 0% B; 17–22 min, 50% B; 30–35 min, 100% B; 40–44 min, 0% B, followed by additional 6 min 0% B postrun. Raw data files were converted to mzData using MassHunter and processed in R using the XCMS (version 1.24)(3) centWave peak finder (4). XCMS (http://metlin.scripps.edu/xcms/index.php) deconvoluted and aligned across samples using s/n threshold of 5, a maximum tolerated *m/z* deviation of 10 ppm, a frame width of *mzdiff=*0.001, a peak width of 20–120 s and a band width of 5.

Comparative lipidomics. XCMS data matrices listing detected features, median m/z and median RT of triplicate lipidic extracts was imported into GenePattern (Broad Institute) using MultiplotPreprocess and Multiplot modules (5).

Protein expression and purification. Rv3378c and GroES/GroEL chaperones were coexpressed in BL21-CodonPlusTM (Stratagene) cells. Cell cultures were grown at 37°C until OD₆₀₀ reached ~0.6 and induced with 0.2 mM isopropyl β -D-thiogalactopyranoside (IPTG) and 0.2% (w/v) L-arabinose at 22°C overnight. Cells were lysed by sonication and lysate was purified on a Ni-NTA HisTrapTM FF column (GE Healthcare). Partially purified Rv3378c was cleaved with thrombin at 4°C overnight, loaded onto the Ni-NTA column, and flow-through fractions were concentrated and purified by gel filtration on a SuperdexTM 75 (GE Healthcare).

Rv3378c enzymatic assays. Fifty-six micrograms of dried TbPP or GGPP were resuspended in 1 mL of pH 7.4 Tris-HCl buffer (1 mM MgCl₂, 0.1% Triton X-100 (w/v)) by sonication. Thirty-three μ g of adenosine (Sigma) prepared at 1 mg/mL in pH 7.4 Tris-HCl buffer (33 μ L) and 5 μ L of recombinant Rv3378c at 16mg/mL were added to the lipid solution and incubated 4 hr at 37°C under magnetic agitation. Lipid products were extracted three times from the reaction mixture using chloroform (3 x 0.5 mL), pooled, dried and analyzed by HPLC-MS as described above. The detection of 1-TbAd was confirmed based on *m/z* mass accuracy, retention time and MS/MS experiments (30 eV).

Cloning Rv3378c gene from *M. tuberculosis.* The *Rv3378c* gene (GenBankTM accession number: CAA15763.1) was amplified by PCR from *M. tuberculosis* H37Rv genomic DNA using *PfuTurbo* DNA polymerase (Stratagene), introducing flanking NdeI and XhoI restriction sites. Amplified and digested PCR products were ligated in predigested pET-28b vector (Novagen), resulting an N-terminal cleavable hexahistidine tag followed by the protein coding sequence. Clones were verified by DNA sequencing (Elim Biopharm).

Transposon mutant library screening. Transposon mutants from a random library (50) were grown in 96 well format in Middlebrook 7H9 media to confluence and heat killed, followed by extraction with 100 μ L of 70:30 methanol:isopropanol and shaking for 5 minutes. 100 μ L aliquot was transferred to a Millipore 96 well filter plate and centrifuged at 4500 rpm for 10 minutes. The collected filtrate was used for rapid HPLC-MS analysis using an isocratic gradient of 70:30 methanol:isopropanol for three minutes.. 1-TbAd production was monitored in MS positive mode spectra at 540.35 *m/z* and in MS/MS positive mode spectra by the detection of the adenine fragment at 136.06 *m/z*. Mutants negative for these ions were recorded as potential 1-TbAd null strains, which were confirmed using a full lipidomic analysis.

Rv3377c-Rv3378c knock-in M. smegmatis strain or complementation of M.

tuberculosis. Wild-type *M. smegmatis* or TbAd deficient *M. tuberculosis* strains were transformed with a plasmid that episomally expresses *Rv3377c-Rv3378c* genes under the control of a tetracycline inducible promoter (pTETGW) (6).

Rv3378c and GroES/GroEL proteins expression and purification.

The Rv3378c gene (GenBankTM accession number: CAA15763.1) was amplified by PCR from *M. tuberculosis* H37Rv genomic DNA using PfuTurbo DNA polymerase (Stratagene) and cloned into pET-28b vector (Novagen). Rv3378c mutants were generated using the QuikChange method (Stratagene). All clones were verified by DNA sequencing (Elim Biopharm).

Rv3378c and GroES/GroEL chaperones were coexpressed in BL21-CodonPlusTM (Stratagene) cells to improve the solubility of Rv3378c. Cell cultures were grown at 37°C until OD600 reached ~0.6 and induced with 0.2 mM isopropyl β -D thiogalactopyranoside (IPTG) and 0.2% (w/v) L-arabinose at 22°C overnight. Cells were harvested by centrifugation (4,500 rpm, 20 min), resuspended in 20 mM Hepes, pH 7.5, 500 mM NaCl, 0.5 mM TCEP, and 25 mM imidazole with EDTA free protease inhibitor cocktail (Roche). Resuspended cells were lysed by sonication and centrifuged (16,000 rpm, 90 min). Cleared lysate was purified on a Ni-NTA HisTrapTM FF column (GE Healthcare) with gradient elution using buffer containing 300 mM imidazole. Partially purified Rv3378c fractions were cleaved with thrombin at 4°C overnight, loaded onto the Ni-NTA column, and flow-through fractions were concentrated and purified by gel filtration on a SuperdexTM 75 (GE Healthcare) column equilibrated in 20 mM Hepes, pH 7.5, 50 mM NaCl, 0.5 mM TCEP, 10% glycerol.

Crystallographic structure determination of Rv3378c. Purified Rv3378c (10 mg/mL) was crystallized by vapor diffusion from 100 mM citrate, pH 3.5, 10-15% (w/v) polyethylene glycol 3350. A cluster of crystals was separated by gentle mechanical prodding with a cat whisker. The resulting single crystals were transferred to mother liquor containing 25% ethylene glycol and directly plunged into liquid nitrogen prior to data collection. X-ray diffraction data were collected at 100 K on the Advanced Light Source (ALS) beamline 8.3.1 and processed using HKL2000 (7). The 2.20-Å resolution native data set and 2.30-Å resolution ethylmercury phosphate derivative data set were collected at wavelengths of 1.1111 and 1.0083 Å, respectively. Different crystal forms

were observed by additional screening with Silver Bullets HT kit (Hampton Research), and a 2.36 Å resolution data set was collected at 1.1111 Å at 100 K on ALS beamline 8.3.1. The structure of Rv3378c was solved by SAD phasing of a mercury derivative using Phenix AutoSol (8). Initial models built by Phenix AutoBuild (8) were improved using ARP/warp (9), followed by manual building in Coot (10). The native structures were solved by molecular replacement using the mercury-derivatized structure as a search model in Phaser (11). Structures were refined using Phenix Refine (8), with exclusion of 10 % of the reflections to calculate $R_{\rm free}$. Models were validated using Molprobity (12). Secondary structures were assigned using DSSP (Dictionary of Protein Secondary Structure) (13) and structural figures were generated using PyMOL (http://www.pymol.org/) (14).

Purification of 1-tuberculosinyladenosine (Substance A). Gram quantities of *M. tuberculosis* H37Rv and H37Ra were extracted three times with chloroform and methanol solution as described above. 500 mg of lipid extract was concentrated under nitrogen, and the lipid slurry was loaded on an open silica gel column ($2 \text{ cm} \times 1.6 \text{ cm}$) using chloroform. Fractions were eluted with the following sequence of solvents: chloroform, 95:5 chloroform/isopropanol, 95:5, 90:10 and 50:50 chloroform/methanol (v/v) with ion monitoring (*m*/*z* 540.5) to track substance A, which eluted in the 95:5 (v/v) chloroform/methanol and the 50:50 chloroform/methanol fractions. After drying, reversed phase HPLC (Waters Corporation) purification of pooled fractions enriched for the target ion was carried out using octadecyl-modified silica (5 micron) semi-preparative column (Higgins Analytical HAISIL C18, 250 × 10 mm). Using an isocratic 450:50:1 methanol/water/trifluoroacetic acid (v/v/v) gradient with a flow rate of 3.0 mL/min substance A appeared at 8 min. After drying with nitrogen and a 5-fold excess of acetonitrile HPLC chromatography was repeated giving pure 1-TbAd as assessed by MS and NMR spectroscopy.

Supporting figures legends

Fig. S1. Substance A constitutively accumulates independently of the ESX-1 apparatus.

Extracted ion chromatograms were detected at the m/z corresponding to substance A's molecular ion (540.3545) for the analysis of the extracted cell-associated lipids from (A) *M. tuberculosis* H37Rv harvested at exponential or stationary phase or (B) grown in acid media (C) *M. tuberculosis* parental strain and two strains lacking functioning ESX-1 secretion apparatus due to selective deletion of the EspA component of the secretion apparatus ($\Delta Rv3616c$) or the entire region of deletion 1 (RD1).

Fig. S2. CID-MS spectra of substance A. The ion detected at m/z 136 (adenine) that arises from collision induced dissociation of either m/z 408 or m/z 268 indicates that both the C₂₀H₃₂ diterpene fragment, lost from m/z 408, and the C₅H₈O₄ fragment, lost from m/z 268, are connected to adenine. The fragmentations leading to m/z 136, 268, and 408 involve hydrogen transfer to the adenine group. The m/z 136 ion arises through sequential

losses of 272 Da and 132 Da. These spectra are consistent with a central adenine core structure separately connected to ribose and diterpene units.

Fig. S3. Low mass ion series of substance A. Enlargement of low-mass ion series detected in the MS2 (QTOF) spectrum of substance A from *M. tuberculosis* that shown in Figure S1. The ion at m/z 136 is removed to simplify the graphical display. Four overlapping low-mass ion series were observed having from 1 to 4 unsaturations as expected for a $C_{20}H_{33}$ hydrocarbon cation undergoing a complex multi-step fragmentation. The ion series with 1, 2, 3 or 4 unsaturation(s) are connected by dashed lines.

Fig. S4. Collisional Mass Spectrometry generates a low mass ion series of geranylgeraniol, tuberculosinol and substance A. The low-mass ion series of geranylgeraniol and tuberculosinol are compared with the the MS3 spectrum of substance A from *M. tuberculosis*. Under nanoelectrospray conditions using methanol at 700 V, the diterepene alcohols yielded ions arising from loss of water from the protonated parent alcohol that are analogous to the m/z 273 ion found in the spectrum of substance A. All three samples produce similar CID spectra, but the relative peak intensities of fragment ions of substance A more closely match those of tuberculosinol than geranylgeraniol, particularly for ions corresponding to *m/z* 191.2, 189.2 and 163.2.

Fig. S5. Summary of NMR data, with assignments for natural 1tuberculosinyladenosine from *M. tuberculosis.* Purified substance A was analyzed in CD₃OD at 800 MHz using a Bruker Avance 800 with this summary supported by spectra shown in Figs. S5-S8.

Fig. S6. ¹H NMR spectra of *M. tuberculosis* 1-tuberculosinyl adenosine dissolved in CD₃OD.

Fig. S7. COSY NMR spectra of *M. tuberculosis* 1-tuberculosinyl adenosine dissolved in CD₃OD.

Fig. S8. HMQC NMR spectra of *M. tuberculosis* 1-TbAd showing ¹³C resonances of carbon atoms bonded to at least one hydrogen(s) and the corresponding ¹H resonance(s).

Fig. S9. NOESY NMR spectra of *M. tuberculosis* **1-TbAd.** Expanded views show correlation of two olefinic protons with nearby terpenoid and adenine protons or ribose resonances. Proton resonances and positions shown in red are based on numbering system in Fig. S4.

Fig. S10. Complementation of Rv1796 and Rv2867c failed to restore TbAd production. Ions chromatograms extracted at m/z 540.3545 within 10ppm mass accuracy corresponding to 1-TbAd. In contrary to Rv3377c-Rv337c, the complementation of tnRv1796 or tnRv2867c mutant strains by Rv1796 or Rv2867c, respectively, does not restore the production of TbAd. **Fig. S11.** Synthesis of tuberculosinyl pyrophosphate (TbPP). To a solution of TTBAHPP (58 mg, 64.3 µmol, 2 eq.) in CH₃CN (1 mL), in an oven-dried Schlenk flask under nitrogen atmosphere was added a solution of tuberculosinyl chloride (15) (10 mg, 32.2 µmol) in dry CH₃CN (0.5 mL). The solution was stirred for 3 h after which TLC analysis, using *n*-pentane as an eluent, indicated complete conversion of the starting material. The solvent was removed under reduced pressure after which the residue was dissolved in dry methanol and passed through a pre-washed column DOWEX[®] 50WX2 Na⁺-form (50-100 mesh). This process was repeated twice after which the methanol was evaporated. High Resolution Mass Spectrometry (APCI) analysis detected tuberculosinol PP [M-OPP]⁺ at 273.2581 *m/z* (C₂₀H₃₃, calculated *m/z* 273.2577). The compound was used without further purification. For a more detailed procedure see Davisson, V. J. *et al* (16).

Fig. S12. Expression of *Rv3377c-Rv3378c* in *M. smegmatis* is sufficient for the biosynthesis of 1-TbAd. Collisional experiment performed on the molecule detected, at the same m/z and retention time as *M. tuberculosis* 1-Tbad, in the lipid extract of *M. smegmatis* transformed by *Rv3377c-Rv3378c*, which also shows the characteristic fragmentation pattern of 1-TbAd.

Fig. S13. Structure of *M. tuberculosis* Rv3378c.

(a) Initial electron density map of Rv3378c. Density modified map (2.0σ , 2.30-Å resolution) from single-wavelength anomalous dispersion (SAD) phasing of a mercury derivative (Ethylmercury phosphate) dataset is shown superimposed on the model of Rv3378c (yellow). (b) The figures illustrates superposition of Rv3378c (blue/light blue) and Rv2361c (yellow/orange) (rmsd = 2.65 for 406 C α atoms). (c) The figures illustrate an ordered P-loop in a nonphysiological complex with mellitic acid. Ribbon diagrams of Rv3378c apo (blue) and Rv3378c:mellitic acid complex (yellow) are shown. The P-loop (residues 80-95) of apo and mellitic acid complex are colored in red and green, respectively. Bound mellitic acid is shown in stick representation. Superimposition of the Rv3378c apo and mellitic acid complex is shown in the lower panel.

Fig. S14: Aspartate 34 is required for the terpenyl transferase activity of Rv3378c in vitro. Ion chromatograms of the 1-TbAd in reaction products of enzymatic assays performed using wild type or aspartate 34 mutant Rv3378c protein.

Table S1. Summary of crystallographic data for Rv3378c enzyme.

Dataset S1

XCMS software is used in R environment to list detected features from the HPLC-MS dataset obtained for *M. tuberculosis* and *M. bovis* BCG lipid extracts. Among all detected features, this list shows those features that pass the filters of a minimum fold change intensity of 2 and a corrected t-test p-value < 0.05.

References

- 1. Madigan CA, *et al.* (2012) Lipidomic discovery of deoxysiderophores reveals a revised mycobactin biosynthesis pathway in Mycobacterium tuberculosis. *Proc Natl Acad Sci U S A* 109(4):1257-1262.
- 2. Layre E, *et al.* (2011) A comparative lipidomics platform for chemotaxonomic analysis of Mycobacterium tuberculosis. *Chem Biol* 18(12):1537-1549.
- 3. Smith CA, Want EJ, O'Maille G, Abagyan R, & Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. *Anal Chem* 78(3):779-787.
- 4. Tautenhahn R, Bottcher C, & Neumann S (2008) Highly sensitive feature detection for high resolution LC/MS. *BMC Bioinformatics* 9:504.
- 5. Reich M, et al. (2006) GenePattern 2.0. Nat Genet 38(5):500-501.
- 6. Sassetti CM, Boyd DH, & Rubin EJ (2001) Comprehensive identification of conditionally essential genes in mycobacteria. *Proc Natl Acad Sci U S A* 98(22):12712-12717.
- Otwinowski W & Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. *Methods in Enzymology*, eds Charles W & Carter J (Academic Press), Vol 276, pp 307-326.
- 8. Adams PD, *et al.* (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. *Acta Crystallogr D Biol Crystallogr* 66(Pt 2):213-221.
- 9. Langer G, Cohen SX, Lamzin VS, & Perrakis A (2008) Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. *Nat Protoc* 3(7):1171-1179.
- 10. Emsley P & Cowtan K (2004) Coot: model-building tools for molecular graphics. *Acta Crystallogr D Biol Crystallogr* 60(Pt 12 Pt 1):2126-2132.
- 11. McCoy AJ, *et al.* (2007) Phaser crystallographic software. *J Appl Crystallogr* 40(Pt 4):658-674.
- 12. Chen VB, *et al.* (2010) MolProbity: all-atom structure validation for macromolecular crystallography. *Acta Crystallogr D Biol Crystallogr* 66(Pt 1):12-21.
- 13. Kabsch W & Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. *Biopolymers* 22(12):2577-2637.
- 14. Anonymous (The PyMOL Molecular Graphics System, Version 1.5.0.5, Shrodinger, LLC.
- 15. Maugel N, Mann FM, Hillwig ML, Peters RJ, & Snider BB (2010) Synthesis of (+/-)-nosyberkol (isotuberculosinol, revised structure of edaxadiene) and (+/-)-tuberculosinol. *Org Lett* 12(11):2626-2629.
- 16. Davisson VJ, et al. (1986) Org. Chem. (51):4768.

Fragment ions at m/z 268 and m/z 408 in **1-TbAd** both on pathway to m/z 136.

Fig. S4

			NH_2	
	3 18" ~	$\begin{array}{c} 3^{"} & 2^{"} & 1^{"} & 2^{0"} \\ \hline & 4^{"} & 5^{"} & 9^{"} \\ \hline & 6^{"} & 7^{"} & 8^{"} & 16^{"} \end{array}$	14"	N 8 OH
		19"		4' '''''' 5' 1' 2' 3' HO OH
Atom	Carbon	Hvdrogen	COSY	NOESY
2	147.2	8.53		1", ^a 15", ^a 16" ^a
8	144.2	8.66		1'. ^a 2'. ^a 3' ^a
1'	90.2	6.10 (d. 5.2)	2'	8. ^a 2'
2'	76.4	4.61 (dd. 5.2, 5.1)	1'. 3'	8. ^a 1'. 3'
3'	71.8	4.34 (dd. 5.1, 4.1)	2'. 4'	8. ^a 2'. 5'
4'	87.3	4 14 (ddd 4 1 3 4 3 1)	3' 5' 5'	5' 5'
5'	62.4	3.87 (dd 12.6 3.1)	4' 5'	4'
5	02.1	3.78 (dd, 12.6, 3.4)	4' 5'	3' 4'
1α"	28.4	1 77	1" 2" 2"	1" 2" 10"
16"	2011	1.04	1", 2", 2"	1", 26", 20"
$2\alpha''$	23.0	1.62	1", 1", 3", 3"	1". 3". 19"
28"	2010	1.62	1" 1" 3" 3"	1" 3"
-ρ 3α"	41.9	1 41	3" 2" 2"	2" 18" 19"
3B"	11.9	1.11 (ddd 131 131 48)	3", 2", 2"	2" 18"
4"			3,2,2	2,10
5"				
6"	117.2	5.48	7", 7", 10"	7", 7", 18"
7α"	32.5	1.87	6", 7", 8"	6", 7", 8", 17"
7B''		1.77	6", 7", 8"	6", 7", 16", 17", 20"
8"	34.5	1.54	7", 7", 17"	7", 7", 10", 17"
9"			- , , , .	- 7 - 7 - 7 -
10"	41.1	2.22 (br d, 12.9)	1", 1", 6"	2", 7", 10", 12", 19"
11"	35.5	1.58	11", 12", 12"	8", 10", 12", 16", 17", 20"
		1.42	11", 12", 12"	8", 10", 12", 16", 17", 20"
12"	33.7	2.05	11", 11", 12"	10", 11", 11", 14", 16"
		2.05	11", 11", 12"	10", 11", 11", 14", 16"
13"				
14"	115.2	5.46	12", 15", 16"	2, ^a 12", 12"
15"	49.5	4.92 ^b	14"	2, ^a 14", 16"
		4.92 ^b	14"	2, ^a 14", 16"
16"	16.9	1.89		2, ^a 12", 15"
17"	15.3	0.85 (d, 6.7)	8"	7", 7", 8", 11", 11", 20"
18"	30.1	1.06		3", 3", 6", 19"
19"	29.3	1.01		2", 3", 10", 18"
20"	16.5	0.66		1", 7", 11", 17"

^{a)} The expected COSY and NOESY cross peaks are seen within the terpene, base and sugar fragments. NOESY cross peaks between the three fragments are seen between H_8 and the three sugar protons $H_{1'}$, H_2' and $H_{3'}$ and between H_2 and the terpene protons $H_{14''}$, $H_{15''}$, and $H_{16''}$. ^{b)} The allylic methylene peak is the expected doublet.

Layre, Lee et al,

Fig. S6

Fig. S6

Fig. S6

Layre, Lee et al,

Fig. S7

Layre, Lee et al,

Fig. S7

Fig. S9

Fig. S9

Fig. S9

Sodium (E)-3-methyl-5-((1R*,2S*,8aS*)-1,2,5,5-tetramethyl-1,2,3,5,6,7,8,8aoctahydronaphthalen-1-yl)pent-2-en-1-yl diphosphate $\int_{H_{abs}} \int_{H_{abs}} \int_{H_{ab$

.

	Rv3378c	Rv3378c	Rv3378c
	Native	Hg-derivative	Mellitic acid
Data collection			
Space group	P2 ₁ 2 ₁ 2 ₁	P2 ₁ 2 ₁ 2 ₁	P2 ₁ 2 ₁ 2 ₁
Cell dimensions			
a, b, c (Å)	77.17, 93.28,	57.71, 94.98,	69.46, 94.23,
	101.26,	111.16	94.76
a, b, g (°)	90, 90, 90	90, 90, 90	90, 90, 90
		Peak	
Wavelength (Å)	1.1111	1.0083	1.1111
Resolution (Å)	50-2.20	50-2.30	50-2.36
	(2.24-2.20)*	(2.34-2.30)	(2.40-2.36)
R _{svm} or R _{merge}	0.087(0.631)	0.123 (0.566)	0.133 (0.573)
l/sl	18.4 (2.3)	15.1 (2.1)	15.2 (2.1)
Completeness (%)	100 (100)	100 (100)	100 (100)
Redundancy	4.2 (4.2)	4.1 (4.2)	4.2 (4.1)
Refinement			
Resolution (Å)	37.13-2.21	49.32-2.31	48.15-2.36
No. reflections	37,194	27,535	26,204
R _{work} / R _{free}	0.1767/0.2294	0.1885/0.2287	0.1638/0.2388
No. atoms			
Protein	4,757	4,648	4,754
Ligand/ion	39	51	91
Water	311	251	256
B-factors			
Protein	40.63	26.47	33.99
Ligand/ion	55.29	40.45	49.37
Water	39.39	29.10	36.10
R.m.s deviations			
Bond lengths (Å)	0.009	0.009	0.008
Bond angles (°)	1.171	1.171	1.116

*Values in parentheses are for highest-resolution shell.

p-value < 0.05 and fold change > 2

				intensity fold change	intensity fold change		color
m/z	retention time (min)	intensity BCG	intensity H37Rv	BCG versus H37Rv	H37Rv versus BCG	p-value	code
540.357157	25.2	27404.33	5.03E+07	5.45E-04	1834.388293	1.47E-04	
541.395194	25.2	9850.37	1.74E+07	5.65E-04	1768.559902	4.94E-04	substance A
542.361054	25.2	1215.75	2978237.88	4.08E-04	2449.712424	3.91E-04	
543.363113	25.2	489.41	423389.12	0.001155934	865.1010809	2.93E-04	
1631.48613	7.7	307.57	89122.52	0.003451096	289.7633709	0.00254282	
1632.4911	7.7	162.28	87395.26	0.001856852	538.5460932	0.00266305	
1633.49317	7.7	291.71	60765.74	0.004800561	208.3087313	0.00210582	
1634.49034	7.7	226.46	20851.99	0.010860358	92.07802702	0.0033099	
1645.50058	7.6	104.88	12911.24	0.008123147	123.1048818	3.21E-04	
1646.50221	7.7	92.38	14424	0.006404591	156.1376921	0.03389927	
1647.51153	7.7	91.25	18801.28	0.004853403	206.0414247	2.90E-05	
1659.5203	7.6	19.36	369466.72	5.24E-05	19084.02479	0.00265906	
1660.52403	7.6	79.82	450194.87	1.77E-04	5640.126159	0.00337204	
1661.52653	7.6	85.69	287250.59	2.98E-04	3352.206675	0.00245058	
1662.52936	7.6	177.15	131602.69	0.001346098	742.8884561	0.00433405	
1663.52795	7.6	459.02	41504.14	0.011059622	90.41902314	0.00466772	
1673.53152	7.5	19.36	15053.09	0.001286114	777.5356405	0.00122697	
1674.53303	7.6	19.36	24588.21	7.87E-04	1270.052169	0.00362322	
1675.53911	7.6	19.36	14099.56	0.001373093	728.2830579	0.00194387	
1687.55122	7.4	19.36	260826.16	7.42E-05	13472.42562	0.00118941	
1688.55476	7.4	219.92	325231.79	6.76E-04	1478.864087	0.00134432	
1689.55844	7.4	19.36	212177.95	9.12E-05	10959.60486	0.00138349	
1690.55887	7.4	19.36	96244.52	2.01E-04	4971.307851	0.00432984	
1691.55662	7.5	19.36	33876.18	5.71E-04	1749.802686	0.00498608	
1715.5818	7.4	19.36	88214.96	2.19E-04	4556.557851	5.96E-04	
1716.58528	7.4	19.36	115673.72	1.67E-04	5974.882231	0.00100637	
1717.58828	7.4	19.36	80389.41	2.41E-04	4152.345558	8.03E-04	
1718.58893	7.4	19.36	34413.59	5.63E-04	1777.561467	0.00186871	
1719.57881	7.4	193.04	42473.35	0.004544959	220.0235702	0.00120501	
1720.57887	7.4	67.99	35181.04	0.001932576	517.44433	0.0021668	
1731.58113	7.5	19.36	15093.45	0.001282676	779.6203512	0.00506366	
1732.57785	7.5	19.36	25934.34	7.47E-04	1339.583678	8.75E-04	
1733.58264	7.4	19.36	28521.4	6.79E-04	1473.21281	0.00397178	
1734.58544	7.4	149.99	17301.21	0.008669343	115.3490899	0.01424495	
1743.61073	7.3	19.36	22366.01	8.66E-04	1155.269112	0.0012017	
1744.61484	7.3	19.36	31450.83	6.16E-04	1624.526343	2.55E-04	
1745.61445	7.3	19.36	27999.17	6.91E-04	1446.23812	0.0019074	
1746.6103	7.4	19.36	16758.79	0.001155215	865.6399793	3.57E-05	
1747.60901	7.4	106.81	107737.98	9.91E-04	1008.688138	0.00212805	
1748.61335	7.4	251.55	133093.23	0.001890027	529.0925462	0.00162734	
1749.61507	7.4	19.36	87894.67	2.20E-04	4540.013946	0.00225653	
1750.6156	7.4	19.36	37837.19	5.12E-04	1954.40031	0.00443463	
1759.60875	7.4	19.36	48537.32	3.99E-04	2507.092975	8.60E-04	
1760.61091	7.4	19.36	57128.51	3.39E-04	2950.852789	5.17E-04	
1761.61878	7.4	98.92	59586.59	0.001660104	602.3715123	0.0026361	
1762.6222	7.4	96.29	42550.49	0.002262961	441.8993665	0.00159745	
1763.62711	7.4	110.62	24309.35	0.004550522	219.7554692	1.59E-04	
1775.63966	7.3	19.36	202861.42	9.54E-05	10478.37913	1.92E-04	
1776.64336	7.3	19.36	272369.13	7.11E-05	14068.65341	5.62E-04	
1777.6468	7.3	118.7	176830.97	6.71E-04	1489.73016	4.56E-04	
1778.65026	7.3	109.42	85719.11	0.001276495	783.3952659	5.14E-05	
1779.65418	7.3	196.68	27093.16	0.007259423	137.7524914	0.00895295	
1787.63995	7.3	95.77	68552.85	0.001397025	715.8071421	0.0027939	
1788.6454	7.4	19.36	91780.02	2.11E-04	4740.703512	0.00228083	
1789.64916	7.3	19.36	80663.3	2.40E-04	4166.492769	0.00191959	
1790.65176	7.3	19.36	49018.7	3.95E-04	2531.957645	0.00420651	
1791.65777	7.3	213.44	24750.07	0.008623812	115.9579741	4.68E-04	
1801.6556	7.3	234.78	36272.72	0.006472618	154.4966351	3.89E-04	
1802.6593	7.3	140.02	44552.98	0.003142776	318.1901157	0.00165269	
1803.67026	7.3	177.33	208510.61	8.50E-04	1175.833813	7.76E-04	
1804.67474	7.3	77.81	248364.99	3.13E-04	3191.941781	6.16E-04	
1805.67802	7.3	19.36	182402.77	1.06E-04	9421.630682	0.00128753	
1806.68008	7.3	19.36	85444.47	2.27E-04	4413.454029	0.0018874	

1807.67985	7.3	19.36	31681.66	6.11E-04	1636.44938	1.95E-04
1815 67102	73	19 36	15381 71	0 001258637	794 509814	2 83E-04
1816 67/18	7.0	105.81	15728.63	0.006727212	148 6407406	0.01272156
1010.07410	7.4	105.01	13720.03	0.000727212	140.0497490	0.01272150
1817.68256	7.3	100.14	34264.88	0.002922524	342.1697623	7.86E-04
1818.68893	7.3	19.36	35826.12	5.40E-04	1850.522727	0.00189254
1819.68706	7.3	73.87	21613.11	0.003417834	292.5830513	1.05E-04
1831 6997	73	19 36	46801 93	4 14F-04	2417 455062	0.0012416
1001.0007	7.0	10.30	F0704 22		2417.400002	2 795 04
1032.70310	7.5	19.50	59704.25	3.24E-04	3003.090170	3.700-04
1833.70844	7.3	19.36	43861.45	4.41E-04	2265.570764	6.20E-04
1834.70961	7.3	19.36	21545.36	8.99E-04	1112.880165	3.16E-05
107.050398	6.2	50238.18	124446.89	0.40371417	2.477137707	0.04784898
109 011852	7 1	59003	141338 84	0 417536534	2 395451757	0 04906664
110.001969	7.1	20045 01	E0224 06	0.404550842	2.000401707	0.04700004
110.991000	1.2	20040.01	50521.90	0.494559642	2.021052047	0.04723357
114.091817	22.6	1241631.69	3695969.24	0.335908633	2.976703373	0.01609087
117.091342	5.0	156621.76	529432.06	0.295857988	3.380322504	0.04784182
121.050796	2.1	1162542.69	307752.64	3.773584906	0.264723732	0.02818439
135 043558	73	704530 47	1877525.86	0 375234522	2 664932093	0 02578206
136 047122	73	57005.41	150872 77	0 377786173	2 646639503	0.04550516
100.047122	7.5	40000.41	00012.11	0.010571000	2.0400333003	0.04000010
136.061762	25.2	13206.91	266419.14	0.049571209	20.17270807	3.34E-04
148.060575	13.2	488728.71	1072874.45	0.455580866	2.195235164	0.00395907
148.078371	7.8	302662.28	2975000.95	0.10173975	9.829440755	0.00214421
148.096935	29.1	1.00E+07	362176.36	27.7777778	0.036120859	0.00293852
152 070657	72	3285803 92	7461073 16	0 440334654	2 270699452	0.017268
152.010001	7.2	2020000.02	07020 74	0.331130370	2.270000402	0.017200
152.217005	7.5	20209.07	0/030.74	0.321130379	3.113003029	0.02230047
153.073927	7.3	260042.81	597476.85	0.43516101	2.297609574	0.01820844
167.107483	6.1	232105.69	526486.75	0.440917108	2.268306089	0.00231574
168.122945	7.3	87638.66	178330.01	0.491400491	2.034832687	0.01899361
173 078374	73	407360 76	902199 36	0 451467269	2 214742922	0 02680803
190 072414	0 0	200006.00	1019050 25	0.205129205	4 97521700	0.02602747
109.07 34 14	0.0	209000.09	1010930.23	0.203128205	4.07.0217.99	0.02093747
197.12373	6.2	66762.78	169963.11	0.392772977	2.545776404	6.60E-04
206.138858	6.6	80969.95	215953.16	0.374953131	2.667077848	8.94E-04
208.165322	5.1	49731.14	158599.46	0.313577924	3.189137832	0.038892
209,154074	5.0	135183.08	385362.08	0.350754121	2.850667998	0.02556275
212 053053	13.3	48603.02	121375 0	0 400480577	2 407201321	0.02813028
212.000000	15.5	40003.02	121373.3	0.400400377	2.497291321	0.02013920
217.194885	25.1	8187.1Z	23240.44	0.352236703	2.83939103	0.01540274
229.143721	6.0	53592.38	153863.42	0.348310693	2.870994347	0.01084144
241.159902	5.1	35214.67	149562.26	0.235460325	4.24715779	0.03860428
247.150771	23.3	1154403.63	228305.44	5.050505051	0.197769163	9.23E-04
252 074668	77	677100.26	1713263 45	0 395256917	2 53029507	0 0066647
250 069007	6.1	261226.02	529751 24	0.484066052	2.00020007	0.02062621
259.000097	0.1	201220.92	000074.4	0.484900052	2.002300207	0.03902021
263.093246	23.0	3.13E+07	320674.1	100	0.010237616	0.01537947
267.209338	4.9	40638.38	196805.67	0.206483585	4.84285225	0.00321367
273.256787	5.0	15958.92	73597.19	0.216825672	4.611664824	0.00576222
273 257888	25.1	6421 48	234263 63	0 027411529	36 48125199	6 18F-04
274 261824	25.2	13058.89	54864.95	0.238038562	4 20134866	0.00184422
274.201024	25.2	17040.00	20202.64	0.250050502	9.20104000	0.00104422
276.261926	4.5	17943.4	39203.61	0.457665904	2.184848468	0.01865901
294.212976	5.3	248261.74	691/81.77	0.358808755	2.786501738	0.04624054
295.126764	13.1	72936.66	164216.49	0.444247001	2.251494516	0.04076379
299.211404	4.7	24268.42	99583.06	0.243724104	4.103401045	0.04966019
307,12078	8.0	153218.13	325270.25	0.471031559	2,122922725	0.02207135
308 270810	4.8	106482.04	254574 85	0 418235048	2 390777356	0 04704608
212 252400	4.0	150540.05	20-01-00	0.400050645	2.000111000	0.04270445
312.233488	4.9	152519.25	3/9/02.09	0.402252615	2.400120112	0.043/9145
316.25702	4.0	29351.03	122162.96	0.240269101	4.162135366	0.00199808
320.316074	4.4	68083.93	158893	0.428449015	2.333781261	0.00743827
326.267891	4.8	55004.34	148979.04	0.369276219	2.708496093	0.02677235
327,133594	13 7	24629 34	116941 56	0.210614996	4,748059022	0.04669249
328 13680	13.8	4851 14	19091 70	0 254065041	3 935526/05	0.04670077
222 202550	10.0	1001.14	67445 0	0.207000071	2 002249400	0.00001700
333.282558	4.0	23220.9	0/415.2	0.3444/123/	2.903212192	0.00391706
334.112375	6.7	446.03	36619.72	0.01218012	82.101473	6.25E-04
336.483138	4.8	23438.86	67054.43	0.349528137	2.860823009	0.01702235
342.137313	7.3	34916.32	84240.52	0.414421881	2.412640278	0.01515983
354 2858	44	33497 46	75829 67	0 441696113	2 263743878	0.01737567
354 224655	 5 0	ENDED EE	222621 17	0.77700010	1 205527246	0.04620206
304.334033	0.2	04203.00	233034.17	0.232234092	4.303337310	0.04030300
364.34215	4.6	369224.63	874529.48	0.422119038	2.368556724	0.01834679
365.345217	4.6	87101.02	215263.66	0.404694456	2.471425249	0.01059624
369.297261	4.5	45367.43	120367.31	0.376931775	2.653165718	0.02136384
374.234959	6.2	28843 26	72334.6	0.398724083	2,507851054	0.00752957
		200.0.20				

375.347524	4.5	12484.29	25228.45	0.494804552	2.020815761	0.00914344
376.247355	5.7	28992.64	189187.41	0.153256705	6.525359884	0.0366965
379.331496	24.1	20795.91	8187.49	2.538071066	0.393706743	0.00518149
388.251439	5.2	32647.26	102523.75	0.318471338	3.140347766	0.02368271
390.262624	5.1	45761.15	210163.68	0.217722621	4.592622344	0.00834873
392.373678	4.5	76040.61	153291.83	0.496031746	2.015920572	0.03240109
397.343475	24.1	94843.52	7258.58	12.98701299	0.076532166	0.04549232
398.362253	35.4	7211.16	16967.77	0.424989375	2.352987591	0.04562011
404.269541	4.9	51188.7	175946.01	0.290951411	3.43720411	0.01723218
406.296028	5.0	59645.15	404562.39	0.147427392	6.782821235	0.00136682
406.329257	1.8	759781.32	181679.25	4.184100418	0.239120448	0.03639546
408.312564	22.4	23352.55	185338.72	0.125992188	7.936551683	2.94E-04
408.312671	25.2	9469.24	67425.98	0.140429715	7.120527096	7.91E-04
409.313108	22.4	0930.39	3020 63	0.170302984	0 12211/200	0.00410391
415.353202	24.1	68172.81	23806 7	2 865320513	0.132114309	0.0107 194
432 310875	5.0	32482.07	537922 04	0.060386473	16 56012489	4 81E-04
433 315855	5.0	55126.98	202198.82	0.000300475	3 667874061	0.0110292
434 167517	7.3	21974 31	47843 12	0.459347726	2 177229683	0.00135628
434.326708	4.9	46346.31	749774.7	0.061812338	16.17765686	7.55E-04
441.479456	8.4	7847.17	17192.19	0.456412597	2.19087773	0.02751989
443.295536	4.6	89569.11	808672.85	0.110766504	9.028479238	0.00611047
444.299177	4.7	99600.99	360045.83	0.276625173	3.614882041	0.00916435
457.35038	13.3	42936	106408.98	0.403551251	2.478316098	0.0255613
463.390213	23.1	4722.95	22545.9	0.209467951	4.773690172	0.00262452
466.299538	5.8	1314.16	95245.2	0.013797671	72.47610641	0.00258258
477.210143	19.1	700089.22	94002.47	7.462686567	0.134272129	0.00642714
480.309027	29.3	324483.75	67747.38	4.784688995	0.208785124	0.01137034
481.313063	29.2	65737.22	16238.53	4.048582996	0.247021855	0.04748079
488.336813	4.9	35892.48	94974.58	0.377928949	2.646085754	0.01018188
493.27994	13.4	44662.65	128504.74	0.347584289	2.877230527	0.00607139
493.307104	4.9	37271.82	155622.65	0.239520958	4.175343463	0.00243681
494.320122	4.7	20441.13	00270.0	0.190009732	0.190692927	0.012-04
490.340412	20.0	148390 5	24920 4	5.024001070	0.167037074	0.00248950
499 191823	19.3	420980 28	109996 44	3 831417625	0 261286443	0.0040644
504 324371	5.0	27684 58	75720.04	0.365630713	2 735098022	0.02863759
511.357169	4.8	24267.86	143892.31	0.168662506	5.929336579	0.00118806
511.358334	4.4	47803.96	294266.72	0.162443145	6.155697561	0.01316769
512.362752	4.4	17828.84	146721.01	0.121521449	8.229419861	0.00479049
524.345603	22.8	102749.27	19306.38	5.319148936	0.187897977	0.00889248
524.360079	25.1	17898.32	208839.26	0.085704491	11.66809287	0.00100316
525.363027	25.1	1855.09	70999.03	0.02612808	38.27255281	0.00113856
530.370985	22.4	12003.28	297083.16	0.04040404	24.75016495	0.00443873
531.374262	22.4	5853.76	91302.51	0.064114894	15.59724177	0.01248906
535.30359	7.1	15740.04	55861.15	0.281769513	3.548983992	0.04645801
535.474672	4.4	3349.72	18834.03	0.17784101	5.622568453	0.00174954
540 466210	0.1	10000.10 30/22 10	200120.49	0.30313/130	3.211 100009 2 843524455	0.00011103
540.400318	8.2	14386 74	73472.00	0.35101744	5 106003662	0.01835048
543 346641	5 1	30717 07	113090 35	0 271591526	3 681677647	0 00178516
543 356693	9.7	22614.01	56153 47	0.402738623	2 483127495	0.02809252
544.36604	25.2	668.24	59311.3	0.011266717	88.75748234	1.72E-05
547.470156	22.0	17592.83	53315.5	0.329924117	3.030524367	8.50E-04
547.484056	23.3	10035.98	31350.04	0.320102433	3.123764695	0.00595323
549.487981	21.9	46854.91	220763.58	0.212224109	4.711642387	0.00179137
550.490482	21.9	21280.64	85091.85	0.250062516	3.998556904	6.35E-04
551.361802	5.4	30732.64	80819.66	0.380228137	2.629766268	0.0411237
551.550332	4.9	5778.59	33120.92	0.174459177	5.731661184	0.02775049
552.51228	3.8	4062.26	43015.42	0.094437624	10.58903664	0.01338677
554.525683	3.8	5301.3	47203.6	0.112309075	8.904155584	0.01215211
558.364837	26.7	2771.21	49244	0.05627462	17.76985505	0.0038207
558.508248	4.0	5546.5	26597.89	0.208550574	4.795436762	0.00795043
562 336429	20.1 25.2	2005.08 1295.02	1/02/.2	0.11//5/89	0.492030243 51 70613197	0.0015545 8 26E 05
562 380647	20.Z	1200.00 15157 Q	10233.41	0.010279001	04.10040401 1 111188175	0.20E-00 2.48E 04
563 330335	- 1 .5 25.2	416 Q	20640.40	0.220703902	49 52017754	2.40C-04
000.000000	20.2	+10.0	200-0.01	0.020100001	-0.0201110+	0.002-00

i.						
563.389647	4.5	8572.85	25530.89	0.335795836	2.978109963	0.01443893
563.503668	21.8	18535.9	70039.68	0.26462027	3.77859613	0.00166029
563.506766	3.9	5299.8	27933.68	0.189717321	5.270704555	9.84E-05
564 506188	21.8	11305 68	25844 41	0 437445319	2 285966877	0 01592115
566 527766	3.8	2455 26	26019.82	0.094357426	10 59758233	0 00848491
500.327700	3.0	2400.20	20019.02	0.094337420	2 040240027	0.00040491
509.303278	4.7	22089.11	00009.75	0.331345262	3.018218027	0.02096235
573.488104	22.0	39715.84	170049.22	0.233535731	4.281647323	0.00284254
574.489971	22.0	17758.03	56247.7	0.315756236	3.16745157	0.02546501
575.504089	21.8	254945.27	810305.2	0.31466331	3.178349612	0.00277684
576.458915	5.0	13435.5	176581.51	0.076086129	13.14290573	0.03378304
576 506906	21.8	102043 92	329446 84	0 309789343	3 228480835	0.00382708
577 458536	5.0	16558 67	83246.06	0 108025801	5.02730/108	0.0018/372
577 520222	21.7	1191605.07	4101150 10	0.190923001	2 4705656	0.00104372
577.520332	21.7	1181095.05	4101150.19	0.288101412	3.4705050	0.00317717
577.739243	21.7	11189.85	33109.74	0.337952011	2.958908296	0.02991831
578.52354	21.7	471538.18	1601216.15	0.294464075	3.395729589	0.0029136
579.528541	21.7	142029.21	443556.72	0.320204931	3.12299646	0.00550177
579.534366	24.6	613557.09	1327978.99	0.462107209	2.16439352	0.00948149
579,534502	19.4	87125.4	283507.91	0.307314075	3.25402133	0.01448683
580 529826	3.9	7762.9	39173 64	0 198176774	5 046263639	0 00444769
590 522741	21.7	20275.05	102221 64	0.294762271	2 509592120	0.00601076
500.552741	21.7	39375.95	102321.04	0.384763371	2.090002129	0.00091970
580.53811	24.6	220975.04	514439.22	0.429553265	2.328042208	0.00825203
581.541526	24.6	42845.92	111546.97	0.384172109	2.603444389	0.0036687
582.365531	23.3	3085.13	42547.93	0.072511058	13.79129243	0.01997887
582.540337	3.8	860.42	22744.69	0.037830067	26.43440413	0.00760596
582,542921	24.6	7485.48	15226.43	0.491642085	2.03412874	0.02843356
583 525006	4 0	6726 29	17955 01	0.374672162	2 669377919	0 01166848
583 544042	3.8	466 18	10420 73	0.044696733	22 37275301	0.0276603
503.544942	3.0	400.10	10429.75	0.044090733	22.37273301	0.0270095
584.520158	4.0	28000.07	193037.99	0.147928994	0.760200203	0.01622322
585.528695	4.0	14104.68	69287.15	0.203583062	4.912351787	0.02944653
586.452452	7.8	61400.54	125113.55	0.490677134	2.037662047	0.03721632
586.540808	4.0	24011.65	159015.35	0.151011779	6.622424948	0.01531159
590.299394	6.1	71183.58	264684.18	0.268961807	3.718331952	0.01038038
591,535191	21.6	59942.26	188076.29	0.318674315	3.137624274	0.006667
502 538202	21.6	28618 34	76176 28	0 3756574	2 661700302	0 00442002
505 522152	21.0	6200 51	21569 62	0.20242015	4 020021952	0.00442302
090.002102	4.0	0090.01	31508.02	0.20242915	4.939921033	0.04223423
601.518946	21.8	16101.12	39963.58	0.402900886	2.482037274	0.00385263
602.521215	3.9	10915.85	24695.42	0.442086649	2.262345122	0.04509095
603.535184	21.6	31935.32	128683.64	0.248138958	4.029508394	0.00237407
604.537854	21.6	19273.68	48773.13	0.395100751	2.530556178	0.00726191
605.550914	21.5	62807.13	237681.7	0.264270613	3.784310794	0.00401743
606 554115	21.5	25487	101242 42	0 251762336	3 972316083	0 00718687
606 554166	24.5	22886 31	47068.46	0.486144871	2 056620748	0.0203130
609 527707	24.5	16700.01	65470.24	0.255402102	2.030020740	0.0203133
000.527797	4.0	10720.43	00479.24	0.235495102	3.914240970	0.00037043
610.185152	3.8	1886.86	40944.46	0.046082949	21.69978695	0.03385631
610.540268	4.0	68861.9	418575.42	0.164527805	6.078476197	0.03159604
611.186737	3.7	1234.8	22732.29	0.054318305	18.40969388	0.0263495
611.532333	4.9	19224.59	54598.69	0.352112676	2.840044443	0.04567976
611.544222	4.0	22081.71	170390.72	0.129600829	7.716373415	0.01788104
613.561203	4.0	133050.19	697189.08	0.190839695	5.24004573	0.03978859
614,56992	4 0	28985 74	286128 02	0.101306858	9.871337423	0.01635949
615 575400	20	0060.00	90000 55	0 000671085	10 03307362	0 01041850
610 600000	5.9 OF F	3000.03	10477.11	0.09907 1005	0.00007002	0.01041039
018.028892	25.5	7050.55	19477.11	0.362318841	2.760146247	0.03805412
622.400345	7.6	27303.97	12506.61	2.183406114	0.458050972	0.02284852
623.373514	5.9	2778.32	32320.95	0.085962348	11.63327119	3.38E-06
625.541121	5.7	145075.09	441872.62	0.328299409	3.045820065	0.01596361
625.552228	24.3	1574617.91	27215.88	58.82352941	0.017284117	0.03469304
625.560372	4.0	1829.36	8010.87	0.22836264	4.379056063	0.00951982
626,554901	24.3	640874 75	12559 36	50	0.019597215	0.03169275
626 572562	30	8410 22	71111 25	0 118300242	8 44621062	0.04430154
627 557022	0.0	147005 50	100/ 42	21 10033242	0.77021002	0.04430134
021.00/932	24.3	14/325.52	4294.43	34.402/5002	0.029149261	0.0334/01
627.574395	4.0	3941.03	26256.25	0.150105074	6.66228118	0.04/20757
628.561114	24.3	25376.73	6635.06	3.831417625	0.261462371	0.01000925
628.588107	3.9	16097.26	105603.43	0.152439024	6.560335734	0.02936371
629.58837	3.9	8544.81	41757.94	0.204624514	4.886936047	0.0331409
636.558316	4.0	14622.31	102685.12	0.14240957	7.022496446	0.04345123
637 552379	24 4	60277 83	6289 29	9 615384615	0 104338361	0.03311381
637 561247	4.0	8843 60	43854 30	0 201653550	4 958833026	0.03171697
037.301247	4.0	0043.09	43034.39	0.201000009	4.900000920	0.031/100/

638.55643	24.4	24243.65	3251.27	7.462686567	0.134108107	0.02723226
638.571952	4.0	32553.56	214628.54	0.15167602	6.593089665	0.02638768
639.566502	24.3	430036.3	10671.24	40	0.024814742	0.03823159
639.578037	4.0	24179.48	92059.73	0.262674022	3.807349455	0.03489999
640.370955	27.7	9503.54	27846.32	0.341296928	2.930099731	0.0351207
640.386986	25.2	1463.51	14077.59	0.103960911	9.619059658	0.02853652
640.577204	24.4	188598.75	11237.09	16.66666667	0.059581996	0.04166126
640.588655	3.9	15812.01	84504.66	0.187125749	5.344333832	3.42E-04
641.590615	4.0	7214.41	47705.7	0.151217299	6.612557368	0.0209651
649.552134	24.4	869504.25	14574.91	58.82352941	0.016762322	0.04999309
650.555293	24.4	379809.11	4002.03	90.90909091	0.010536951	0.04638059
651.389038	5.0	11017.2	40166.93	0.274273176	3.645838326	0.0176925
651.567546	24.2	3125993.23	79417.95	40	0.025405669	0.03315452
652.499057	6.8	151493.99	54667.08	2.770083102	0.360853127	0.03854039
652.570422	24.2	1317567.24	33726.8	38.46153846	0.025597783	0.03092266
654.386144	25.5	12785.44	309222.2	0.041347943	24.18549538	9.19E-04
654.586186	24.1	4171364.84	75423.42	55.5555556	0.018081233	0.03209675
654.895005	24.1	66680.79	1288.2	52.63157895	0.019318907	0.02339724
655.387642	25.5	19542.25	131313.04	0.148831671	6.719443258	0.00274603
655.496705	6.4	30571.27	66401.49	0.460405157	2.172022621	0.04956493
655.589354	24.1	951030.52	20323.94	47.61904762	0.021370439	0.02875739
656.3915	25.5	8485.73	29665.89	0.28604119	3.495973829	0.00741188
656.591695	24.1	177270.53	8757.03	20.40816327	0.049399243	0.0283272
657.593748	24.1	25600.03	1573.51	16.39344262	0.061465162	0.02951771
663.405693	5.0	15043.49	62760.02	0.239693193	4.171905588	0.03208047
665.308246	7.9	6559.34	17050.48	0.384763371	2.599420064	0.00229602
665.58243	24.2	972994.02	16994.49	58.82352941	0.017466181	0.03428772
666.586228	24.2	440863.45	11443.73	38.46153846	0.025957539	0.03310076
667.598416	24.1	5131137.2	29710.52	166.6666667	0.005790241	0.03533949
667.832658	24.1	69076.02	460.68	142.8571429	0.006669174	0.0313733
668.603001	24.1	2229725.4	30101.65	71,42857143	0.01350016	0.03367877
669 579955	24.1	484303 07	24486 11	19 60784314	0 050559477	0 02977701
669 604745	24.1	543143 6	25564 49	21 27659574	0.047067645	0.03491764
674 356396	6.1	2729.07	74271 98	0 036744442	27 21512457	8 23F-06
675 567408	24.3	875960 11	8347 85	100	0 009529943	0.04839548
676 570763	24.3	396835 62	3961 64	100	0.009983076	0.04718007
677 582519	24.2	1449523 58	42847 62	33 33333333	0.029559795	0 03234514
678 585658	24.2	644946 24	18919 11	34 48275862	0.029334398	0.03076578
679 510243	25.0	11692.28	100266 85	0 116618076	8 575474587	0.00463718
679.55115	6.2	39480.77	141421.68	0.279173646	3.58203956	0.01288685
679 599075	24.1	1 15E+07	152330 76	76 92307692	0.013283323	0 03437038
680 505134	25.0	3667 23	27600 1	0 132872708	7 526143711	5 16F-04
680.601982	24.1	5068136.59	61049.4	83.33333333	0.012045729	0.02916048
681 615615	24.1	5292309.9	206170 72	25 64102564	0.03895666	0.04316054
682.617597	24.1	2698588.62	128650.34	20.83333333	0.047673194	0.03557577
682 635261	23.2	1038696	252179 71	4 115226337	0 242784905	0 03438959
684.205154	3.7	3279 54	66971 23	0.048969198	20.42092184	0.03166271
685.206188	3.7	2238.69	46866.4	0.047766898	20.93474309	0.04118118
686.20349	3.7	1755.71	34615.84	0.050720227	19.71614902	0.03846608
687.204272	3.7	970.24	15213.93	0.063771443	15.68058419	0.03727742
690.350875	5.9	32121.21	244059.95	0.131613583	7.598093285	3.48E-04
691 597791	24.2	1212202 74	24630 32	50	0 020318647	0.03373169
692.60087	24.2	547750.59	14578.28	37.03703704	0.026614814	0.03569884
693.613884	24.1	4030851.15	42725.97	90,90909091	0.010599739	0.03783425
694.537074	22.6	136905.99	286438.53	0.478011472	2.092227886	1.44E-04
694 596498	24.1	1821550 02	25376 1	71 42857143	0.013931048	0.03586276
695.599017	24.3	4724614.56	242402.31	19.60784314	0.051306261	0.01790214
696.607931	24.2	2132936.17	84644.19	25	0.039684352	0.01658455
696.633806	23.5	5513614.77	44043.14	125	0.00798807	0.04793119
697.636679	23.5	1346996.42	22316.94	58.82352941	0.016567928	0.04793171
699.540619	6.0	26180.76	100336.79	0.260960334	3.832462847	0.0497682
699.597077	4.0	7341 56	31569 17	0.23255814	4.300062929	5.00F-04
699.639892	23.5	30928 49	7745.16	4	0.250421537	0.01292585
702.583097	24.2	28990 2	1966 54	14,70588235	0.067834648	0.04750756
705.613521	24 1	739431 8	16422 86	45.45454545	0.022210108	0.03749898
706.616517	24 1	327017 17	15281 41	21.27659574	0.046729687	0.03702989
707 630175	24 1	3294108 29	85572 17	38 46153846	0 02597734	0 03979244
	- ···	0201100.20	00072.17	00.10100040	0.02007704	0.00070244

707.630402	23.5	5329982.12	73844.63	71.42857143	0.013854574	0.03048138
707.868449	23.5	58239.08	679.33	83.33333333	0.011664504	0.00580563
708.562925	4.4	56657.4	121423.52	0.466635558	2.143118463	0.00434896
708.633754	23.5	2366723.44	52132.01	45.45454545	0.022027081	0.027346
709.618982	24.2	1308839.04	38653.42	33.33333333	0.0295326	0.04317564
709.643135	23.4	6453694.31	88998.32	71.42857143	0.013790291	0.03083366
709.967186	23.5	51336.51	3550.74	14.49275362	0.06916598	0.00373612
710.648866	23.5	2/905/8.81	101/19.46	27.7777778	0.036451026	0.03178869
711.651699	23.5	/15006.87	76289.59	9.345794393	0.106697702	0.03823402
712.573105	1.1	30224.38	114054.15	0.264970853	3.773581129	7.09E-05
716 540521	4.4	10000.7	42022.88	0.303232073	2.831388901	0.02128219
710.549521	0.1	07/52 15	500740.06	0.397772474	2.010900070	0.02025014
717 562372	4.9	3210 53	151238 01	0.19402020	46 97546226	4 11F-04
717 611671	23.4	255327 48	11113 52	22 72727273	0.043526533	0.03710013
718 596299	4 9	83671 76	328766 81	0 254517689	3 929244586	0.01576829
718.61079	23.5	112122.17	9783.12	11.49425287	0.087254109	0.01448071
719.559134	26.5	7761.74	57019.18	0.136128505	7.346185263	0.01609399
720.555196	24.6	2.01E+07	4.29E+07	0.467726848	2.137529438	0.01670169
721.502085	21.9	30552.9	143182.48	0.213401622	4.686379362	7.81E-04
721.558264	24.6	6941637.94	1.63E+07	0.427167877	2.341248672	0.01076488
721.645576	23.5	2717392.76	173576.05	15.625	0.063875952	0.04783681
721.795007	24.6	296020.01	674608.63	0.438788943	2.278929151	0.01874053
721.886112	24.6	254294.54	529969.2	0.479846449	2.084076205	0.01649548
722.560934	24.6	1594059.26	3698548.89	0.431034483	2.320207901	0.01053193
723.657135	23.3	1.38E+07	179812.85	76.92307692	0.012997584	0.03266711
723.660017	24.2	2426714.88	2706.62	1000	0.001115343	0.04760256
724.62788	25.7	27981.76	984048.3	0.028435749	35.16749125	1.54E-04
724.661249	23.3	6367972.11	85800.83	76.92307692	0.013473807	0.02926284
724.99091	23.2	100007.00	197 10.28	1.03330//00	0.130915402	0.04553404 5 20E 06
725.03402	23.7	106150 43	727035.8	0.044879275	3 706351512	0.03115252
725 66814	24.3	1617781 01	21206 61	76 92307692	0.013108455	0.03113232
726 501226	5 1	14418.06	58435.01	0 246730817	4 052903789	0.02557555
726.57057	7.8	20512.69	42697.54	0.480307397	2.081518319	0.0014055
726.669815	23.3	309309.02	33040.66	9.345794393	0.106820874	0.03275679
729.611674	23.4	136014.05	12019.8	11.36363636	0.088371753	0.02952023
730.534574	24.8	329168.48	783357.18	0.420168067	2.379806171	0.02357408
730.614217	23.4	60228.67	9846.01	6.134969325	0.163477128	0.04508338
731.534637	24.8	164051.82	367701.43	0.446229362	2.241373671	0.02322802
732.543795	4.7	41967.52	104286.81	0.402414487	2.484940973	0.03999581
734.585014	4.0	25325.28	64853.87	0.390472472	2.56083526	0.04503994
735.544077	22.7	25878.42	56388.7	0.458926113	2.178985425	0.02562187
735.5723	6.0	53573.25	128493.31	0.417014178	2.398460239	0.04415961
735.660994	23.3	1989091.46	40519.25	50	0.020370732	0.02359082
736.607664	4.0	14147.28	182163.26	0.077663871	12.87620376	0.00231485
730.004105	23.3	15/12 15	17039.14	0 153186275	6 52752601	2.02120939
737 675894	23.3	3649899 89	44706 17	83 33333333	0 012248602	0 02223293
738 528895	21.9	169011.9	692420.4	0 244081035	4 096873652	0.00543958
738.679945	23.2	1736908.33	34077.39	50	0.019619567	0.02255593
739.682456	23.3	460547.31	17440.94	26.31578947	0.037870029	0.02148962
740.599055	7.3	24342.78	136631.18	0.178157848	5.612801003	2.61E-04
740.604016	7.6	67363.08	229518.15	0.293513355	3.407180165	0.04022174
741.604574	7.6	31290.79	128316.43	0.243842965	4.100773103	0.01322015
743.481726	22.0	57076.5	154896.12	0.368459838	2.713833539	0.03055363
745.500663	21.9	62385.14	197667.91	0.315556958	3.16850952	0.01277216
745.601211	25.6	19129.55	44486.88	0.429922614	2.325558103	0.00972754
/47.518647	21.9	242760.77	622490.63	0.390015601	2.564214267	0.01210153
141.5/0/8	5.2	10798.15	60524.82	0.1/8412132	5.605110135	0.00476035
747.573/50	24.5	193000.05	158/921.58	0.499750125	2.00090761	0.02130049
747.00223	∠0.ŏ 24 1	10002.04 5711 34	50230.00 50707 26	0.370090223	2.101000092	0.0049729
747 660044	24.1	77507 21	22805 16	3 401360544	0.004100411	0.03230034
748 522747	21.0	91739 55	277740 41	0.330360093	3 027488253	7 76F-04
749.534147	21.7	759136.4	2602054.07	0.291715286	3.427650248	0.00349623
749.534394	22.4	176505.2	925901.79	0.190621426	5.245747944	0.00207664
•						

749.555985	4.5	8004.3	57506.35	0.139198218	7.184432118	3.38E-04
740 507146	51	37106.97	256132 35	0 144864552	6 002540143	0 04883723
749.397 140	0.1	57100.97	200102.00	0.144004332	0.902340143	0.04003723
750.53766	21.7	361393.89	1199169.51	0.301386377	3.318178705	0.00343769
750.56369	4.6	11930.58	61540.6	0.193873594	5.158223657	0.00399165
750 587665	50	38999.02	179163 88	0 217675229	4 594061082	0 03193278
760.007000	0.0	00000.02	000055.04	0.217070220	9.2075407002	0.00100210
751.545071	21.7	96178.01	362355.34	0.265392781	3.767548736	0.0019557
751.565851	6.1	42918.69	146032.82	0.29385836	3.40254607	0.0187135
751 692073	23.1	3484454 49	111904 88	31 25	0 032115466	0 04458004
752 542072	21.0	55205 11	247265 49	0.000510604	4 472550725	0.00552277
752.542075	21.0	55295.11	247 305.40	0.223513034	4.473550735	0.00555277
752.695736	23.0	1708976.59	44413.44	38.46153846	0.025988326	0.04349137
753.698311	23.0	477622.52	16904.73	28.57142857	0.035393494	0.03942299
754 537251	4 9	1358 01	203431.65	0 006679937	149 7020774	2 86E-04
764.007201	4.0	1000.01	400444.00	0.00007.0007	140.1020114	
100.034012	4.9	4064.01	120411.08	0.032149172	31.10501204	2.41E-05
757.545202	4.6	17319.23	37383.08	0.46339203	2.158472403	0.03367608
757.642375	23.3	75591.41	11402.09	6.622516556	0.150838435	0.03213784
750 654103	23.2	57274	13160 32	4 347826087	0 220035308	0.04411168
739.034103	23.2	51214	10109.02	4.347020007	0.229933390	0.04411100
762.528856	22.0	146655.39	764042.77	0.19193858	5.209783084	0.0020886
762.551962	22.6	124970.05	297604.02	0.4199916	2.381402744	0.0159728
764 539287	59	11253 14	40290 76	0 279329609	3 580401559	0 03545147
764 544466	0.0	240260.14	4060060.0	0.270020000	2.000401000	0.00040570
704.544400	22.5	342308.15	1202209.2	0.271223217	3.0000/0031	0.00913579
764.544982	21.8	1017759.2	3545590.86	0.287026406	3.483722731	0.0035767
765,704395	24.1	138882.84	16939.52	8.196721311	0.121969856	0.04729069
766 40128	77	410000 04	13040 31	31.25	0.031757174	0.0112214
700.43120	00.1	4004707.40	F000005 00	00400007	4.544000400	0.0112214
100.559781	22.4	1261/97.13	5692265.26	0.221680337	4.511236493	0.00666518
766.561292	21.7	4657184.79	1.74E+07	0.267737617	3.735245247	0.00360784
766 574262	43	13053 85	110368 74	0 118273211	8 454880361	7 57E-05
766 007177	21.7	72516.05	206004.02	0.256244527	2 001255084	0.00664702
700.097177	21.7	73510.05	200004.93	0.250544527	3.901255964	0.00004703
767.494868	7.7	130837.09	1164.93	111.1111111	0.008903668	0.03646659
767.563051	22.4	568828.9	2480755.2	0.229305205	4.361162381	0.00618494
767 564475	21 7	1892571 56	7242435 18	0 26130128	3 82676953	0.00376003
707.004410	4.0	EE07 40	26702.0	0.15026206	0.020700000	0.00070000
/0/.5/0114	4.3	5527.43	30783.9	0.15026296	0.054792553	0.01211223
767.855649	21.7	51988.41	177715.01	0.292568754	3.418358246	0.0123181
768.491864	7.7	190820.31	2822.78	66.66666667	0.01479287	0.01193844
768 566051	22.5	215520.00	760633 75	0 283366303	3 5201/6576	0.00526353
700.500351	22.5	215529.09	100033.13	0.2000000000	5.529140570	0.00320333
768.568155	21.7	573109.13	2085195.57	0.274876306	3.638391819	0.00415121
768.583689	5.1	58958.17	164803.86	0.357781753	2.79526756	0.0402324
768.591319	4.3	18920.2	217931.43	0.086820629	11.51845276	2.07E-04
760 /037/3	7.8	70304 7	13466 16	5 235602094	0 101205083	0.02121087
709.495745	7.0	70394.7	13400.10	5.255002094	0.191295005	0.02121007
769.571173	21.6	56981.75	229533.58	0.248262165	4.028194641	0.00447372
769.596141	4.3	11094.07	118817.24	0.093370682	10.70997749	0.00218219
770 523292	22.9	19961 34	50526 21	0 395100751	2 531203316	0 00922449
770 509503	4.4	7070.90	25622.91	0 109699655	5.022060064	0.02060402
770.596505	4.4	7079.89	33032.01	0.198088055	5.052900904	0.02009402
771.51509	22.2	498599.58	1576712.05	0.316255534	3.162281144	0.01143191
771.570213	24.4	12790.9	28158.27	0.454338937	2.201429923	0.0049069
771 585468	23.0	45052 91	385689 32	0 116808784	8 56080817	0 00962436
771 502546	60	96900 16	227777.01	0.265006751	2 720261425	0.02796952
770 540 550	0.0	00000.10	201111.01	0.00000701	2.139301423	0.00700000
//2.510596	19.8	118485.87	323437.45	0.366300366	2.729755455	0.01221599
772.518808	22.2	197812.99	674788.35	0.293169159	3.411243872	0.01023722
773,513377	19.8	49445 71	146963.56	0.336473755	2,972220644	0.00825119
774 523304	10.8	23400 18	67013 45	0.350508237	2 852828288	0.04024863
774.525504	19.0	23490.10	07013.45	0.330300237	2.052020200	0.04924000
774.542367	21.7	51505.79	112231.13	0.458926113	2.179000264	0.04269126
774.561504	22.7	33022.28	82300.75	0.401284109	2.492279455	0.02027781
775 552352	21.6	66060 49	133582 84	0 494559842	2 022129112	0.00366774
775 560511	20.7	20106 44	67000 16	0.422920470	2 205202991	0.00404727
770.000011	22.1	29100.44	01099.10	0.433038478		0.00404727
776.545148	19.6	129333.75	324390.06	0.398724083	2.508162487	0.03682313
776.559338	21.6	22252.64	47695.95	0.466635558	2.143383886	0.01706952
776 579294	22.6	194867 32	469452.34	0 415110004	2 409087065	0 04053476
778 550004	10.2	10077/ 20	507507 22	0 102016746	5 102021201	0 00353659
110.009094	19.0	100774.30	091001.00	0.102010/40	0.490024201	0.000000000
78.564164	21.8	65607.25	146490.82	0.447828034	2.232844998	0.00816633
778.580679	22.7	105953.11	430364.65	0.246184146	4.061840658	0.00570719
778 584184	22.4	137000 89	475279 62	0 288267512	3 46917177	0 0089467
770 706754	22.1	77607 77	20220 67	2 946702002	0.264604204	0.04656044
110.100/51	23.1	11001.11	20329.07	3.010/93893	0.201084304	0.04030341
779.5649	19.3	46248.35	266150.86	0.173761946	5.754818496	0.00906936
779.589174	22.6	177025.11	496727.58	0.356379187	2.805972441	0.00893107
780 568038	19.3	16688 16	65747.9	0 253807107	3 939793243	0 03230493
700 577700	01.6	205750 64	720002 02	0.20102020	2 547445444	0.00027004
VU.0///UX	21.0	205750.64	129002.93	0.28192839	3.54/415114	0.00237264
/80.624747	4.5	16149.11	44000.06	0.366972477	2.724612068	2.65E-04

781.589694	22.6	33457.66	102248.2	0.327225131	3.056047554	0.01022368
782.562329	4.8	27071.56	361626.3	0.074861506	13.35816259	6.34E-05
782.5732	22.7	24772.88	61273.4	0.404367165	2.473406402	7.54E-04
782.574546	4.4	7909.81	40402.42	0.195771339	5.107887547	6.27E-04
782.723308	3.7	4136.59	48486.49	0.085316952	11.72136712	0.02508585
783.568706	4.8	36551.33	191278.77	0.191094974	5.233154854	4.80E-04
783.598649	21.5	223586.33	486643.05	0.459347726	2.176533109	0.02621153
784.578531	4.8	31470.07	96136.32	0.327332242	3.054849258	0.01151878
784.599764	21.5	54077.61	115921.6	0.46641791	2.143615445	0.02524433
784.602342	4.4	18234.18	37725.58	0.483325278	2.068948535	0.02409062
785.591213	5.9	32392.18	88093.47	0.367647059	2.719590654	0.0086805
785.625153	4.0	251891.04	909378.24	0.27700831	3.610204793	0.01373412
786.591073	5.9	20578.5	63865.07	0.322268772	3.103485191	0.00509099
786.629444	4.0	133455.33	511334.91	0.260960334	3.831506093	0.00275073
787.588752	5.8	523435.28	1636088.46	0.319897633	3.125674792	0.01007203
787.598046	4.9	105283.66	474363.44	0.22192632	4.505575129	0.00179551
787.63049	4.3	40551.61	117738.61	0.344471237	2.903426276	0.00483541
787.634379	4.0	44886.46	165754.6	0.270782562	3.692752781	0.00587558
788.592822	5.8	370431.17	1097887.43	0.337381916	2.963809525	0.0119231
788.633056	5.0	42586.84	231343.37	0.184094256	5.432273679	4.43E-04
789.602332	5.6	379456.83	1195339.78	0.317460317	3.150133785	0.03118798
789.604149	6.0	388822.37	1118630.09	0.347584289	2.876969476	0.02359078
790.561604	21.8	82762.21	304764.27	0.271591526	3.682408553	0.00147462
790.596774	8.0	2445245.71	74530.69	33.33333333	0.030479837	0.0222745
790.606485	5.6	190840.04	587406.96	0.32488629	3.0780069	0.03318088
790.607839	6.0	92142.26	606134.24	0.152021891	6.578243685	0.00608891
791.610851	6.0	67389.42	221429.46	0.304321363	3.285819347	0.01972124
791.610935	4.9	67138.88	181320.59	0.370233247	2.700679398	0.02942731
791.664737	24.2	12887.89	6102.06	2.114164905	0.473472384	9.44E-04
792.576258	19.0	306056.17	1111765.79	0.275254611	3.632554737	0.02242702
792.576596	21.6	156453.5	586059.38	0.266951415	3.74590137	0.00864972
793.604126	21.7	66192.69	136162.5	0.486144871	2.057062494	0.00222312
794.545893	8.2	3221484.2	119852.35	27.02702703	0.037204078	0.01663162
794.574984	19.6	167951.58	373163.46	0.450045005	2.221851441	0.04631967
794.591149	21.5	203561.62	963664.95	0.211237854	4.734020834	0.00710675
794.603058	22.6	66466.23	219974.52	0.302114804	3.309568182	0.02531147
795.595882	21.5	122069.88	382615.4	0.319081047	3.134396462	0.01018174
795.726951	3.7	12519.92	26112.45	0.479386385	2.085672273	0.00974593
796.522427	7.4	207585.52	19.36	10722.39256	9.32628E-05	0.001
797.522992	7.4	69537.31	962.44	71.42857143	0.996094641	2.26E-04
798.531465	19.6	195509.34	629820.89	0.310462589	2.835100629	0.03764782
799.557598	21.5	100065.26	218576.38	0.457875458	3.783398036	0.02748773
800.542419	19.4	167929.4	956364.51	0.175592625	2.382026467	0.00334886
801.570288	6.0	33352.49	89897.9	0.371057514	2.966829908	0.00527127
802.604831	8.0	683056.16	73502.57	9.259259259	1.013291951	0.01904606
802.630852	24.3	29849.87	48264.38	0.61842919	3.00283546	0.04953254
804.587006	6.1	102559.45	310785.83	0.330033003	2.69741107	0.00378563
804.59998	22.3	82747.43	364526.93	0.227014756	3.030299304	0.00273098
804.605922	5.2	18926.08	54026.94	0.350262697	4.405296092	0.02575129
804.620635	7.7	9876464.67	107715.78	90.90909091	0.930417817	0.02178747
804.654861	8.6	3500375.32	106088.81	33.33333333	1.083081312	0.0354227
805.603784	22.3	31415.99	229151.98	0.137098985	3.256362842	0.00323035
805.623188	7.7	4838889.12	110781.35	43.47826087	7.294119332	0.02440437
806.612468	22.3	7414.48	118805.82	0.062410285	3.978202808	0.01791038
806.625902	7.7	1345410.78	56676.57	23.80952381	16.02348648	0.02819806
806.675197	4.0	10538.72	64331.69	0.163826999	2.37443411	0.00276711
807.616811	22.3	9046.29	83540.3	0.108283703	2.726488303	0.02812887
807.751999	22.8	209632.97	53850.15	3.891050584	2.682401341	0.04079824
808.589779	19.4	42382.53	97771.79	0.433463372	2.199765105	0.02433766
808.736907	3.7	5203.76	25729.22	0.202265372	3.508993819	9.03E-05
808.867892	6.0	40158.14	134687.33	0.298151461	4.944351776	0.01304479
808.996103	23.1	10715.81	5189.69	2.066115702	1.576344178	0.04728202
809.564094	7.9	1917609.74	13398.55	142.8571429	0.752664495	0.00356231
809.622057	6.0	446286.96	2315471.77	0.192752506	2.61600729	0.00269748
810.495574	7.2	122391.45	255985.78	0.478011472	3.02628749	0.01780363
810.575948	7.7	850487.63	11172.14	76.92307692	0.890956085	0.02454085
810.625561	6.0	108081.09	451521.79	0.239348971	2.848610742	0.03113301

	810.653419	9.5	512248	153370.06	3.344481605	4.177620618	0.04912093
	810.749317	3.7	4505.85	22865.1	0.197044335	2.381541631	0.00153643
	811.561416	7.8	134626.11	5082.44	26.31578947	0.873731074	0.00678903
	812.64762	6.1	25455.03	45844.87	0.555247085	2.169599421	0.017033
	814,557531	19.1	422027.18	1515921.51	0.278396437	52.05876651	0.00456598
	814 603689	7.9	1690813 85	45876 8	37 03703704	0 107693896	0.04231717
	815 574558	5.0	27256.03	66771.03	0 408163265	3 430791771	0.00660719
	815 606376	7 9	871352 3	47736.93	18 18181818	2 440770031	0.0300672
	010.000070	7.5	1206120 52	50296 11	27 7777779	1 101070056	0.0350072
	916 710030	20	5990120.32	15444.91	2 902291260	0 990055090	0.01000001
	910.710030	5.0	105562 54	10444.01	4 97904979	0.009900909	7.025.05
	019.5777.59	0.0	195562.54	40054.74	4.07004070	0.759612410	7.03E-05
	821.376844	7.9	384473.08	13030.71	28.57 142857	0.090209912	4.42E-04
	821.594505	0.0	040393.29	1958987.84	0.329924117	2.120471400	0.00798133
	821.739743	3.7	19109.31	40594.84	0.470809793	2.563473796	0.04706091
	822.609765	5.3	8323.1	46862.16	0.177619893	2.813410063	0.00899174
	823.585345	7.8	53921.05	2074.58	26.31578947	5.704391148	0.02984729
	823.757863	3.7	10870.61	45155.18	0.240731825	2.279357437	0.00365445
	830.322056	8.2	38244.27	13633.81	2.808988764	1.130194329	0.04694105
	832.242707	3.7	1763.89	63885.72	0.027609818	2.551267233	0.02927856
	834.241178	3.7	1209.31	44944.36	0.026907036	2.281966161	0.02888643
	835.241009	3.7	821.19	24739.86	0.033192817	3.326396308	0.02124943
	837.661391	4.3	65301.96	269757.4	0.242072137	4.800908715	0.00199366
	838.665712	4.3	29219	101736.68	0.287191269	2.014019228	5.04E-04
	839.840501	39.8	132823.95	100182.19	1.326259947	2.027899516	0.03109136
	849.77569	3.7	59588.22	155877.12	0.382262997	2.158915059	0.02043496
	851.454807	22.4	3123.38	14388.29	0.217060994	3.444295649	0.00689781
	851.588867	6.0	14600.7	38874.39	0.375516335	3.735905359	0.03926508
	851.790428	3.7	38006.18	134187.99	0.283205891	2.233995421	0.0064606
	852.661412	4.4	16938.18	72697.86	0.232991612	15.89252114	0.00140491
	852.668277	4.8	25137.47	56667.87	0.443655723	4.291952264	0.04453052
	852.796701	3.7	16173.56	69785.97	0.23174971	2.201310623	0.00930901
	853.585624	6.3	80516.39	230927.92	0.348675035	3.142335263	0.01670559
	853.598819	21.2	16791	110028.37	0.152601862	2.065332122	0.00763558
	854.697267	3.8	5640.64	32578.71	0.173130194	2.620784309	0.04257466
	871.59986	6.2	87400.1	241986.57	0.361141206	2.772282652	0.01023038
	874.633925	6.4	9826.67	28864.17	0.340483487	2.15736914	0.01362512
	877.806413	3.7	122269.82	293398.2	0.416666667	2.055854842	0.01759699
	878.71711	9.1	6986.54	128176.48	0.054507795	2.200193288	0.01739528
	878 815597	37	91759 95	235357 04	0.389863548	18 34620284	0.01843508
	879 720519	9.1	10158 49	84346 77	0 120438396	9 169369193	0.01992168
	881 425429	67	319694 42	47612 1	6 711409396	0.036602063	0.00560616
	883 440979	67	328550 19	29898 57	10 98901099	1 44597415	0.0025993
	884 444266	67	164727 73	5895.5	27 7777778	5 625210225	5.38E-04
	885 446348	67	41175 34	1967	20.83333333	1 05168691	0.00331012
	885 590037	67	30172.09	66855.92	0 451263538	5 912075818	0.02392454
	885 591404	21.7	23691 13	120348 67	0 196850394	2 215819985	0.01887585
	886 591964	67	43320.02	202522.63	0 148082334	3 927059163	1 25E-04
	887 647864	6.1	15189 26	36884 06	0 411861614	4 042307253	3 49F-04
	806 580587	21.7	163143.98	450488 36	0.362187613	6 278536489	0.402 04
	898 615212	21.7	44517 65	114032 22	0 390320062	2 582003770	0 01740728
	000.351554	30.8	42133.84	20374 42	2 066115702	2 255400677	0.01740720
	002 922445	33.0	25574 57	11/050 / 2	0.300501702	2.200499077	0.02900393
	903.022443	3.7	34507 00	100/02 73	0.309301702	2.113000210	0.02427014
	006 261967	3.7	2060 20	21111 46	0.000010006	2.004107499	0.01121392
	900.201807	5.7	2009.29	25022.44	2 070002070	0.627951110	0.00441000
	907.450705	0.7	1021 79	16777 52	2.079002079	2 22/02/21	0.00982001
	900.200203	3.7	1921.70	40020.02	0.229524025	2.22493031	0.00040192
	900.000795	3.7	10001.10	40029.03	0.336524035	2.200002031	0.00330622
	010.207074	J.1 21 G	023.90	17010 50	0.131003009	2.422009900	0.02004002
	910.000090 010 60076	∠1.0 21 E	140/4.09	41240.09	0.29/000010	34.10U03102	0.01077999
	912.023/0	∠1.5 02.4	32 149.89	100958.59	0.30057 1085	13.20000/50	0.01//0232
l	913.024443	23.4	13/85.4	10012.05	0.194000148	2.420463262	0.00321203
	915.63801	23.3	10802.9	52836.89	0.20445/166	2.221989422	0.001560/1
	918.846167	3.7	8560.97	30399.52	0.281610814	2.522872228	0.00728432
	924.619171	21.5	18129.46	67937.34	0.266880171	2.768399057	0.0061/447
	926.639022	21.4	13332.26	22210.29	0.600240096	2.804576935	0.0243/054
	927.555687	8.6	48264.91	102579.25	0.470588235	4.2/8458857	0.04612078
	934.647389	7.7	273553.5	22703.04	12.04819277	0.783236777	0.01141925

935.651013	7.7	176759.15	21889.84	8.064516129	0.966349678	0.01892451
936.651321	7.7	47730.78	17629.76	2.7100271	1.359325564	0.00519162
943.652964	24.5	8473.27	11887.8	0.712758375	4.198784302	0.01495917
944.539708	6.2	3642.62	55522.08	0.065608188	2.48388173	4.37E-04
944.620779	21.7	20533.66	64043.87	0.320615582	15.24234754	0.04197324
946.641889	7.7	40906.2	8129.04	5.025125628	2.163322256	0.0111385
956.668669	8.5	49355.82	13469.78	3.663003663	1.958482173	0.044652
957.7125	23.4	30116.9	3647.04	8.26446281	2.275140209	0.03510401
958.689451	23.2	162032.38	442582.1	0.366166239	2.056609044	0.00662698
960.6952	23.3	33053.72	104954.27	0.31496063	8.118747474	0.00426737
960.73158	6.4	20629.41	34821.61	0.592417062	3.17526348	0.02132448
965.650901	23.2	23993.55	71835.97	0.334001336	2.340637301	0.01650878
965.930686	3.7	9982.23	20472.53	0.48756704	2.702454397	0.02189252
969.712593	23.5	12692.29	4080.47	3.115264798	1.132848229	0.00871207
971.729628	23.4	37178.24	5000.61	7.407407407	0.391550968	0.02521812
974.641869	21.7	12728.71	29295.21	0.434404865	9.603770984	0.00274316
976.528806	6.2	6358.97	28372.49	0.224114747	3.136700015	0.02853431
976.764892	6.2	17181.25	36987.97	0.464468184	3.817549866	0.02554058
976.91879	3.7	8760.11	20916.8	0.418760469	2.152810186	0.01812048
977.956948	25.8	11069.66	432.66	25.64102564	2.354753298	1.77E-04
980.404353	4.9	24681.65	58436.29	0.422297297	11.52481857	0.04791864
980.592473	22.3	8408.43	24558.38	0.342348511	2.367600626	0.01114513
981.281357	3.7	756.89	12926.49	0.058554866	4.034783495	0.00223421
981.613145	5.9	42107.18	73122.33	0.575705239	2.316665366	0.01793695
982.686832	23.2	13132.89	35642.76	0.368459838	2.822353566	0.02556013
985.629081	23.3	36607.85	67182.21	0.544959128	13.06108105	0.03918776
986.750239	6.4	41668.09	91327.17	0.45620438	2.075761077	0.01965708
991.947068	3.7	41693.75	71123.59	0.586166471	6.28403277	0.04807884
993,705043	23.3	11826.27	3855.74	3.067484663	2,10085033	0.00430647
1000.75325	4.9	13977.9	29995.53	0.465983225	2.145925354	0.04593654
1000.76557	6.3	9729.31	30077.32	0.323519896	3.091413471	0.03004211
1000 91628	37	2473.07	15830.61	0 15622559	6 401197702	4 29F-05
1001 9182	37	2051 79	13711 42	0 149633398	6 682662456	0.00157618
1002 93354	37	3770.97	28447 1	0 132555673	7 543708913	7 09F-05
1003 94004	37	4745 82	16027.8	0 296120817	3 37724566	0.00708929
1004 67054	23.2	20532 59	66886 33	0.306936771	3 257569065	0.04023507
1004 94598	37	6838.6	23690.34	0 288683603	3 464209049	0.00719984
1007 69007	21.6	4181 54	12796 01	0.326797386	3 060118999	0 02722479
1007 75402	4 9	74631.97	23001 28	3 246753247	0.308196072	0.0456842
1009 72225	23.2	23179.33	47708.05	0 485908649	2 058215229	0.01616448
1012 76558	6.4	23566.96	70605 99	0 333778371	2 9959736	3 01F-04
1013 69776	26.1	11962.5	27645 59	0 432713111	2 311021108	0.01379937
1013 77017	6.4	16615.86	40117 33	0 414250207	2 414399857	0.01279973
1014 77968	6.3	29414 52	82843 39	0.355113636	2 816411419	0.0016727
1015 78454	6.3	15937 22	42182 97	0.377786173	2 646821089	0.03315969
1016 79508	6.2	21789 79	88945 26	0 244977952	4 081969583	0.00136119
1018 95944	3.7	11069.98	28874 17	0.383435583	2 608330819	0.00654809
1022 63315	19.3	23001 89	66261 81	0.347101701	2.880711542	0.02246055
1026 7525	22.9	258147.38	755071 42	0.341880342	2 924962554	0.01747646
1027,75584	23.0	183215 46	519620 54	0.352609309	2.836117323	0.01991096
1028 75921	23.0	70077 48	195486 73	0.358422939	2 789579905	0.0227082
1031 70786	23.0	132352 77	495124 31	0.267308206	3 740944069	0.01305594
1031 76233	4.8	119441 54	6698 96	17 85714286	0.05608568	0.03850289
1032 71095	23.0	97990 08	340713 77	0 287604257	3 477023082	0.00000200
1032.7 1033	4.8	78728 16	7848 44	10	0.099690378	0.01200004
1032 965	3.7	2415 44	9812 08	0 246184146	4 062232968	0.04100040
1033 71412	23.0	43305 43	130670 64	0 332115576	3 011161314	0.00200044
1033 771	<u>2</u> 0.0	42451 4	9350 17	4 545454545	0 220467876	0.04285501
1034 60635	7.3 22.2	402/1 /1	10002 48	2 02020202	0.220407070	0.04200001
1034.00035	<u> </u>	16026 32	4610 8	3 484320557	0.734077104	0.047 14044
1034.77107	4.9 8 0	23474 07	100802 20	0.704020007	1 207066621	0.00040470
1030.75979	0.0	20414.31	62104 01	0.202000000	4.231000021	0.01409017
1030.70314	0.0	14000.02 28/22 00	1700 74	16 66666667	4.32330300	0.01100007
1030.03004	0.0	20402.09	1100.14	0.242502076	0.000010009	0.00309414
1030.77810	0.0	0140.00	20100.10 12770 20	0.342383078	2.313300113	0.00000000
1047.01084	0.0 5 0	101050 00	10710 01	0.240131023	4.100011029	0.00/1/201
1047.72237	0.0 A E	194200.00	2404.2	10.00401000	0.0004/00/1	0.03944991
1048.9086	4.5	12400.69	3181.3	3.921508027	0.255306889	0.03159044

1051 78597	78	11300.62	46872 65	0 241080039	4 147794546	0 01573505
1051.00007	0.0	2500.40	94754.65	0.145020620	6 00450465	0.01070000
1052.03385	8.0	3590.49	24754.05	0.145032632	0.89450405	0.00538649
1053.637	8.6	7062.58	14872.04	0.474833808	2.105/51/22	0.02762458
1053.691	23.0	32403.16	83637.88	0.387446726	2.581164306	0.01642693
1054.29836	3.7	647.79	9495.85	0.068217477	14.65884006	0.00674919
1054 65766	19.3	11510.2	32953 4	0.349283968	2 86297371	0 04575357
1054.60205	22.4	19629.65	40910 62	0.272071579	2.00201011	0.02015026
1054.09205	23.1	18028.05	49819.62	0.373971578	2.074354824	0.03915926
1055.30198	3.7	747.24	13113.33	0.056983304	17.5490204	2.81E-04
1056.29885	3.7	621.45	11673.83	0.053233963	18.78482581	2.76E-04
1057.29931	3.7	513.51	7443.96	0.068984547	14.49623182	0.01108313
1059 57887	62	11159 38	33428 36	0 333778371	2 995539179	0 00807041
1000.07007	0.2	17262.00	50740.70	0.000770077	2.000000110	0.00007.041
1002.88120	23.0	17303.92	50710.73	0.342405753	2.92046554	0.01769448
1063.81078	24.2	1153.71	18036.43	0.063967249	15.63341741	0.01582688
1063.88439	23.0	10499.88	37827.27	0.277546489	3.602638316	0.01882519
1063.92876	4.3	11651.94	2563.84	4.545454545	0.220035462	0.03334186
1064 3121	24 1	238 92	24122 25	0 00990452	100 9637117	0 01870179
1064 91726	24.2	2012.60	27201 44	0.052009506	10 51005772	0.0220055
1004.01720	24.2	2013.09	1740.40	0.0000000	0.40004045	0.0320000
1064.89396	23.0	19599.02	47112.48	0.415973378	2.40381815	0.03477592
1065.32056	24.2	340.59	44323.13	0.007684269	130.1363223	0.00593384
1065.82209	24.2	1327.95	31694.88	0.041897101	23.86752513	1.11E-04
1066.32527	24.1	245.2	19535.92	0.012551303	79.67340946	7.25E-04
1066 60605	10.0	11004 68	28003.03	0.379506641	2 63/600877	0.02035865
1000.00095	19.0	11004.00	20333.33	0.379500041	2.034030077	0.02955005
1068.67305	19.2	30058.35	70932.22	0.423728814	2.359817488	0.01226408
1072.3118	3.8	1002.99	8212.83	0.122129946	8.188346843	0.007145
1072.32508	24.2	176.43	6840.64	0.025791143	38.77254435	0.0017377
1073.73885	5.8	86406.65	13776.47	6.289308176	0.159437613	0.02806773
1077 3196	24 1	68 38	5189 45	0.013176793	75 8913425	0.00413026
1002 69549	10.1	22422.06	60272.02	0.202415265	2 002401572	0.00710020
1002.00040	19.1	22433.00	09372.03	0.323415265	3.092401572	0.00240371
1083.69367	19.1	12463.87	25715.72	0.484730974	2.063221134	0.03301206
1088.89592	23.0	6031.95	18019.26	0.334784064	2.987302614	0.01093282
1090.91405	22.9	25544.46	90576.58	0.282007896	3.545840468	0.02046567
1091 91606	22.9	21817 79	62513 46	0 34904014	2 865251705	0 04159293
1002.02414	22.0	17757.62	54001 11	0.222902122	2.000201700	0.00915074
1092.92414	22.0	17757.05	04991.11	0.522095122	3.0907 59554	0.00015974
1105.98003	4.2	12634.42	1879.34	6.711409396	0.148/4/628	0.01869335
1106.99651	23.3	14974.54	1751.13	8.547008547	0.116940487	0.00567011
1128.3196	3.7	728.59	11084.27	0.065733254	15.21331613	0.0010734
1130 31825	37	670 73	14259 5	0 047036689	21 2596723	0 00101077
1132 87267	21.7	6519 31	22651 13	0 287852619	3 47446739	0 02234977
1146 2222	21.7	445 1	7661 59	0.059005625	17 01016550	0.02204011
1140.3323	3.7	440.1	7001.00	0.056095025	17.21310330	0.0350276
1147.32933	3.7	459.09	8378.89	0.054791518	18.25108367	0.01642045
1150.87592	20.6	50969.55	18391.93	2.770083102	0.360841522	0.02340536
1151.66598	23.2	3994.39	15325.5	0.260620276	3.83675605	0.04117143
1154,92634	7.0	4010.42	13262.39	0.302388872	3.30698281	0.04762114
1165 70711	6.0	95731 94	10770 33	4 830917874	0 206517595	0.04985278
1103.73711	0.0	107045 40	10076.04	4.050917074	0.200317393	0.04903270
1193.81194	5.5	10/315.48	12976.94	12.82051282	0.077559709	0.02733084
1203.33904	3.7	721.08	13112.01	0.054993401	18.18384923	0.0023166
1204.33976	3.7	884.29	13771.71	0.06420958	15.57374843	4.49E-04
1205.33577	3.7	395.65	10147.65	0.038989395	25.64804752	0.00279782
1207 79942	53	1628401 72	23485 58	71 42857143	0 014422473	0 02489888
1208 80307	53	1230648.88	22484.05	55 5555556	0.018137434	0.02545856
1200.00307	0.0	12000-00	22404.00	00.00000000	0.010137434	0.02040000
1214.78784	6.0	19609.63	8923.34	2.197802198	0.455048871	0.01058795
1216.76883	5.9	155057.17	10212.74	15.15151515	0.065864352	0.04821873
1217.77581	5.9	101569.42	10983.2	9.259259259	0.108134909	0.02793169
1220.82628	5.4	39030.8	6328.91	6.172839506	0.162151685	0.01115072
1221 34954	37	416.34	7246 78	0 057451454	17 40591824	0 02025916
1001 01447	5.0	549109 16	10007.60	<u> </u>	0.022227017	0.02620120
1221.01447	5.0	546106.10	12237.02	40.40404040	0.022327017	0.02039129
1223.16094	3.6	1963.77	9097.35	0.215842866	4.032594448	0.00534147
1224.82108	5.8	981859.56	13556.83	71.42857143	0.013807301	0.04273823
1225.82347	5.8	278222.46	10065.42	27.7777778	0.036177597	0.04375219
1226.26532	3.5	1238.06	34209.85	0.036189925	27.63181914	0.00183444
1227 26500	35	1574 00	28282 03	0.055685488	17 95752080	0 00416075
1000 70747	6.0	2010220	14004 05	2 260669246	0 400400504	0.00407077
1220./9/1/	0.2	33193.73	14021.30	2.309008240	0.422409594	0.00407077
1233.81528	5.2	1237788	16963.99	/1.42857143	0.013705085	0.02614681
1234.81829	5.2	851853.43	10578.81	83.33333333	0.01241858	0.04979949
1235.82815	5.1	1.01E+07	36028.12	250	0.003551564	0.03891996
1236 25892	5 1	143299 42	116.9	1000	0.000815774	0.02999133
1236 83274	5 1	7538445 04	32150 2	250	0.004266026	0.04011652
1230.03274	5.1	1000440.04	JZ 1 JU.Z	200	0.004200020	0.04011002

1237.83657	5.1	3202597.48	14022.61	250	0.004378512	0.02842668
1238.83401	5.8	1558907.21	14883.49	100	0.009547387	0.03691058
1239.83722	5.8	923231.47	16629.33	55.5555556	0.018012092	0.03975171
1242.78423	5.9	178986.36	9502.29	18.86792453	0.053089464	0.03034258
1245.79989	5.8	341060.07	9701.05	35.71428571	0.028443816	0.03560842
1246.8045	5.9	133238.01	8906.67	14.92537313	0.066847816	0.00691986
1247.82489	5.8	3611431.64	9960.66	333.3333333	0.002758092	0.04381392
1248.8283	5.8	2755363.62	10738.78	250	0.003897409	0.04608219
1250.84296	5.8	868753.13	14178.18	62.5	0.016320148	0.02333547
1251.9077	21.4	2562.6	16959.33	0.151103052	6.618016858	3.43E-04
1252.03241	5.5	33206.94	5802.64	5.714285714	0.174741786	0.0172806
1252.85147	5.1	1391458.35	27905.06	50	0.020054542	0.03349142
1252.91236	21.5	3561.41	17090.94	0.208376745	4.798925145	0.00985866
1253.85528	5.1	942988.79	2/4/0./	34.48275862	0.029131523	0.03128027
1254.30291	3.4	1871.94	81446.53	0.02298375	43.50915628	6.11E-04
1254.85794	5.1	402949.63	23600.69	16.94915254	0.058569827	0.03415562
1255.30558	3.4	1994.21	18/15.78	0.025334414	39.47216191	3.84E-04
1255.01009	0.1 2.4	20/9/1.29	0393.97	32.23000432	0.031331003	0.03007003
1250.5045	5.4	77029 51	5205.06	0.040074097	21.94152510	2.50E-04
1257 99240	0.9 25.2	2511 72	11222 01	0 200995242	2 227159604	0.0102000
1257.00349	25.2	097 51	10542.91	0.00366904	10 6750720	2 69 5 04
1250.09019	25.2	106.00	15084 01	0.09300804	81 51823142	3.00E-04 8.81E-04
1260 94154	25.2	151.85	14763.97	0.012207229	97 2273296	0.012-04
1261 84206	5 1	3257940 56	20561.09	166 6666667	0.00631107	0.00200009
1261 9245	21.3	1685 38	10196 19	0 165289256	6 049786992	0.02000000
1262 93093	21.3	2469.38	9813 69	0.251635632	3 974151406	0.00755099
1262 97119	25.2	174 96	73668 26	0.00237497	421 0577275	0.002466
1263.85442	5.1	2247231.21	25141.08	90.90909091	0.01118758	0.03141421
1263.97485	25.2	258.91	62278.33	0.004157313	240.5404581	7.35E-05
1264.85921	5.1	1505134.6	34911.22	43.47826087	0.023194749	0.02780486
1264.97977	25.2	180.48	29357.5	0.00614768	162.663453	0.01136855
1267.86103	5.8	125592.26	7710.53	16.39344262	0.061393353	0.04348406
1268.93643	21.4	2198.5	27216.07	0.080781969	12.3793814	2.79E-04
1269.94028	21.4	2631.69	20670.79	0.127307447	7.854568737	8.48E-04
1270.21854	3.6	6352.27	14517.58	0.437636761	2.28541608	0.04252542
1270.93649	21.4	2008.15	11514.43	0.174398326	5.733849563	2.26E-04
1273.82409	5.8	55462.63	4936.84	11.23595506	0.089012007	0.04184325
1273.89172	21.4	2409.46	17550.19	0.137287205	7.283868585	0.00263507
1274.82161	5.8	41585.13	7170.66	5.813953488	0.172433271	0.00381351
1274.89557	21.4	1975.35	10729.56	0.184094256	5.431726023	0.03054657
1275.8553	5.8	957405.32	11381.31	83.33333333	0.011887661	0.02698
1276.35808	3.7	2280.69	11288.29	0.202020202	4.949506509	0.01566619
12/6.85864	5.8	960645.76	29495.64	32.25806452	0.030703971	0.03004166
12/7.86221	5./	494147.78	1/520.44	28.5/14285/	0.0354558/1	0.04354861
12/8.30018	3.7	902.18	10750 47	0.00024434	10.3272290	0.00540491
1270.07302	0.1 2.7	960.97	0906 95	0.096096779	11 4062251	0.04376331
1279.30172	5.7	386880 24	9090.00 9063 63	0.000300770	0 023/27/57	0.004323
1279 04175	21.3	5100 03	44865.95	0 115001715	8 628183456	1 10F-04
1280 88056	51	305751 75	11424 35	27 02702703	0 03736479	0 04144604
1280 94525	21.3	10343.06	43901 76	0 23557126	4 244562054	0.00241954
1281.88468	5.0	184758.03	11143.44	16.666666667	0.060313698	0.03195742
1282 33323	3.4	1608.05	88200 02	0.018231873	54 8490532	0.00125061
1282.88682	5.0	80367.15	10992.23	7.299270073	0.136775162	0.02527493
1282.95146	21.3	4149.07	16780.89	0.247279921	4.044494308	0.0015955
1283.33725	3.4	2551.68	84542.78	0.030182301	33.1322031	4.10E-04
1284.33816	3.4	2571.99	37413.26	0.068747422	14.54642514	0.00505873
1289.87486	4.9	1786479.55	11936.35	142.8571429	0.006681493	0.03835431
1290.87792	5.0	1441900.44	15661.73	90.90909091	0.010861866	0.03251382
1291.88047	5.0	680480.2	17366.69	38.46153846	0.025521228	0.03497573
1292.88416	5.8	201100.54	9452.19	21.27659574	0.04700231	0.02088715
1293.95076	21.3	4853.41	24875.71	0.195121951	5.125408733	0.00316562
1294.95807	21.3	4779.47	30086.79	0.158856235	6.295005513	0.0037769
1296.96747	21.3	5231.28	70467.97	0.074233539	13.47050244	5.88E-04
1297.9707	21.3	3631.71	55795.4	0.065091453	15.36339631	7.87E-04
1298.84508	5.7	182339.93	26270.09	6.94444444	0.144072064	0.03776256

1298 97165	21.3	3052.2	27028.09	0 112930548	8 855281436	0.00506016
1200.07100	21.0	0001.07	0700 54	0.000050000	4.004040074	0.00000010
1299.95353	21.3	2004.67	8782.54	0.228258388	4.381040271	0.03147473
1301.92488	21.3	4759.34	48301.94	0.098531875	10.14887358	9.22E-04
1302.92743	21.3	3881.09	36740.03	0.105641242	9.466420516	0.00112695
1303 88813	4.8	10/308 73	8760 71	11 00/7610	0.084002076	0.03832001
1303.00013	4.0	104390.75	0/09.71	11.9047019	0.004002070	0.03032331
1303.93321	21.3	2758.16	16253.16	0.169692856	5.89275459	2.19E-05
1304.94252	21.3	1440.52	8121.64	0.177367861	5.637991836	0.01556899
1307 90412	5.0	205378 64	9240 33	22 2222222	0 04499168	0 04292627
1007.00412	0.0	200010.04	3240.00		0.04400100	0.04232027
1307.97255	21.2	917.04	16521.43	0.055506217	18.01604074	0.00206726
1308.97637	21.2	888.78	16335.58	0.054406964	18.37977902	0.01216543
1309 90722	5.0	45420.09	8780 64	5 18134715	0 193320621	0.01780809
1210 00220	01.0	1007.10	20744.07	0.056112574	47.00407007	0 475 04
1310.98239	21.3	1837.18	32741.07	0.050113574	17.82137297	8.47 ⊑-04
1311.36135	3.3	941.03	17646.89	0.053324801	18.75273902	5.59E-05
1311.98512	21.3	1812.43	23834.95	0.076039845	13,15082514	5.05E-04
1312 36046	3.3	761 30	81/6 87	0.003457044	10 60000606	2 53 5 04
1312.30940	5.5	101.59	0140.07	0.093437944	10.099990000	2.332-04
1312.98354	21.3	1430.4	13442.39	0.106405618	9.397644016	0.0040881
1315.7883	5.9	39918.05	3534.48	11.23595506	0.088543403	0.03199771
1315 9391	21.3	1791 15	18163 73	0.098609605	10 14082014	0 00109647
1010.0001	5.0	20000	4044.40	7 104244604	0.120406651	0.00000007
1316.7883	5.9	28988	4041.12	7.194244604	0.139406651	0.02006367
1316.9423	21.3	2426.68	16161.53	0.15015015	6.659934561	0.02179329
1317.25968	4.2	17203.5	39027.18	0.440722785	2.268560467	0.0187647
1318 26602	12	13110 17	37588 46	0 34904014	2 865155341	0.00100501
1318.20002	4.2	13119.17	37300.40	0.34904014	2.803155341	0.00109591
1318.90755	4.9	50112.95	12531.42	4	0.250063507	0.01503314
1319.90966	5.0	19549.44	6786.87	2.88184438	0.34716442	0.01619164
1319 97443	21.3	994 58	9631 43	0 103263114	9 683916829	0 00450486
1010.01110	5.0	460224 5	7554.50	62.5	0.016410026	0.00000000
1321.82012	5.8	400334.5	7554.52	02.5	0.016410936	0.03250081
1321.98625	21.2	2704.13	32573.69	0.083015109	12.04590386	0.00404244
1322.98663	21.3	1471.45	19441.8	0.075683039	13.21268137	0.0037934
1323 01623	20.7	1202 03	1/813 /5	0.081142486	12 32360408	0.00331651
1323.01023	20.7	1202.03	14013.43	0.001142400	12.32309400	0.00001001
1323.8355	5.8	153976.11	6477.22	23.80952381	0.042066396	0.01883615
1323.99302	21.1	685.93	9328.08	0.073534819	13.59917193	2.55E-05
1324 99693	21.2	1546 97	20801 59	0 07436603	13 44666671	0 01274014
1225 0099	21.2	970.01	12001 41	0.072025252	12 99265042	0.02210706
1323.9988	21.2	870.91	12091.41	0.072020000	13.88303043	0.03210790
1326.04258	21.7	2660.32	16000.88	0.166251039	6.014644855	0.0166689
1327.04606	21.7	1912.86	15446.88	0.123839009	8.075279947	0.00330654
1329 95583	21.2	3264 57	20326.02	0 160616768	6 226247255	0 00144821
1020.00000	21.2	010 00	0000.02	0.004590492	10 5715000	7 025 04
1333.97857	21.3	813.82	8003.3	0.094589482	10.57 15023	7.83⊑-04
1336.0027	21.2	1543.43	42743.89	0.036108904	27.69409043	1.30E-04
1337.00522	21.2	2087.91	51593.64	0.040467808	24.71066282	0.00101866
1338 00271	21.2	1073 91	24730.05	0 043425395	23 02804704	0 00622738
1000.00271	Z1.2	047700 75	24700.00	0.040420000	20.02004704	0.00022700
1338.8517	5.8	247720.75	11057.13		0.044635462	0.04960907
1339.01244	21.2	1508.77	49857.37	0.030261764	33.04504331	0.00137052
1339.85437	5.8	190504.86	10676.06	17.85714286	0.05604088	0.04334067
1340 01444	21.2	1711 50	26001.06	0.065828451	15 10117312	0 02230528
1040.00054	Z1.Z	04000.00	20001.00	0.003020431	0.400074504	0.02200020
1340.86254	5.8	81938.68	9912.25	8.26446281	0.120971561	0.03238845
1341.01099	21.2	1021.72	14822.03	0.06893224	14.50693928	0.00291495
1343.97105	21.2	1486.24	32252.97	0.046080826	21.70105097	5.46E-04
1344 97701	21.2	1444 44	26267 80	0 054987353	18 18551826	4 20F-04
1044.01701	21.2	14640.07	104 00	76 00007000	0.04007505	0.04704005
1345.09/32	24.8	14018.07	194.06	10.92307692	0.0132/535	0.01761935
1345.98303	21.3	716.32	14673.52	0.048816207	20.48458789	0.00404024
1346.29933	4.2	7997.5	23964.71	0.333667	2.996525164	0.01973967
1247 01222	21.0	610.05	9/12 25	0.072511059	12 70124662	0.0220024
1047.01200	21.0	400000 04	00710.00	0.072311030	0.07070000	0.0200004
1347.84395	5.8	136239.34	9637.34	14.08450704	0.070738305	0.01650821
1348.84565	5.8	133665	9990.73	13.33333333	0.074744548	0.03681728
1349.85008	5.8	100980.61	10076.97	10	0.099791138	0.04931437
1350 01528	21.1	956 53	12767 57	0 074017501	13 34770881	0.00501402
1000.01020	<u> </u>	000.00	5050.00	0.000110001	0.457740000	0.00001482
1350.86116	5./	35849.58	5653.98	6.329113924	0.157/13982	0.03802482
1351.01561	21.2	1257.17	25397.92	0.04950005	20.20245472	9.38E-05
1351.3739	3.7	921.07	13255.78	0.069483046	14,39171833	0.01103898
1352 00185	21.3	1060 /8	17137 71	0.06240630	16 02/33802	0.02772812
1002.00100	21.5	1009.40	11 137.71	0.00240039	10.02403093	0.02112012
1352.37496	3.7	833.5	13247.65	0.062916824	15.8940012	0.00681711
1353.02895	21.2	994.02	61695.19	0.016111881	62.06634675	2.81E-04
1354 03105	21.2	944 29	45364 6	0 020815553	48 04096199	2 44E-05
1254 27404	27	646.00	0745 04	0.066040044	15 10202004	0.01440400
1304.37101	3.1	045.29	9140.04	0.000212011	10.10303894	0.01419133
1355.02948	21.2	446.02	19113.03	0.023336134	42.85240572	1.08E-04
1356.98278	21.3	962.92	7316.63	0.131613583	7.598377851	0.00273717
1357 81652	6 1	29776 75	4171.6	7 142857143	0 14009588	0 04467423
1001.01002	0.1	20110.10		11112001140	0.11000000	0.01101420

1357.98417	21.2	948.83	40254.8	0.023570452	42.42572431	0.00115335
1358.40337	3.3	6996.17	16029.3	0.436490615	2.291153588	0.03269773
1358.98677	21.2	655.91	27229.45	0.024088259	41.51400345	2.49E-04
1359 11805	24 4	14054 42	19.36	1000	0 001377503	0 00853518
1359 99365	21.2	1022 79	25625.95	0.039912193	25 05494774	1 11F-04
1262 01670	21.2	756 91	24000 22	0.030303280	22.00467042	0.00150726
1302.01079	21.2	750.01	24900.32	0.030393269	32.90107942	0.00159720
1363.02291	21.2	1274.89	24340.66	0.052377959	19.09236091	2.32E-04
1364.03314	21.0	1983.03	63162.92	0.031395203	31.85172186	0.00209497
1364.87194	5.8	89013.11	6846.61	12.98701299	0.076916872	0.02400992
1365.03761	21.0	969.5	56340.36	0.017207854	58.11280041	3.59E-04
1365.87256	5.8	69839.67	6449.69	10.86956522	0.09234995	0.02083818
1366 03134	21.0	1246 88	27387 03	0 045529048	21 96444726	6 71E-07
1367 03643	21.1	812 14	20545.69	0.039528817	25 20821213	0 00640702
1269 04522	21.1	1162.14	11016 12	0.1055520017	0 470962954	0.00043732
1300.04522	21.0	1103.10	11010.13	0.105565471	9.470003034	0.01024555
1309.20007	0.7	24931.4	1302.98	18.18181818	0.054669212	0.01710072
1369.39716	3.7	6024.7	23820.9	0.252908447	3.953873222	0.03983368
1371.02896	24.9	50480.55	16608.38	3.039513678	0.329005528	0.03528696
1371.40837	3.6	5581.16	18011.82	0.309885342	3.227253833	0.03890462
1371.99977	21.1	940.2	13526.41	0.069507194	14.38673686	0.01072302
1372.07509	24.8	29733.7	2957.06	10.1010101	0.099451464	0.02650906
1372 40522	37	2024 32	11298 27	0 179179359	5 581266796	8 49E-04
1372 00030	21.1	027.56	10201 7	0.000130680	11 00545474	8 16E 04
1072.00000	21.1	527.50	0011 45	5 912052499	0 17027660	0.102-04
1375.07555	5.7	52277.00	9011.45	5.013953400	0.17237009	0.01562750
1376.88084	5.7	36014.82	6840.92	5.263157895	0.189947361	0.03645337
1377.02799	21.2	427.62	10790.71	0.039629072	25.23434358	0.00611729
1377.24051	23.5	22960.48	1661.65	13.88888889	0.072370003	0.04818996
1378.04566	21.1	1117.95	20827.91	0.053676865	18.63044859	0.00425715
1379.04705	21.1	2131.4	53077.55	0.040155805	24.90266961	9.86E-04
1380.04212	21.1	1883.93	33945.86	0.055496975	18.01864188	9.47E-04
1381 05984	21.1	2218.4	72105 45	0.030766391	32 50335828	3 02E-05
1382 06305	21.0	1038.06	54103.08	0.010186861	52 110/1506	0.00230855
1302.00303	21.0	1030.00	34103.00	0.019100001	10 00500001	7 545 05
1383.00152	21.0	1341.14	24993.35	0.053659584	18.03589931	7.51E-05
1385.1223	24.5	22268.08	1870.29	11.9047619	0.083989729	0.04566974
1385.43206	3.3	4592.44	19302.5	0.237925291	4.203103361	0.02278919
1386.01735	21.0	1780.17	65925.42	0.027002943	37.03321593	0.00106136
1387.02178	21.0	883.48	49986.54	0.017674402	56.57914158	6.80E-04
1387.14354	24.5	39062.51	2779.41	14.08450704	0.071152878	0.01977048
1388.02514	21.0	1587.08	24238.66	0.065479309	15.27248784	1.17E-05
1389 02651	21.0	977 44	14086 54	0.069386622	14 41166721	0.00938081
1380 14862	24.5	15220.88	4977 36	3 058103976	0 327008688	0.03071333
1202 05012	24.0	922.1	7049.04	0 103551939	0.657210999	0.00900966
1392.05912	20.9	023.1	7940.94	0.103551626	9.007.019000	0.00099000
1392.90328	5.7	26013.33	6048.94	4.291845494	0.232532321	0.00763148
1394.04235	21.1	1649.41	11538.5	0.142938822	6.995531736	0.0411164
1395.06955	21.1	1401.78	27138.67	0.051652893	19.36014924	8.16E-05
1398.23606	6.7	22129.08	2633.82	8.403361345	0.119020764	0.02611413
1398.43016	3.3	2978.37	10777.07	0.276395799	3.61844566	0.0398674
1399.32853	6.0	15240.72	499.39	30.3030303	0.032766825	0.01780659
1400.02894	21.0	1005.28	18212.23	0.055196777	18.11657449	0.01674778
1401 15105	24.5	32764 25	15708 48	2 087682672	0 479439633	0.0098819
1402 03102	21.0	558 42	0124 78	0.06110951	16 34035314	0.02472616
1403 25594	21.0	64306 62	7015 24	8 130001201	0 102007402	0.04364017
1403.23364	23.5	70007.00	1915.54	3.130081301	0.123007403	0.04304017
1404.26479	23.5	/662/.98	10775.65	7.092198582	0.140622916	0.04819306
1405.06141	21.0	2092.98	12959.08	0.161498708	6.191688406	5.51E-04
1405.26969	23.5	55822.36	18528.69	3.012048193	0.331922369	0.04183772
1406.01195	24.0	4192084.58	9278578.71	0.451875282	2.213356752	0.00972795
1407.01575	24.0	2503522.19	6501207.71	0.385059684	2.59682448	0.02298492
1407.07384	20.9	351.98	13617.37	0.025847808	38.6879084	9.84E-06
1410.02514	24.0	475535.22	1172931.47	0.405350628	2.466550154	5.29E-04
1411 03203	24 0	353831.36	790507 65	0.447627574	2,234136765	1.02F-04
1411 44675	23	2710 63	9264 77	0 292568754	3 417030741	0.01261112
1412 02205	24.0	21 10.00	0115E7 01	0.202000104	0.500700740	0.00227475
1413.03293	24.0	4577.00	211007.01	0.000544004	2.022/92/13	0.0023/1/3
1413.46202	3.3	15/7.03	23017.68	0.068511921	14.59558791	0.00521587
1415.08319	24.8	103174.71	222027.68	0.464684015	2.151958363	0.01137908
1415.24839	23.5	20369.76	3827.26	5.319148936	0.187889303	0.04918441
1416.08415	24.9	21923.86	61663.21	0.355492357	2.81260736	0.01764982
1416.35138	4.0	3555.14	9062.32	0.39231071	2.549075423	0.01538597
1418.28299	23.5	123639.98	48121.16	2.570694087	0.38920388	0.03121821

1419 2862	23.5	150754 66	66240.33	2 277904328	0 439391592	0 04390604
1/20 28751	23.4	50334.86	8654 08	5 813053488	0 1710/803	0.01657307
1420.20751	23.4	062.06	10544.90	0.001404000	0.17 194003	0.01057507
1421.00745	21.0	903.90	10044.00	0.091424392	10.93624433	0.03403706
1422.06736	21.0	1242.57	10297.53	0.12067093	8.287283614	0.01941861
1423.09925	20.9	1550.85	18851.88	0.082263903	12.15583712	0.0337766
1424.04305	24.0	1.29E+07	2.87E+07	0.450856628	2.218452789	0.01094039
1424.25162	6.7	45650.58	9521.22	4.784688995	0.208567339	0.03116606
1424,50689	23.9	470330.3	1110530.99	0.423549343	2.361172542	0.0058173
1425 40074	37	2134 18	11008 45	0 177872643	5 62204219	0.01005753
1426.04097	24.0	2104.10	F101E11 07	0.461690517	2 165607642	0.00262005
1420.04007	24.0	2355095.06	5101511.27	0.401060517	2.103007043	0.00303005
1426.39584	3.7	1445.34	13011.04	0.111086425	9.002061799	0.02851197
1427.30395	4.0	11715.84	2628.63	4.464285714	0.224365474	0.03869229
1427.39834	3.7	796.51	8716.8	0.091374269	10.94374207	0.02424912
1428.05955	20.9	2780.16	16528.76	0.168208579	5.945254949	1.70E-04
1428.99841	24.0	1054736.06	2176142.36	0.484730974	2.063210354	0.00140214
1430 00316	24 0	651296 81	1377073 78	0 473036897	2 114356709	4 25E-04
1431 00709	24.0	311875.82	729681 77	0.427350427	2 339654834	0.00135014
1431.00703	24.0	4100 74	23001.77	0.427550427	2.333034034	0.00133014
1433.38420	4.1	4129.74	22194.77	0.180081131	5.374374058	0.00132479
1434.03447	24.0	351299.83	1104256.39	0.318167356	3.143344504	0.00215156
1434.03622	23.7	222115.13	451249.37	0.492125984	2.031601224	8.53E-04
1434.3866	4.1	2308.12	16247.47	0.142065634	7.039265723	0.03053366
1437.05142	8.0	15678.49	34827.86	0.450247636	2.221378462	0.01161709
1437.05224	24.1	1055426.52	2414262.29	0.437254045	2.287475484	0.0379117
1439 06783	24.1	1221540 91	3177704 59	0 384467512	2 601390231	0.01471678
1420.06916	23.6	020402 76	1067762.90	0.477554010	2.001000201	207E 04
1439.00010	23.0	303430.70	1907702.09	0.477554919	2.034432112	0.0000007
1440.07178	24.1	1084968.61	2883176.05	0.376364321	2.657381996	0.00606607
1440.09784	24.7	1416124.77	3443425.58	0.411184211	2.431583468	0.01069178
1441.07313	24.0	433627.2	1532834.48	0.282885431	3.534913124	9.81E-04
1441.10347	24.6	773430.79	2287968.06	0.338066261	2.95820659	0.004026
1441.31309	4.0	18561.47	927.97	20	0.049994424	0.04124983
1442.0656	23.6	49795.96	214650.58	0.231964741	4.310602306	0.01888497
1442 06965	25.1	80122.44	200876 43	0.267165375	3 742727131	0.0003773
1442.00300	24.6	221012 14	1007757 56	0.210396777	3 130536052	0.0030773
1442.10712	24.0	321912.14	1007757.50	0.319380777	0.404004050	0.00202447
1442.3159	3.9	16687.91	1690.84	9.900990099	0.101321256	0.04145761
1442.4909	3.3	654.78	4870.31	0.134444743	7.438086075	0.00185465
1443.11188	24.6	102086.12	372951.09	0.273747605	3.653298705	0.0011088
1444.11506	24.6	22597.08	88257.24	0.256016385	3.90569224	0.00199268
1444.40109	3.7	2867.94	9095.95	0.315258512	3.171597035	0.00970982
1446,23988	25.6	6532.57	32247.36	0.202593193	4,936397161	0.01645485
1447 03446	24.0	488718.6	1295524 18	0.377216145	2 650859165	0 02137752
1447 0351	23.7	274221 74	627022.5	0.436681223	2 280834861	3 18E 04
1440.00006	23.7	274221.74	1246400.05	0.450001225	4.05697364	1 425 05
1448.03996	24.0	307 157.94	1246100.95	0.246487552	4.05087304	1.42E-05
1448.04105	23.7	236440.3	554394.69	0.426439232	2.344755484	3.90E-04
1449.0527	24.1	750059.51	2644471.52	0.283607487	3.525682276	0.01001685
1449.05338	23.6	620811.39	1356149.69	0.457875458	2.184479396	0.00141792
1450.05568	24.1	615468.57	1421035.69	0.433087917	2.308868006	0.0061408
1450.05745	23.6	493862.8	1060588.76	0.465549348	2.147537251	0.00206499
1450.83763	4.6	78.96	10213.03	0.007731321	129.3443516	0.00203364
1451 06606	24 1	679018 22	1879919 22	0.361141206	2 768584354	0.00150712
1451 06688	23.6	459656.05	1358110.63	0 338409475	2 954623637	6 14E-04
1452.06010	23.0	401005.00	1200050.92	0.336403473	2.004020007	0.140-04
1452.06919	24.1	421285.29	1290959.83	0.326370757	3.004330355	8.45E-04
1452.0702	23.6	319629.61	936221.23	0.341413452	2.929081664	2.77E-04
1453.0721	24.1	327105.26	891213.89	0.366972477	2.724547719	0.02423804
1454.05634	24.0	211590.15	438321.41	0.482625483	2.071558671	0.00134376
1454.06835	23.6	77105.61	247792.92	0.311138768	3.213682117	1.48E-04
1455.05046	24.0	118974.53	288965.24	0.411692054	2.428799172	0.00459166
1455 06425	237	53586 57	125099 64	0 428265525	2 334533447	6 49E-04
1455 12008	24.6	2100133 21	4532007 84	0 46339203	2 158433483	0 00301522
1455 50077	27.0	701 5	9200 00	0.40000200	10 5610000	0.00001022
1400.009/7	3.3	194.0	0390.09	0.094088003	10.00122089	0.0000/090
1456.03542	24.0	80896.16	307486.15	0.263088661	3.800998094	1.85E-04
1456.12399	24.6	916168.94	2096186.82	0.437062937	2.287991579	0.00407021
1456.51523	3.3	743.86	7746.61	0.096024582	10.41406985	6.21E-04
1457.00994	24.1	63815.21	164372.57	0.388198758	2.575758506	9.16E-04
1457.12722	24.6	298871.37	726462.79	0.411353353	2.430687121	0.001657
1458.03165	23.6	32153 42	76944.94	0.417885499	2,393056166	0.0211754
1458 1313	24 5	66282 83	160071 77	0 414078675	2 414980923	0 00714601
1461 4000	10	5150 40	10000 62	0 271517704	3 627662757	0.02051100
1401.4090	4.0	0109.40	19000.03	0.2/101//04	5.002003/3/	0.02901100

1462 41829	4 1	2544 47	16647 63	0 152835091	6 542670969	8 75E-05
1402.07020	00.0	2011.17	00504.4	0.007000100	0.00120700000	0.0001000
1463.97939	22.0	6926.45	20534.1	0.337268128	2.964592251	0.03931982
1464.06095	24.0	33270.96	129690.49	0.256541816	3.898008654	0.03456974
1464,98222	22.0	5137.17	13942.95	0.368459838	2.714130543	0.02862225
1465 08217	23.6	60106 17	163312.82	0.423728814	2 3601/2/76	0.00144653
1405.08217	23.0	09190.17	103312.02	0.423728814	2.300142470	0.00144055
1465.99407	21.9	6372.73	35276.73	0.180635838	5.535575805	0.01366181
1466.08885	23.6	45302.35	123582.51	0.366568915	2.727949212	0.01411257
1467 00019	21.0	7237 87	27815.01	0 260213375	3 842082811	0.02376387
1407.00019	21.5	1251.01	27013.01	0.200213373	5.042902011	0.02370307
1468.01199	21.9	13248.34	89780.83	0.147557916	6.776760711	0.00973958
1468.098	23.6	28362.04	101005.85	0.280819994	3.561304123	6.97E-04
1469 01541	21 9	9086 09	74923 5	0 121270919	8 245956181	0 00655209
1400.00705	21.0	45750 77	00000.07	0.121270010	0.240000101	0.00000200
1469.09765	23.6	15/56.//	33936.27	0.464252553	2.153758035	0.03107173
1469.52446	3.2	908.39	5830.37	0.155811779	6.418355552	0.00283144
1470 02617	21.9	19198 85	177109 83	0 108401084	9 225022853	0.00518816
1470 52617	2.0	1069.75	6574.25	0 16262907	6 149621570	0.01060476
1470.52017	5.2	1008.75	0071.00	0.10202807	0.148031379	0.01909470
1471.03154	21.9	15217.18	142391.24	0.106871861	9.357268561	0.00480505
1471.3538	4.0	10104.21	1394.18	7.246376812	0.137980109	0.03040991
1472 03759	21.8	14253 57	124262 1	0 114705208	8 717963289	0.00573636
1472.00700	21.0	14200.07	7504045	0.114705200	0.717903209	0.0007 0000
1473.04689	21.8	11463.03	75942.15	0.150943396	6.624963033	0.00534547
1474.05665	21.8	8967.53	34792.13	0.257731959	3.879789641	0.01041448
1475 0492	24 1	28884 98	78609 82	0.367511944	2 721477391	0 01476746
1475.06040	20.0	26440.00	F6740.40	0.465082225	2.1.2.1.1.1.001	0.00440404
1475.06243	23.6	26442.33	56749.19	0.465983225	2.146149375	0.02440431
1477.09858	24.6	100993.56	212365.17	0.475511175	2.102759522	0.00924429
1478.08356	23.6	35963.56	77877.36	0.461893764	2.165451919	0.00146584
1470 08360	24.0	61254 14	136580 14	0 448430403	2 220720125	0.01180880
1479.00309	24.0	01234.14	130300.14	0.448450495	2.229729125	0.01100009
1479.09151	23.6	38611.32	82718.47	0.466853408	2.142337273	0.00189298
1480.01703	21.9	4258.75	13929.61	0.305716906	3.27082125	0.01744523
1481 00834	69	7622.9	1611 51	4 739336493	0 211403796	0 02927374
1401.00004	0.0	1022.0	40040.00	4.700000400	4.004404000	0.02027074
1481.01368	21.9	2482.63	12249.63	0.202675314	4.934134366	0.02958713
1481.08254	24.0	26082.95	64545.72	0.404040404	2.474632662	0.03673839
1481,13563	24.5	383785.38	774038.81	0.495785821	2.0168533	0.00752646
1492 02254	21.0	7002.02	24245 62	0.222720502	4 207006601	0.01000747
1482.03234	21.9	7992.92	34343.03	0.232720505	4.297000001	0.01000747
1482.14596	24.5	496757.99	1037472.87	0.478927203	2.088487535	0.01475856
1483.03756	21.9	5885.59	31810.09	0.185013876	5.404741071	0.01166122
1483 15044	24.5	363810 84	749902 2	0 485201359	2 061242045	0.01653053
1494 0529	21.0	16000.07	70040.00	0.017502174	4 500575000	0.01720200
1484.0538	21.8	16022.37	73048.03	0.217533174	4.5905/5288	0.01739398
1484.1529	24.5	164571.89	341762.07	0.481463649	2.076673422	0.02283676
1484.27863	6.8	18915.75	75664.25	0.25	4.000066082	0.00435921
1485 05996	21.0	15334 53	64001 6	0 236204806	1 232382734	0 00626230
1405.05550	21.5	10004.00	4000454	0.230234030	4.202002704	0.00020203
1485.15348	24.5	58191.74	123645.1	0.470588235	2.124787814	0.01819209
1485.27763	6.8	22560.85	80658.01	0.27972028	3.575131699	1.86E-04
1486 09669	21.8	8672.2	63398 97	0 136780194	7 310598233	0.01361141
1497 09374	21.0	11200.80	60204 70	0 197617261	5 220271117	0.00720722
1407.00374	21.0	11509.89	00204.70	0.187017201	5.550271117	0.00730723
1488.12919	21.8	7914.46	46571.41	0.169952413	5.884344605	0.04560207
1489.13197	21.8	6817.11	41848.69	0.162892979	6.138772882	0.02456714
1489 99721	22.0	11610 25	70789 02	0 164015089	6 097114188	0 00104471
1404 00000	21.0	10007 40	61160.02	0.166990106	5.001001175	0.00104700
1491.00033	21.9	10207.49	01103.19	0.100089180	5.991991175	0.00194732
1492.00903	21.9	24082.45	1/3307.68	0.138966092	7.196430596	0.00290097
1493.01279	21.9	18720.92	139826.32	0.133886732	7.468987635	0.00278379
1494 02578	21 9	43094 67	299794 6	0 143740118	6 956651484	0 0046504
1405 00070	21.0	40004.07	200104.0	0.10000000	7 500000544	0.00-000-
1495.02978	21.9	32147.04	241110.5	0.133333333	7.500099541	10010001007
1496.04336	21.8	108826.1	833886.22	0.130497194	7.662557236	0.00607604
1497.04747	21.8	90020.85	697492.74	0.129065565	7.748124351	0.00610333
1408 06025	21.7	200557 68	2301525 27	0 121/01021	8 230810720	0 00646488
1400 50010	21.7	230337.00	2001020.21	0.121731321	0.200010729	0.00040400
1498.56218	3.3	085.9	0008.18	0.10459157	9.501422948	0.00226016
1499.06436	21.7	242167.67	1992336.58	0.121550991	8.227095632	0.00659449
1500.06886	21.7	129670 54	1039725 04	0.124719381	8.018205523	0.00639928
1501 07251	21.7	51027 6	135060 51	0 110374479	8 376600100	0.00672700
1001.07201	21.7	01907.0	455000.51	0.1193/44/0	0.070000109	0.00012109
1502.08242	21.7	22795.75	157106.19	0.145095763	6.891907044	0.00895784
1503.10284	21.7	15141.24	72570.02	0.208637596	4.792871654	0.00197063
1504 12449	21.6	8223 53	31134 17	0 264131009	3 785986067	0.00319358
1007.12770	21.0	0220.00	45000.00	0.204101000	4 440000007	
1505.01308	22.0	3794.91	10023.28	0.242895312	4.110903958	∠.00E-04
1506.0258	21.9	12542.68	46538.11	0.269541779	3.710380078	0.00447385
1507.03022	21.8	13589.06	46743.91	0.290697674	3.439819237	0.0119399
1507 34624	6.6	56475 83	158663 62	0 355998576	2 809407493	0 00242022
1500.00707	0.0	40005.05	4000444	0.000000070	2.000-01-00	0.002-2022
1008.03/6/	21.9	13035.05	40204.14	0.282485876	3.539555503	0.0040818
1508.34892	6.6	63657.68	184361.99	0.345303867	2.896146859	0.00859793

	1509.04539	21.8	11717.08	51108.59	0.229252636	4.361887945	2.14E-04
	1511.06994	21.8	16531.78	95654.55	0.172830971	5.786101073	0.02676882
	1511.39239	4.0	37044.45	1795.27	20.83333333	0.04846259	0.04811253
	1512.0854	21.8	30071.57	161288.72	0.186462801	5.363495155	0.01392116
	1512.30958	6.7	17901.3	39101.05	0.457875458	2.184257568	0.03581937
	1513.08476	21.8	42948.45	247771.55	0.173340267	5.769045216	0.02476975
	1513.30927	6.8	8487.06	44854.78	0.189214759	5.285078696	0.01351577
	1514.13074	21.7	53866.28	335573.01	0.160513644	6.229741686	0.02960507
	1515.11353	21.7	80805.81	396790.36	0.203665988	4.910418694	0.02454429
	1516.03322	22.0	19969.64	141995.83	0.14062/19/	7.110585369	0.002/3449
	1517.101	21.7	23517.57	148705.73	0.158152776	6.323175821	0.03066717
	1518.02853	21.9	113558.84	429020.41	0.264690312	3.77795696	0.00471822
	1519.03085	21.8	99121.03	394757.55	0.25100/035	3.982381194	0.00172681
	1520.04213	21.7	270450 41	080127 /0	0.207594327	3.131292219	0.00039509
	1522 0503	21.7	152200 33	602813 11	0.27393019	3 958315081	0.00047371
	1523.05586	21.7	66004 13	208282.84	0.221287896	4 51015418	0.00400110
	1524 06891	21.7	38359 93	268301.04	0 142979697	6 994304734	0.00475506
	1525 07698	21.7	24152 89	184172 3	0 131147541	7 625269688	0.00661822
	1526.08917	21.7	28619.13	228925.42	0.125015627	7.999034911	0.0072458
	1526.41177	3.9	13686.92	199.42	66.66666667	0.014570115	0.04833694
	1527.09581	21.7	21831.97	179438.54	0.121669303	8.219072305	0.00685589
	1528.11243	21.6	18327.49	95433.51	0.192049165	5.207123834	0.03847047
	1529.11403	21.7	15856.95	70795.35	0.223964166	4.464625921	0.01527652
	1532.03053	22.0	7768.74	27987.47	0.277546489	3.602575192	0.0221172
	1532.14212	21.6	11224.1	48918.43	0.229463056	4.358338753	0.03095727
	1533.14853	21.6	17647.73	39471.11	0.447027269	2.236611168	0.00278388
	1534.03129	21.8	31079.92	99097.74	0.313676286	3.18848118	0.00395647
	1535.03546	21.8	31763.23	98511.11	0.32247662	3.101419786	0.00527913
	1536.0474	21.7	57512.72	181516.91	0.316856781	3.156117638	0.00108151
	1537.04444	21.7	58887.63	156355.89	0.376647834	2.655156779	3.13E-04
	1538.01917	22.1	5229.06	30/3/.28	0.142328494	7.025599247	0.00518738
	1530.10773	24.1	6229.61	10704.44	0.370709751	2.000020700	0.02220359
	1539.0209	22.1	17115 28	61078 38	0.289208152	3 568646262	0.01780834
	1539 41739	3.9	9239.04	1586 14	5 813953488	0 17167801	0.03332346
	1540 10588	21.5	12506 23	40220 68	0.310945274	3 21605152	0.00380685
	1541.10914	21.6	7098.85	35816.08	0.198216056	5.045335512	0.00364362
	1541.36558	6.6	5974.7	16259.42	0.367511944	2.721378479	0.03549786
	1542.02727	22.1	23489.12	95884.94	0.244977952	4.082100138	0.00866008
	1543.03192	22.0	18227.7	67313.68	0.270782562	3.692933283	0.0096032
	1544.03879	22.0	26751.75	59430.48	0.450045005	2.221554852	0.02139443
	1545.1461	21.6	9203.63	33284.85	0.276548673	3.616491536	0.04573847
	1546.05985	21.8	27430.85	101059.02	0.271444083	3.684137385	0.0091567
	1547.06703	21.7	19407.87	71872.95	0.27005131	3.703288924	0.00780924
	1548.07398	21.7	27644.51	124848.36	0.221434898	4.516208101	0.00523065
	1549.07808	21.0	23628.41	96975.81	0.243664717	4.104203795	0.00348624
	1550.07842	21.0	8561.25	865 16	0.200049090	0 101055337	2 73 = 04
	1551 08076	21.6	15148 88	48368 49	0 313185092	3 192875645	0 006944
	1554 11529	21.5	9941 08	42444 37	0 234192037	4 269593445	0.00394601
	1557.14952	21.5	9879.62	20609.43	0.479386385	2.086054929	0.01290249
	1561.17245	23.5	6039.25	20118.73	0.300210147	3.331329221	0.00403441
	1562.07794	21.6	5818.28	24600.69	0.236518448	4.228172243	0.04639756
	1562.12804	8.2	93124.91	704.27	125	0.007562638	0.04483978
	1562.17819	23.5	5614.14	16534.55	0.339558574	2.945161681	0.00267748
	1563.16473	24.1	16592.69	66551.68	0.249314385	4.010903597	0.00448886
ļ	1564.1913	23.5	5385.95	26828.89	0.200762899	4.981273499	1.65E-04
ļ	1565.10317	21.5	6192.26	34086.74	0.181653043	5.504733328	0.04315963
ļ	1567.40059	6.6	22035.2	66094.2	0.333444481	2.999482646	0.01044553
ļ	1508.13033	24.1	20064.43	00813	0.339/89331	2.942883012	0.00506943
	1000.40458	0.0	1/001.00 2221 0	00442.03	U.ZZZUZ400/ 0.103326102	4.000048001 5 171/27000	0.01004/00
	1574 08757	21 5	0001.0	19859 04	0.193300192	3 108420006	0.02210020
ļ	1576 1064	21.5	3980 59	25138 88	0 158353127	6 31536531	0.00568219
ļ	1576.16783	25.7	7172.75	27059.61	0.265041081	3.772557248	0.0310825
ļ	1576.43175	3.7	568.64	6768.5	0.084012434	11.90296145	0.02345252

1577 08517	19.5	2877 16	24777 87	0 116117046	8 611010303	0 0365572
1577 11204	21.5	4515 52	20059.16	0.215470904	4 641251071	0.00526916
1577.11204	21.5	4010.00	20930.10	0.213470804	4.041331071	0.000000010
1578.09409	19.5	2808.95	30200.7	0.079120184	12.03901427	0.03827827
1578.11879	21.4	4175.2	14461.6	0.288683603	3.463690362	0.00557282
1579.1068	19.4	1721.7	31651.02	0.054395126	18.38358599	0.01781571
1582.13359	8.0	314948.07	169.41	1000	0.000537898	0.04762931
1586.08855	21.5	3015.27	12045.35	0.250312891	3.99478322	0.00270664
1591,10223	19.4	2984.68	26291.8	0.113520263	8.808917539	0.03299353
1501 4452	3.7	1300.3	4331 44	0 300210147	3 331108206	0.01001120
1502 11026	10.2	5034 52	50601.26	0.084466503	11 02051007	0.02051504
1592.11020	19.5	1000 74	09001.20	0.084400595	11.03031007	0.02031304
1593.11881	19.3	4223.74	46937.38	0.089984703	11.11275315	0.02203476
1595.14723	7.9	90425.03	557.24	166.6666667	0.006162453	0.04731439
1595.43321	6.6	31808.89	142202.72	0.22366361	4.470533866	5.91E-04
1596.14565	7.9	341959.22	1036.7	333.3333333	0.003031648	0.03880477
1596.43785	6.6	21823	164531.75	0.132643587	7.539373597	0.00730589
1597,44126	6.6	8424.06	84774.96	0.099373944	10.0634326	1.93E-04
1598 08722	21.5	1938 37	7352	0 263643554	3 792877521	0.00102922
1508 15407	70	151400.65	828.03	200	0.005460131	0.0300611
1590.15407	1.5	131400.03	020.05	200	0.000409101	0.0303011
1598.44142	0.0	13002.8	35873.05	0.30410000	2.74019913	0.03537594
1607.13371	19.1	4407.63	38990.11	0.113045444	8.846048784	0.02102796
1607.14798	8.0	75087.97	1307.91	58.82352941	0.017418369	0.01331464
1608.1337	19.1	2296.63	22096.17	0.103939299	9.621127478	0.01477375
1614.21351	6.0	3300.45	9327.55	0.353857042	2.82614492	0.02327591
1617.09266	21.9	3358.52	10875.32	0.308832613	3.2381287	0.03957695
1623 46226	6.6	44892 28	169778 86	0 264410365	3 781916624	0 01781226
1624 16041	7.8	30146 52	1018 36	29 41176471	0.03378035	0.04446795
1624.10041	7.0 6.6	26209.07	152277 17	0 171526597	E 92004264E	0.02272240
1024.40955	0.0	20300.07	100000 40	0.171520567	5.650042045	0.02373340
1625.47253	0.0	8648.78	80283.46	0.107723796	9.282634082	4.80E-04
1626.46817	6.6	1464.17	26668.43	0.054902822	18.21402569	0.02084351
1639.4846	6.5	4392.56	11511.67	0.381533766	2.620720036	0.04516083
1643.09749	21.9	6533.58	26483.74	0.246730817	4.053480634	0.00756673
1644.10332	21.8	7284.81	20766.4	0.350754121	2.850644011	0.00633404
1645,11367	21.7	12268.84	51189.85	0.239693193	4,172346367	8.26E-04
1646 11586	21.7	12799 12	52164 25	0 245338567	4 07561223	0 00149895
1646 45425	37	1270 56	/103.00	0.310077519	3 22/087/27	0.0218268
1040.40420	017	1272.00	4103.33	0.310077519	3.224307427	0.0210200
1047.12115	21.7	8025.02	29077.51	0.276014353	3.023350702	0.0016722
1651.49554	6.6	9142.87	29981.59	0.304971028	3.279231795	0.014/1659
1652.49845	6.5	7676.97	36387.01	0.210970464	4.739761911	0.00354603
1653.50093	6.5	1046.41	20502.71	0.051038636	19.59338118	5.68E-04
1654.50332	6.5	600.23	9155.8	0.065556575	15.25381937	7.12E-04
1671.1288	21.7	3198.04	8512.02	0.3756574	2.661636502	0.03207816
1673,17445	8.6	23883.31	309.85	76.92307692	0.012973495	0.04830294
1675 22615	24.4	1175.08	4140.8	0 283768445	3 523845185	0.0065609
1676 38712	65	507.85	21686.0	0.027567105	36 27/8181	0.01601132
1677 20052	0.5	204.20	21000.9	0.027307133	50.2740101 60.69054222	0.01091132
1077.30032	0.5	394.29	23929.20	0.010477179	00.00904323	0.01100490
1704.5332	7.6	70.22	9617.61	0.007301189	136.9639704	0.01088786
1705.42024	6.5	255.96	26031.38	0.009832745	101.7009689	0.02270999
1706.42612	6.5	143.7	13909.46	0.010331112	96.79512874	0.05365037
1714.12367	26.2	374.48	73680.2	0.005082515	196.7533647	1.10E-04
1715.12579	26.2	890.05	49001.93	0.018163655	55.05525532	6.73E-04
1740.62367	26.0	7412.73	16315.4	0.454338937	2.200997473	0.00935972
1750 12135	26.0	37172 49	97733 69	0 380372765	2 629194063	0.01560514
1753 8027	24.2	85 14	12670 31	0.006719662	148 8173596	2 43E-04
1760 21797	24.2	126.2	6199.01	0.0000713002	45 40652074	0.01124216
1700.31707	24.2	130.3	0100.91	0.022023036	45.40052971	0.01134310
1/01.31153	24.1	19.36	1216.42	0.00266065	375.8481405	3.87E-04
1765.30414	24.1	59.63	10680.35	0.005583161	1/9.1103471	0.00334015
1765.80297	24.1	19.36	17322.31	0.001117634	894.7474174	0.00747933
1766.31052	24.1	334.68	22220.66	0.015061602	66.39374925	0.00401533
1766.81262	24.1	67.03	29053.09	0.002307156	433.434134	0.00148001
1767.31675	24.1	69.64	34721.9	0.002005652	498.5913268	0.00397262
1767 82032	24 1	268 04	35977 25	0.007450288	134 2234368	0.00513753
1768 32310	24.1	104 06	33632 06	0 005706608	172 512105	0 00202/15
1768 022218	27.1	1177	27514 50	0.0007 30030	222 760010	0.00202410
1700.02234	24.1	117.7	21014.09	0.004277727	200.100019	0.01299914
1/09.32585	24.1	105.91	1/8/9.64	0.005923504	108.8191861	0.00291415
1774.62741	7.4	19.36	12955.92	0.001494297	669.2107438	0.0018642
1774.82513	24.2	170.65	14205.94	0.012012589	83.24605919	0.00103698
1776.33206	24.1	125.83	12363.04	0.01017791	98.2519272	4.18E-05

1793.26062	19.5	3105.06	15394.9	0.201694232	4.958004032	0.01236546
1813.37692	24.6	17749.06	37647.54	0.471475719	2.121100498	0.02240124
1814.37018	24.6	13305.57	35114.78	0.378931413	2.639103774	0.00482329
1817.34066	24.9	9141.28	23817.8	0.383729854	2.605521327	0.01478631
1817.86348	24.7	13984.44	30405	0.459981601	2.174202185	0.00234038
1821.38824	24.6	15184.23	39975.6	0.379794911	2.632705116	0.00432947
1821.8954	24.6	11805.65	33760.26	0.34965035	2.859669734	0.02208756
1827.84225	24.9	42916.48	11972.35	3.584229391	0.278968592	0.00112267
1832.88305	24.6	12543.42	26199.66	0.478697942	2.088717431	0.01407708
1833.89246	24.5	12114.1	25248.9	0.479846449	2.084257188	0.00627191
1856.73375	5.0	765.73	12441.44	0.061546036	16.24781581	0.00536342
1858.71634	4.9	996.23	7538.96	0.132152769	7.567489435	0.02592293
1859.72742	5.0	378.49	8623.92	0.043888523	22.78506698	5.79E-05
1860.7031	4.9	98.07	4860.02	0.020178784	49.55664321	0.00515583
1869.69965	4.8	38.65	8637	0.004474934	223.4670116	5.00E-04
1870.53993	8.6	19.36	5347.23	0.003620565	276.1998967	8.63E-04
1870.70389	4.8	19.36	6482.98	0.002986278	334.8646694	3.93E-04
1871.71271	4.8	112.57	4699.2	0.023954965	41.74469219	4.36E-04
1885.72907	4.8	258.86	17853.97	0.014498637	68.97152901	5.70E-06
1886.73179	4.8	402.67	20879.07	0.019285659	51.8515658	0.00142408
1887.73026	4.8	472.76	15270.37	0.030959752	32.30046958	0.00355794
1897.72942	4.8	19.36	5954.38	0.003251388	307.5609504	7.43E-07
1898.7333	4.8	19.36	5121.95	0.003779804	264.5635331	0.00133285
1912.74102	4.8	36.69	5160.03	0.007110403	140.6385936	2.53E-04
1914.76322	4.8	1580.21	14094.62	0.112120193	8.919460072	0.00895269
1916.77795	4.9	1038.99	7205.17	0.144196107	6.934782818	0.04370568
1917.79445	4.9	190.22	8745.24	0.021751425	45.97434549	3.72E-06
1941.77572	4.8	19.36	6184.34	0.003130488	319.4390496	0.00275978
1944.8243	4.9	1793.67	17106.69	0.104854776	9.537256017	0.02906022
1945.82801	4.9	548.76	22866.31	0.023998656	41.66905387	0.01991246
1946.83157	4.9	19.36	14695.67	0.001317395	759.0738636	0.01220412
1958,79727	4.8	69.94	6780.36	0.010315127	96.94538176	5.99E-08
1967.80416	5.0	19.36	7512.24	0.002577127	388.0289256	3.95E-04
1968 80361	4.9	19.36	7535 27	0.002569254	389 2184917	7 16F-07
1970.62803	8.3	106.43	7457.69	0.014271239	70.07131448	0.02746131
1971 64743	8.2	85 83	12589.36	0.006817655	146 6778516	0.01190222
1972 6529	8.1	160 18	12110 63	0.013226464	75 60638032	0.02217691
1972 84953	4.9	1725 18	17879.92	0.096487843	10 36408954	0.02111376
1973 85629	4.9	849 69	25447 17	0.033390096	29 94876955	0 00493924
1974 8613	4.9	55.6	18132 75	0.003066271	326 1285971	0.01310375
1975 85912	4 9	19.36	8873 87	0.002181686	458 3610537	0.0010971
1982 79858	4.8	19.36	6218 42	0.003113335	321 1993802	5.05E-05
1983 8081	4.8	19.36	6235.95	0.003104578	322 1048554	4 90F-04
1984 81744	4.8	843 59	15804 48	0.053376034	18 73478823	5.03E-04
1985 64177	8.2	19.36	5676.08	0.003410804	293 1859504	0.01592778
1985 82118	4.8	855 58	21626 73	0.039561657	25 2772739	4 71F-04
1986 82467	4.8	780.21	16013 77	0.048721072	20 52494841	4 41F-04
1987.83099	4.8	250 14	9748 78	0.025658789	38,97329495	2.83E-05
1994 82484	4 9	19.36	5895 98	0.003283598	304 5444215	0.00612716
1996.82226	4.8	45 72	7667 42	0.005962887	167,7038495	0.0026006
1998 8306	4 8	253 36	6684 94	0.037900322	26.38514367	5.20F-04
1999 83243	4.8	19 36	5684 79	0.003405577	293 6358471	9.66E-04
2001 87708	4.0	19.36	8387 39	0.002308227	433 2329545	0.0002207
2002 84997	4.8	43.9	9872.65	0.002000227	224 8895216	0.02084031
2002.04007	8.0	19 36	4399 92	0.004400072	227 268595	0.02004001
2010 82656	4.8	19.36	6086.39	0 003180864	314 3796488	7 25F-06
2010.02000	4.0 8.0	10.00	8793 59	0.002201605	454 2143595	2 85E-04
2011 83681	4.8	19.36	8028.38	0 002411446	414 6890496	0.00184583
2012 84977	4.8	19.36	16253 1	0 001191157	839 5196281	3 90F-04
2013 68787	4.0 8 0	19.36	11062 47	0.00175006	571 4085744	6 46F-04
2013 84024	47	10.36	20190 32	9 59F_04	1042 88843	2.40E-04
2013.04324	7.0	10.30	7705 02	0.002512355	308 0330570	2.00L-04
2014.70033	4.8	10.36	15745 5	0.002012000	813 3006108	1 76F-04
2015 85701	4.0 4.7	87 30	9123 16	0.001223007	104 2050262	0 00155/15
2010.00701	/ 6.0	12607.05	10 36	500	0 001524764	0.00133413
2020 40856	6.0	9800 16	19.30	500	0 001024704	0.03238582
2020.40000	24.2	6125 10	10.30	222 2222222	0.0013160719	0.00200002
2021.0100	24.2	0120.19	19.00	000.0000000	0.000100710	0.00400087

2028.40789	6.0	12309.29	19.36	500	0.001572796	0.01095543
2028.53473	24.2	18885.65	67.87	250	0.003593734	0.00637358
2029.41798	6.0	9628.88	19.36	500	0.002010618	0.04218841
2029.53938	24.2	18952.77	151.48	125	0.007992499	0.00764456
2030.41585	6.0	8168.59	19.36	500	0.002370054	0.03169255
2030.87409	4.8	19.36	6407.16	0.003021623	330.9483471	1.37E-04
2031.55558	24.2	25216.78	115.63	200	0.004585439	0.04192651
2033.5589	24.2	9394.74	19.36	500	0.002060728	0.00640929
2033.67393	7.9	19.36	6494.54	0.002980964	335.4617769	6.26E-04
2039.71998	7.8	19.36	7709.61	0.00251115	398.223657	0.00730928
2040.88316	4.7	19.36	4482.49	0.00431902	231.5335744	2.29E-04
2044.40926	5.9	21047.5	19.36	1000	0.000919824	0.04159512
2044.56378	24.2	11357.3	101.04	111.1111111	0.008896481	0.01099419
2045.57063	24.1	10961.43	122.49	90.90909091	0.011174637	0.00825404
2047.4266	5.9	41346.25	92.92	500	0.002247362	0.04898729
2048.4292	5.9	27239.76	19.36	1000	0.000710726	0.04524826
2049.43033	6.0	14155.65	19.36	1000	0.001367652	0.04521353
2052.53547	24.1	12843.25	198.6	66.66666667	0.015463376	3.07E-04
2054.5502	24.2	43831.5	1363.33	32.25806452	0.031103886	0.02104312
2055.41569	6.0	5365.28	19.36	250	0.003608386	0.02826321
2055.55495	24.1	49336.62	1789.56	27.7777778	0.036272448	0.02028244
2055.74841	7.8	88.25	8832.03	0.009992006	100.0796601	0.02651333
2056.5673	24.1	109411.62	835.65	125	0.007637671	0.02926766
2057.57131	24.1	113939.49	1460.96	76.92307692	0.012822245	0.03398647
2059.70474	7.9	19.36	5874.14	0.003295805	303.4163223	0.00302782
2060.42806	6.0	6196.43	19.36	333.3333333	0.00312438	0.04503209
2060.70588	7.9	19.36	8901.49	0.002174915	459.7877066	8.90E-04
2061.43328	6.0	9715.02	19.36	500	0.001992791	0.03424436
2062.60045	24.1	18632.68	78.57	250	0.004216785	0.0464424
2063.44182	5.9	9723.41	19.36	500	0.001991071	0.03052416
2068.56319	24.1	12496.71	991.98	12.65822785	0.079379293	0.04326347
2069.56404	24.2	15608.11	163.37	100	0.010466994	0.00280953
2070 58079	24.1	39789.01	1011 31	40	0.025416817	0.01821245
2071 42022	6.0	7913 82	19 36	500	0 002446353	0.0053208
2071.58611	24.1	41338.42	913.23	45,45454545	0.022091556	0.01828764
2072 59656	24.1	61412.8	2652 58	23 25581395	0.043192624	0.03813208
2074 44398	5.9	14231 49	19.36	1000	0.001360364	0 02799271
2074 72474	7.8	19.36	3934 16	0 004920993	203 2107438	8 72F-04
2078 55188	24.2	13435 95	1188 57	11 36363636	0.088461925	0.03631657
2079 55164	24.2	14582 21	2062.83	7 092198582	0 141462097	0.01358788
2080 56656	24.1	36154.95	5546 78	6 535947712	0 15341689	0.02997969
2082 58167	24.1	95125 72	1911 51	50	0.020094565	0.02395754
2083 58856	24.0	105763 1	1959 63	52 63157895	0.018528485	0.03379414
2090 62506	24.0	15438.04	303 62	50	0.019667004	0.04590045
2096 58137	24.1	39357 7	3204 85	12 34567901	0.081428793	0.04593512
2103 64476	23.7	32545 24	2567 18	12 65822785	0.078880352	0.04829646
2106 57775	24 1	9023.09	1449 43	6 211180124	0 160635658	0.03724195
2108.59018	24.0	20001.1	1724.24	11.62790698	0.086207259	0.01795816
2109 59634	24.0	19869 16	1319 72	15 15151515	0.066420523	0.03056804
2110 61632	24.0	42773 38	3082.5	13 88888889	0.07206585	0.0349077
2111 62049	23.9	50585.58	3626.5	13 88888889	0.071690391	0.03105281
2112 63174	23.7	57822.4	3211 71	17 85714286	0.055544391	0.02966265
2112.00174	23.7	52811 27	1947 63	27 02702703	0.03687906	0.02000200
2110.00011	23.7	50387 94	2155 16	23 25581395	0.042771346	0.03870117
2115 64994	23.7	30114 05	3598 59	10 86956522	0.092000373	0.00070117
2116 65735	23.7	25783.06	1033.07	25	0.002000070	0.03856100
2128 62114	24.2	15300.28	42444 31	0 360400267	2 774087141	0.03030133
2130 63422	24.1	5105.20	31434 10	0.165280256	6 049760005	0.02000419
2153 87/96	27.1	252 88	3064 42	0.100200200	11 22447064	0.01210030
2165 62/91	24.6	45210	103883 21	0.000010409	2 267508228	0.00000210
2100.02401	24.0	31/01 /5	75022 02	0.440317100	2.201000220	0.0100319
2100.13110	27.1	26226 2	53045 06	0.414700007	2.710900100	0.04000100
2107.12130	24.1	20220.2	306420 22	0.400144071	2.000949100	0.03/1/9/0
2113.00000	24.0	1477UZ.Z	300429.23 247072 0	0.401921/11	2.014042201	0.01/40033
2175.64661	24.0	52107.01	241013.0	0.312993131	2.000/00903	0.01017107
2170.04001	24.0	12114 66	100000.01	0.424200131	2.331010209	0.000000000
2100.15224	24.0	40114.00	0042J.JZ	0.40/00/04	2.00000/004	0.04209107
2100.0750	24.0	150497.07	313/58.30	0.479010307	2.084813744	0.02451969

	2189.15619	24.6	19182.23	63376.21	0.302663438	3.303902101	0.01470439
	2189.67815	24.6	96139.23	205584.41	0.467726848	2.138402918	0.02315876
	2190.6753	24.5	48173.7	104668.13	0.460193281	2.172723499	0.0098651
	2191.64624	24.6	31048.19	63517.34	0.488758553	2.045766275	0.04250173
	2215.52223	21.9	92.11	5847.14	0.015752993	63.4799696	0.00361964
	2216.52997	21.9	283.92	11242.12	0.025255076	39.5960834	0.00596861
	2217.53593	21.9	292.9	9215.82	0.031782354	31.46404916	0.00300503
	2218.55188	21.9	794.98	14447.25	0.055026688	18.17309869	0.00159789
	2219.55105	21.9	605.94	14076.4	0.04304593	23.23068291	0.00684165
	2220.56094	21.8	432.75	13493.34	0.032071841	31.18045061	0.00705895
	2221.56632	21.8	90.27	9720.02	0.009287034	107.6771907	0.00717473
	2222.5679	21.8	19.36	5220	0.003708814	269.6280992	0.01356749
	2232.56391	21.8	764.67	7993.99	0.095657165	10.45416977	5.22E-04
	2236.5128	22.0	174.53	5878.37	0.02969033	33.68114364	0.00129837
	2237.5181	21.9	249.32	6492.54	0.038400983	26.0409915	0.00124766
	2238.51408	21.9	655.45	12068.24	0.054312405	18.41214433	0.00575031
	2239.52196	21.9	731.39	13116.87	0.055760009	17.93416645	0.00250554
	2240.53187	21.9	1493.35	22117.02	0.067521945	14.81033917	0.00317361
	2241.53373	21.9	1716.29	21880.69	0.078437525	12.74883033	0.00479049
	2242.54764	21.9	3417.06	33817.23	0.101040719	9.896586539	0.01213658
	2243.55394	21.9	3584.78	35363.85	0.101368474	9.864998689	0.00906271
	2244.56497	21.8	6796.78	67771.7	0.100290843	9.971148102	0.00517714
	2245.57084	21.8	5954.67	73788.2	0.080697224	12.39165227	0.00452579
	2246.58383	21.7	12415.52	139123.94	0.089237908	11.20564745	0.00529826
	2247.58865	21.7	13456.41	151486.14	0.088825724	11.25754492	0.00582659
	2248.59199	21.7	10547.13	108859.6	0.096889836	10.32125327	0.00513439
	2249.59664	21.7	4844.31	59305.51	0.081685999	12.24230283	0.00424776
	2250.59598	21.7	2868.23	28545.05	0.100482315	9.952148189	0.00804981
	2251,59948	21.7	839.28	11090.17	0.075677312	13.21390954	0.00401157
	2254.5469	21.8	980.24	6851.31	0.143081986	6.989420958	0.02692511
	2255.54751	21.8	1421.52	7589.88	0.187300993	5.33927064	0.01686794
	2256 55391	21.9	1797 75	8846 68	0 20321073	4 920973439	0.00336675
	2258 56654	21.8	2059 87	11953 69	0 17232466	5 803128353	0.00317253
	2259 57651	21.8	793 56	11952 34	0.066392245	15 06167146	0 00696515
	2260 53242	22.0	441 14	8109 71	0.054395126	18 38352904	3 02F-04
	2260 59742	21.7	2508 42	23164 78	0 108283703	9 234809163	0.01122124
	2261 60128	21.7	2849.03	29270 44	0.097333074	10 27382653	0 01144223
	2262 60823	21.7	3385.66	28609 1	0 118343195	8 450080634	0.01440143
	2263 54624	22.0	1410 73	14187 42	0 099433231	10 05679329	1 74F-04
	2263 61429	21.7	5060 19	38000 09	0 133155792	7 509617228	0 03368005
	2264 54162	21.9	4215 48	22210 58	0 189789334	5 26881399	0.004908
	2264 61835	21.7	2916.6	29635 89	0 09841551	10 16110883	0 00606546
	2265 54838	21.9	4890 46	26086 87	0 187476565	5 334236452	0.02588451
	2265 62247	21.6	1621 15	16353 19	0 099137504	10 08740092	0.00600274
	2266 55166	21.9	10795 35	51793 99	0 208420175	4 797805537	0.00320822
	2267 5529	21.8	10821 32	57934 61	0 186776242	5 353747047	0 00264374
	2268 56505	21.7	20666 71	107338 94	0 192529842	5 193808787	0.00288938
	2269.57019	21.7	21988.24	110948.89	0.198176774	5.045828588	0.00389619
	2270.5731	21.7	15664.51	84967.63	0.184365782	5.424212439	0.00352093
	2270.62666	25.0	4288.31	370.71	11.62790698	0.086446642	0.02172895
	2271.57945	21.7	8894.4	54111.7	0.164365549	6.083794298	9.55E-04
	2272 58874	21.7	5997 22	39135 88	0 153233221	6 525670227	0 00475156
	2273 59483	21.7	3861.21	25728 8	0 150082545	6 663403441	0.01770877
	2274 60828	21.7	3419.99	26315 48	0 129954516	7 694607294	0.00996396
	2275 61575	21.7	1999 75	20248.36	0.098765432	10 12544568	0.00984282
	2276 61555	21.7	2496.07	18783.07	0 132890365	7 52505739	0.01998149
	2277 62243	21.7	2424 98	13294	0 182415177	5 482107069	0.03396571
	2278 63285	21.6	1685 45	10867 8	0 155086849	6 448010917	0.00332559
	2280 5379	21.9	1773 77	9419.35	0 188323917	5 310355909	2 43F-04
	2281 53939	21.9	1233 11	7107 85	0 173490632	5 764165403	0.0016915
	2282 58134	21.0	4243.84	12437 24	0.341180484	2 930657141	0.04260854
	2283 57526	21.7	4613.08	16014 14	0.288101412	3 471463751	0 00355577
	2284 57782	21.7	-010.00 6011 38	23520.24	0.255558305	3 912610066	0.00120182
	2285 56880	21.7	4690 99	18990 03	0.2000000000000000000000000000000000000	4 048102386	6 68F_0/
	2286 52314	22.0	2034 14	15240.00	0.247033373	7 4921520020	0.000-04
	2286 50358	21.6	4187.84	12430.2	0.336027224	2 968164073	0.00104401
	2200.00000	22.0	2042.84	12954 89	0.000021224	6 3/1602067	0.00407378
I	2207.32404	22.0	2042.04	12904.00	0.13/0/0900	0.341002007	0.00014411

2287.60145	21.6	2018.91	11045.3	0.182781941	5.470922428	0.00264882
2294.58052	21.7	4538.35	18344.99	0.247402276	4.042215783	0.00326226
2296.58899	21.7	4105.41	18755.31	0.218914186	4.568437744	0.00722756
2297.59742	21.6	4107.22	14856.96	0.276472215	3.617278841	0.01926004
2298.60276	21.6	3114.52	13031.96	0.239005736	4.184259533	0.01916241
2299.59676	21.6	3228.55	12017.35	0.268672757	3.722212758	0.00710665
2399.14214	3.0	1867.82	4223.11	0.442282176	2.260983392	0.03724559
2505.18795	6.3	19.36	7137.61	0.002712394	368.6782025	0.00750858
2519.19926	6.4	19.36	10636.96	0.001820068	549.4297521	0.00463417
2521.20426	6.5	19.36	5325.39	0.003635412	275.0717975	0.0066179
2532.22374	6.2	254.59	7878.47	0.032314354	30.94571664	5.87E-07
2547.22917	6.3	19.36	13020.53	0.001486883	672.5480372	0.00404746
2548.23999	6.2	101.12	12617.44	0.008014298	124.7768987	0.00418088
2548.42583	24.6	16718.46	36697.36	0.455580866	2.195020355	0.01207199
2553.93851	24.6	12677.52	28083.02	0.451467269	2.215182465	0.02529375
2555.44307	24.5	16536.44	33791.25	0.48947626	2.043441636	0.03436741
2560.25662	6.2	248.87	12162	0.02046287	48.86888737	7.31E-04
2561.25454	6.2	258.02	13370.36	0.019297941	51.81908379	6.22E-04
2562.25585	6.2	230.3	12395.67	0.018579073	53.82401216	0.00175396
2562.45018	24.5	14560.11	31203.04	0.466635558	2.143049743	0.03893115
2564.2477	6.4	19.36	6247.88	0.003098652	322.7210744	0.00778008
2575.27019	6.1	125.16	12566.58	0.009959763	100.4041227	0.00524944
2577.26939	6.1	19.36	10383.93	0.001864419	536.3600207	0.0021608
2578.27344	6.2	19.36	6485.95	0.002984914	335.0180785	9.64E-06
2587.27845	6.1	186.86	16241.55	0.011505097	86.91828107	8.24E-06
2588.28656	6.1	193.63	21062.94	0.009192951	108.7793214	6.48E-04
2589.28654	6.1	190.88	20414.49	0.009350251	106.9493399	2.93E-06
2591.29225	6.1	80.57	9831.34	0.008195243	122.0223408	0.00337958
2601.29766	6.1	19.36	9217.13	0.002100439	476.0914256	0.01829507
2602.29873	6.1	64.76	21715.46	0.002982208	335.3221124	1.00E-04
2603.2899	6.3	19.36	17733.63	0.001091711	915.9932851	0.004089
2604.29929	6.1	30.91	20162.73	0.001533028	652.3044322	2.12E-05
2605.31197	6.1	19.36	15980.14	0.001211504	825.4204545	0.00615498
2615.2989	6.1	27.9	7315.3	0.003813926	262.1971326	0.04287791
2616.31217	6.1	137.83	15174.1	0.00908323	110.092868	0.00247372
2617.30983	6.2	42.59	8901.17	0.004784758	208.9967128	7.49E-04
2618.31081	6.1	69.01	12770.66	0.005403799	185.0552094	1.21E-04
2628.31037	6.1	43.57	10623.3	0.004101369	243.8214368	0.00614619
2629.31978	6.1	29.82	17103.39	0.001743515	5/3.554326	0.0055799
2630.33187	6.0	36.45	20560.06	0.001772855	564.0620027	0.00151821
2631.32491	6.1	44.13	18044.3	0.002445646	408.8896442	0.02010126
2634.32919	6.1	27.99	/648.//	0.003659411	273.2079528	0.01453647
2043.34930	0.0	47.10	12800.02	0.003007000	272.701800	0.00112129
2040.34408	0.0	44.04	22702.29	0.001930744	011.0027010 120.1766401	3.78E-03
2040.35203	0.0 5.0	102.92	13397.70	0.007001049	130.1700421	0.01509901
2048.33883	5.9	39.95	7690.21	0.003470121	287.0770904	0.00641542
2007.3349	0.0	40.09	1009.21 081/ 22	0.0000000000000000000000000000000000000	1/0.4403409	5.00E-04
2000.00002	6.0	10.26	7052.06	0.002300003	<i>1</i> 10 702200 <i>1</i>	0.00566196
2662 36951	6.0	23.56	5746.66	0.002434310	243 0150503	0.00000100
2672 37331	5.9	10.36	11500 92	0.004033772	594 0557851	0.00000120
2673 37785	5.9	49.32	15439.65	0.001003343	313 0504866	9 33E-06
2674 37027	6.1	51 04	10379 1	0.000104017581	203 3522727	9.89E-04
2675 38697	5.9	20.76	8055.8	0.004577027	388 044316	0.00242349
2676 38254	5.9	20.73	4694.2	0.004416083	226 444766	1 74F-04
2685 38697	5.9	19.36	9964 82	0.001942834	514 7117769	3 80E-05
2686 38876	5.9	24 69	16311 73	0.001513636	660 6614014	6 78E-07
2687.39239	5,9	30.08	15300.07	0.001966004	508.6459441	9.26E-04
2690.39093	6.0	19.36	8657 22	0.002236286	447,1704545	4.05E-04
2699.39939	5.8	19.36	4900.13	0.003950914	253,1058884	2.46E-06
2714,41674	5.8	25.33	8600.51	0.002945178	339,5384919	2.79E-04
2715.42048	5.8	19.36	8314.85	0.002328365	429,4860537	0.00321265
2716.41596	5.8	20.11	8273.27	0.002430718	411.4007956	5.31E-05
2727.43853	5.8	19.36	4596.93	0.004211502	237.4447314	0.00136037
2829.03537	23.9	108966.71	229595.49	0.474608448	2.107024154	0.01787658
2831.02547	24.0	61278.42	124203.35	0.493339911	2.026869329	0.00954231
2831.51482	23.8	30859.37	63421.87	0.486618005	2.055190044	0.00266297
•						

2835.01937	24.0	45060.43	106984.36	0.421229992	2.374241879	0.00269472	
2836.02734	24.0	35257.59	79561.07	0.443066017	2.256565749	0.03205593	
2840.0291	24.0	49317.83	105092.54	0.469263257	2.130923846	0.01475419	
2841.53614	23.9	31423.73	77159.86	0.407331976	2.455464708	0.00296197	
2842.53271	24.0	19956.83	48000.06	0.415800416	2.405194613	0.02791758	
2843.04699	23.8	36613.65	107548.94	0.340483487	2.937400123	0.00128655	
2843.53801	24.0	18069.12	39729.29	0.45475216	2.198739618	0.02546949	
2843.54533	23.6	13940.23	33000.9	0.422475708	2.367313882	5.70E-04	
2846.04539	24.0	17156.23	60056.81	0.285632676	3.50058317	0.00757272	
2848.02552	24.0	19812.74	44103.03	0.449236298	2.225993477	0.00832101	
2849.01925	24.0	18778.13	40361.07	0.465332713	2.149365778	0.00298982	
2849.55184	23.6	14107.58	28692.15	0.491642085	2.033810902	0.00970798	
2851.03734	23.6	14856.19	34642.71	0.428816467	2.331870419	2.06E-04	
2855.04348	24.0	27334.25	59017.6	0.463177397	2.159108079	0.02062916	
2855.05148	23.6	12238.65	29546.71	0.414250207	2.414213169	2.06E-04	
2855.54646	23.6	7392.01	14890.47	0.49652433	2.014400684	0.00309058	
2856.04803	24.1	23054.52	51878.89	0.44444444	2.250269795	0.02960718	
2856.05916	23.6	13477.4	30523.26	0.441501104	2.264773621	0.00100682	
2856.55196	23.6	6661.2	16354.39	0.407331976	2.455171741	0.01407345	
2857.05889	23.6	10598.72	25643.35	0.413393964	2.419476125	8.09E-04	
2859.03484	24.1	13657.27	29587.66	0.461680517	2.166440292	0.04983478	
2860.03813	24.1	10696.8	26002.63	0.411353353	2.430879328	0.04078981	
2862.9839	24.0	6526.52	15990.14	0.408163265	2.450025435	4.38E-04	
2869.06559	23.6	2639.42	9908.52	0.266382525	3.754052027	5.23E-05	
2890.16298	24.6	13325.9	27707.83	0.481000481	2.07924643	0.0063462	
2892.17365	24.6	7706.21	20729.22	0.371747212	2.689937077	0.01390234	
2995.09647	21.8	89.96	5598.72	0.016067871	62.23566029	0.00486699	
2996.10157	21.7	19.36	5578.97	0.003470174	288.169938	0.00137674	
2997.11283	21.7	19.36	4837.86	0.004001777	249.8894628	0.01068697	